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Abstract

We study the interaction between the EHP sequence and the Goodwillie tower
of the identity evaluated at spheres at the prime 2. Both give rise to spectral
sequences (the EHP spectral sequence and the Goodwillie spectral sequence, re-
spectively) which compute the unstable homotopy groups of spheres. We relate the
Goodwillie filtration to the P map, and the Goodwillie differentials to the H map.
Furthermore, we study an iterated Atiyah-Hirzebruch spectral sequence approach
to the homotopy of the layers of the Goodwillie tower of the identity on spheres.
We show that differentials in these spectral sequences give rise to differentials in the
EHP spectral sequence. We use our theory to re-compute the 2-primary unstable
stems through the Toda range (up to the 19-stem). We also study the homological
behavior of the interaction between the EHP sequence and the Goodwillie tower of
the identity. This homological analysis involves the introduction of Dyer-Lashof-
like operations associated to M. Ching’s operad structure on the derivatives of the
identity. These operations act on the mod 2 stable homology of the Goodwillie
layers of any functor from spaces to spaces.
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Introduction

All spaces and spectra in this book are implicitly localized at the prime 2. The
purpose of this book is to describe the relationship between two machines for com-
puting the 2-primary unstable homotopy groups of spheres.

The first of these machines is the EHP sequence. James [Jam55] constructed fiber
sequences

Ω2S2n+1 P−→ Sn
E−→ ΩSn+1 H−→ ΩS2n+1.

Applying π∗ to the resulting filtered space

(0.0.1) · · · → ΩnSn → Ωn+1Sn+1 → · · · → QS0

yields the EHP spectral sequence (EHPSS)

E1
m,t = πt+m+1S

2m+1 ⇒ πst .

By truncating the filtration (0.0.1) we also get truncated EHPSS’s

E1
m,t(n) =

{
πt+m+1S

2m+1, m < n,

0, otherwise
⇒ πt+n(Sn).

The Curtis algorithm (see, for instance, [Rav86, Sec. 1.5]) gives an inductive tech-
nique for using the various truncated EHPSS’s to compute the 2-primary unstable
stems, provided one is able to compute differentials in the EHPSS. Unfortunately,
as the differentials come from the P map, they are closely related to Whitehead
products, and therefore are difficult to compute.

The second computational machine is the Goodwillie tower of the identity. Let Top∗
denote the category of pointed topological spaces. Goodwillie calculus associates
to a reduced finitary homotopy functor

F : Top∗ → Top∗

(i.e. a functor which preserves weak equivalences and filtered homotopy colim-
its, and satisfies F (∗) ' ∗) a tower Pi(F ) of i-excisive approximations [Goo90],
[Goo92], [Goo03].

D3(F )

��

D2(F )

��

D1(F )

· · · // P3(F ) // P2(F ) // P1(F )

The fibers of the tower take the form of infinite loop spaces Di(F ) = Ω∞Di(F ),
where

Di(F )(X) ' (∂i(F ) ∧X∧i)hΣi

ix



x INTRODUCTION

for a Σi-spectrum ∂i(F ) (the ith derivative of F ). Under favorable conditions (F
analytic, X sufficiently highly connected), F (X) is the homotopy inverse limit of
the tower Pi(F )(X). The Goodwillie tower of the identity functor

Pi(X) := Pi(Id)(X)

converges for X connected and Z-complete. Applying π∗ to the tower Pi(X) gives
the Goodwillie spectral sequence (GSS)

Ei,t1 (X) = πtDi(X)⇒ πt(X).

For X = Sn, a (2-local) sphere, Arone and Mahowald showed that Di(Sn) ' ∗
unless i = 2k [AM99]. In this case the GSS may be re-indexed to take the form

Ek,t1 (Sn) = πtD2k(Sn)⇒ πt(S
n).

Arone and Dwyer [AD01] identified the layers as

(0.0.2) D2k(Sn) ' Σn−kL(k)n

where L(k)n is the stable summand of the Thom complex (BFk2)nρ̄ associated to the
Steinberg idempotent, studied by Kuhn, Mitchell, Priddy, and Takayasu [KMP82],
[Tak99]. Thus the GSS computes the unstable homotopy groups of spheres from
the stable homotopy groups of some well-understood spectra. The differentials in
the GSS are mysterious.

In this book we shall demonstrate that when the EHPSS and GSS are computed in
tandem, well understood aspects of each sheds light on the more mysterious aspects
of the other.

