Intermediate Topology/Geom pset 5

Assigned: 9/30/16

"Due": 10/7/16

Basic problems (required)

- 1) Do problem 4-C at the end of Section 4 of Milnor and Stasheff (available in the google drive).
- 2) Show that the simplicial set Δ^2 is not a Kan complex.

Less basic problems (optional)

3) Given a simplicial set *X*, let $(C_*(X), \partial)$ denote the chain complex with $C_n(X) = \mathbb{Z}X_n$ (The free abelian group generated by X_n)

$$\partial(x) = \sum_{i} (-1)^{i} d_{i}(x)$$

Verify that $\partial^2 = 0$. It turns out that

$$H_*(C_*(X)) = H_*(|X|)$$

(though this requires a sneaky trick or two to prove)

4) For G a discrete group, X a right G-set, and Y a left G-set, define the two sided bar construction to be the simplcial set *B*(*X*, *G*, *Y*) with

$$B(X,G,Y)_n = X \times G^n \times Y$$

With simplicial structure maps

$$d_{i}(x, g_{1}, \dots, g_{n}, y) = \begin{cases} (xg_{1}, g_{2}, \dots, g_{n}, y), i = 0\\ (x, g_{1}, \dots, g_{n-1}, g_{n}y), i = n\\ (x, g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n}, y), otherwise \end{cases}$$

$$s_i(x, g_1, \dots, g_n, y) = (x, g_1, \dots, g_i, 1, g_{i+1}, \dots, g_n, y)$$

Show that |B(G, G, *)| is a free contractible G-CW complex, and that the quotient is |B(*, G, *)|. Conclude that the latter is a model for BG. In fact, $C_*(B(*, G, *))$ is the "Bar complex" for computing group homology. This is one way to see that $H_*(BG) = H_*(G; \mathbb{Z})$ (group homology).