Intermediate Topology/Geom pset 5

Assigned: 9/30/16
"Due": 10/7/16

Basic problems (required)

1) Do problem 4-C at the end of Section 4 of Milnor and Stasheff (available in the google drive).
2) Show that the simplicial set Δ^{2} is not a Kan complex.

Less basic problems (optional)

3) Given a simplicial set X, let $\left(C_{*}(X), \partial\right)$ denote the chain complex with

$$
\begin{aligned}
& C_{n}(X)=\mathbb{Z} X_{n} \text { (The free abelian group generated by } X_{n} \text {) } \\
& \qquad \partial(x)=\sum_{i}(-1)^{i} d_{i}(x)
\end{aligned}
$$

Verify that $\partial^{2}=0$. It turns out that

$$
H_{*}\left(C_{*}(X)\right)=H_{*}(|X|)
$$

(though this requires a sneaky trick or two to prove)
4) For G a discrete group, X a right G-set, and Y a left G-set, define the two sided bar construction to be the simplcial set $B(X, G, Y)$ with

$$
B(X, G, Y)_{n}=X \times G^{n} \times Y
$$

With simplicial structure maps

$$
\begin{gathered}
d_{i}\left(x, g_{1}, \ldots, g_{n}, y\right)=\left\{\begin{array}{c}
\left(x g_{1}, g_{2}, \ldots, g_{n}, y\right), i=0 \\
\left(x, g_{1}, \ldots, g_{n-1}, g_{n} y\right), i=n \\
\left(x, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}, y\right), \text { otherwise }
\end{array}\right. \\
s_{i}\left(x, g_{1}, \ldots, g_{n}, y\right)=\left(x, g_{1}, \ldots g_{i}, 1, g_{i+1}, \ldots, g_{n}, y\right)
\end{gathered}
$$

Show that $|B(G, G, *)|$ is a free contractible G-CW complex, and that the quotient is $|B(*, G, *)|$. Conclude that the latter is a model for BG. In fact, $C_{*}(B(*, G, *)$ is the "Bar complex" for computing group homology. This is one way to see that $H_{*}(B G)=H_{*}(G ; \mathbb{Z})$ (group homology).