(1) Goodwillie filtration. Elements in Goodwillie filtration 2k decompose as k
iterates of desuspensions of images of the P homomorphism (Whitehead
product) in the EHP sequence.

(2) EHP differentials. Goodwillie filtration preserving differentials in the EHP
sequence may be computed from the differentials in Atiyah-Hirzebruch
type spectral sequences for L(k)n.

(3) Goodwillie differentials. The differentials in the Goodwillie spectral se-
quence are given by the H homomorphism (Hopf invariant) in the EHP
sequence.

To demonstrate the effectiveness of the approach advocated in this book, we apply
these observations to reproduce the computation of the EHPSS, and compute the
GSS’s through the Toda range (the first 20 unstable stems).

The homotopical analysis of the interaction between the Goodwillie tower and the
EHP sequence that is undertaken in this book is predicated by a homological anal-
ysis of this interaction. Key to this homological analysis is an understanding of
the Arone-Mahowald computation of H∗(D2k(Sn)) as a module over the Steenrod
algebra. In order to understand the effect of the natural transformations in the
EHP sequence on this homology, we must re-interpret their computation in terms
of natural Dyer-Lashof-like operations which act on the stable (mod 2) homology
of the layers of any functor F from spaces to spaces. Using M. Ching’s operad
structure on ∂∗(Id) [Chi05], we construct natural homology operations

Q̄j : H∗(Di(F )(X))→ H∗+j−1(D2i(F )(X)).
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The construction of these operations should be of independent interest.

Most of the computations of this book are performed with sequences of spectral
sequences. Iterated spectral sequences can complicate calculations, as the accumu-
lated indeterminacy of the associated graded represented by the E∞-terms can ex-
acerbate the computation of differentials in any successive spectral sequence. These
difficulties are circumvented through the use of transfinite spectral sequences, as
defined by P. Hu [Hu99].

We outline the contents of this book:

In Chapter 1, we briefly review Ching’s operad structure, as well as some well known
aspects of the homology of symmetric groups. We then construct the operations
Q̄i, and re-interpret the Arone-Mahowald stable homology calculations in terms of
these operations.

In Chapter 2, we show that the EHP sequence induces fiber sequences which relate
the layers of the Goodwillie tower of the identity evaluated at spheres. Using the
naturality of the operations Q̄i, we compute the effect of these fiber sequences on
stable homology. The EHP fibrations give rise to fiber sequences between the L(k)n-
spectra, which were previously constructed by S. Takayasu [Tak99] and N. Kuhn
[Kuh01]. These fiber sequences give an iterated Atiyah-Hirzebruch spectral se-
quence approach to the homotopy groups of L(k)n, and allow these homotopy
groups to be computed inductively in k. These iterated spectral sequences are
formulated as transfinite Atiyah-Hirzebruch spectral sequences (TAHSS’s). The
TAHSS’s compute the E1-term of the GSS: taken in succession these yield the
transfinite Goodwillie spectral sequence (TGSS).

Chapter 3 analyzes the meaning of the filtration on the unstable stems arising from
the Goodwillie tower. Another filtration (by degree of instability) is defined on
the unstable stems. This filtration allows one to trace through the EHP sequence
and see how an unstable element is recursively built up: the unstable element is
eventually traced forward to a stable element, and the record of this ancestry is
defined to be the lineage of an unstable element. The P and E maps are observed to
induce maps on the TAHSS and TGSS. Under favorable circumstances, the lineage
of an element can be read off of the name of a detecting element in the E1-term of
the TGSS.

In Chapter 4, we prove theorems which compute differentials in the TGSS. Often,
these differentials are given by Hopf invariants. The Goodwillie d1-differentials are
related to stable Hopf invariants. In the presence of an unstable Hopf invariant, we
introduce the notion of a generalized Hopf invariant (GHI). The generalized Hopf
invariant is defined by means of a transfinite spectral sequence which concatenates
the TGSS with the EHPSS: the resulting refinement of the EHPSS is called the
transfinite EHP spectral sequence (TEHPSS). Generalized Hopf invariants give rise
to longer differentials in the GSS. TGSS differentials not arising from Hopf invari-
ants are considered exotic. Two forms of exotic differentials are identified: those
arising from the geometric boundary effect, and the bizarre differentials. The geo-
metric boundary effect differentials arise from Hopf invariants through a geometric
boundary type theorem derived from the interaction of the TGSS with the EHP



xii INTRODUCTION

sequence. The bizarre differentials defy explanation, but must exist for the TGSS of
S1 to converge to the known values of π∗S

1. The calculus form of the Whitehead
conjecture, as proposed by Arone, Dwyer, Kuhn, Lesh, and Mahowald, predicts
that the GSS for S1 collapses at E2. The relationship of this conjecture to our d1’s
is briefly discussed.

In Chapter 5, we explain how to lift differentials from the TAHSS and the TGSS to
the EHPSS (or more precisely, the TEHPSS). We explain how TEHPSS names are
closely related to EHPSS names via the notion of lineage. In the Toda range, all but
one differential is obtained from lifting corresponding differentials from the TAHSS
or TGSS. This one exception gives rise to an example of a deviation between degree
of instability and Goodwillie filtration, and a deviation between TGSS names and
lineage.

Chapter 6 gives a complete computation of the TAHSS’s, TGSS’s and TEHPSS
in the Toda range (through the 19-stem). These computations demonstrate that
the tools of this book can be used to give an independent treatment of the un-
stable 2-primary computations of [Tod62]. However, unlike [Tod62], we do not
solve the additive and multiplicative extension problems presented by these spectral
sequences.

Appendix A reviews Hu’s notion of a transfinite spectral sequence, and describes the
transfinite spectral sequence associated to a transfinite tower. We only work under
a strong locally finite hypothesis which guarantees excellent convergence properties
of the transfinite spectral sequences — this local finiteness hypothesis is satisfied
by all of the examples of transfinite spectral sequences in this book. We then prove
a general geometric boundary type theorem, which explains the behavior of the
transfinite spectral sequences associated to a fiber sequence of transfinite towers.
This geometric boundary theorem specializes to give the geometric boundary effect
TGSS differentials, as well as the lifting of TAHSS and TGSS differentials to the
TEHPSS.

Acknowledgments. This author benefited greatly from conversations with Greg
Arone, Michael Ching, Nick Kuhn, Katherine Lesh, Mark Mahowald, and Haynes
Miller.

Mark Behrens
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0.1. Conventions

As stated at the beginning of the introduction, all spaces and spectra are implicitly
localized at the prime 2. Homology and cohomology is implicitly taken with F2-
coefficients. Mod 2 binomial coefficients

(
a
b

)
∈ F2 are defined for all a, b ∈ Z by(

a

b

)
= coefficient of tb in (1 + t)a.

We will denote the connectivity of a space Y by conn(Y ). For a spectrum E, we
denote its Spanier-Whitehead dual by E∨. We shall use Sn to denote the n-sphere
as a space, and use Sn to denote the n-sphere as a suspension spectrum. We will
use S to denote the sphere spectrum S0.

Throughout this book we will be dealing with completely unadmissible sequences
of integers (which we shall sometimes refer to briefly as “CU sequences”). A CU
sequence is a sequence of integers

(j1, . . . , jk)

with js ≥ 2js+1 +1. We shall often refer to a CU sequence by a single capital letter
(e.g. J = (j1, . . . , jk)). We associate to CU sequences the following quantities:

• Length: |J | := k,
• Degree: ‖J‖ := j1 + · · ·+ jk,
• Excess: e(J) := jk.

The empty sequence ∅ is regarded as a sequence of length zero, degree zero, and
excess∞. We introduce a total ordering on CU sequences of all lengths: we declare
that

(j1, . . . , jk) ≤ (j′1, . . . , j
′
k′)

if either k > k′ or, for k = k′, if J ≤ J ′ with respect to right lexicographical
ordering. For CU sequences

J = (j1, . . . , jk)

J ′ = (j′1, . . . , j
′
k′)

with jk ≥ 2j′1 + 1, we shall let [J, J ′] denote the CU sequence

(j1, . . . , jk, j
′
1, . . . , j

′
k′).





CHAPTER 1

Dyer-Lashof operations and the identity functor

Johnson’s computation [Joh95] of the derivatives of the identity ∂i(Id) admit a
description in terms of the poset of partitions of the set i [AK98], [AM99]. Ching
observed that this description yields an equivalence

∂i(Id) ' B(1,Comm, 1)∨i

where B(1,Comm, 1)i is the ith space of the operadic bar construction on the
commutative operad in spectra [Chi05]. Using this description, Ching gives ∂∗(Id)
the structure of an operad, and therefore the layers ∂∗(Id) ∧ Σ∞X∧∗ form a left
module over ∂∗(Id). More generally, the work of Arone and Ching [AC] gives ∂∗(F )
the structure of a bimodule over ∂∗(Id) for any reduced finitary homotopy functor
F : Top∗ → Top∗.

In Section 1.1 we review Ching’s topological model for the operadic bar construc-
tion. In Section 1.2 we recall Ching’s cooperad structure on this bar construc-
tion. Dualizing this gives Ching’s operadic structure on ∂∗(Id), as explained in
Section 1.3.

We then use this model to define Dyer-Lashof-like operations Q̄j on H∗(D∗(F )(X)),
and relate these to the actual Dyer-Lashof operations which appear in the Arone-
Mahowald computation of H∗(D∗(Sn)). We review some well-known aspects of
the homology of extended powers in Section 1.4. In Section 1.5 we construct the
operations Q̄j , and explain how the Arone-Mahowald computation of the stable
homology of the layers of the Goodwillie tower of the identity evaluated on spheres
is given by these operations.

1.1. The operadic bar construction

Our symmetric sequences shall be regarded as functors

Fin→ Top∗

where Fin is the category of finite sets and bijections. Let Φ be a reduced operad
in Top∗. Ching gives a topological model for the realization of the operadic bar
construction

B(Φ) := B(1,Φ, 1).

For a finite set A, a point in B(Φ)(A) is given by a tuple

(T, α, (xv), l)

consisting of:

1



2 1. DYER-LASHOF OPERATIONS AND THE IDENTITY FUNCTOR

(1) A rooted tree T with one root and |A| leaves. Each v in V (T ), the set of
internal vertices, has a set I(v) of incoming edges, with |I(v)| ≥ 2, and a
single outgoing edge. A vertex v is the source s(e) of its outgoing edge e,
and is the target t(e′) of each of its incoming edges e′.

(2) A labeling of the leaves, given by a bijection α from the set of leaves to
the set A.

(3) A labeling of the vertices, which assigns to each vertex v ∈ V (T ) a point
xv in Φ(I(v)).

(4) A metric on the edges, which assigns to each edge e a non-negative length
l(e), such that the distance from each leaf to the root is 1.

These tuples are subject to the following identifications:

• If l(e) = 0 for any external edge e, then

(T, α, (xv), l) ∼ ∗.

• If xv = ∗ for some v, then

(T, α, (xv), l) ∼ ∗.

• If l(e) = 0 for an internal edge e, then

(T, α, (xv), l) ∼ (T/e, α′, (x′v), l
′)

where T/e is the tree with edge e collapsed, and vertices s(e) and t(e)
identified. The leaf labeling α′ is induced by α under the natural bijection
between the leaves of T and T/e. The vertex labeling (x′v) is given by

x′v =

{
xt(e) ◦e xs(e), v is the image of s(e) ∼ t(e),
xv otherwise.

The metric l′ assigns to the edges e′ in T/e their lengths in T .

As the operadic bar construction arises as the geometric realization of a simplicial
symmetric sequence in Top∗

B(Φ) = |B•(Φ)|,
the spaces B(Φ)(i) admit decompositions as simplicial spaces, as is described in
[Chi05, Sec. 4.2]. Let Ps(i) be a sequence of refining partitions

λλλ = (λ0 ≤ λ1 ≤ · · · ≤ λs+1)

of i with

λ0 = {1, 2, · · · , i},
λs+1 = {1}{2} · · · {i}.

Associated to λλλ is a rooted tree (Tλλλ, αλλλ) with k+2 levels and leaves labeled by i. (See
Figure 7 of [Chi05, Sec. 4.2], but our partition indexing is in the opposite order of
Ching’s.) Given a labeling (xv) of the internal vertices Tλλλ by points xv ∈ Φ(|I(v)|),
we get a map

σλλλ,(xv) : ∆s → B(Φ)(i)

which assigns to a point

t = (t0, t1, . . . , ts) ∈ ∆s
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with tj ≥ 0 and t0 + · · ·+ ts = 1, the point

(Tλλλ, αλλλ, (xv), lt) ∈ B(Φ)(i)

where lt(e) = tj for e an edge going from level j + 1 to level j.

1.2. The cooperadic structure on B(Φ)

Ching showed that B(Φ) is a cooperad in Top∗. The cooperadic structure map

◦a : B(Φ)(A ∪a B)→ B(Φ)(A) ∧B(Φ)(B)

sends a point (T, α, (xv), l) to the point
(T ′, α′, (x′v), l

′) ∧ (T ′′, α′′, (x′′v), l′′) if (T, α) is obtained by grafting (T ′′, α′′)

onto the leaf labelled by a of (T ′, α′),

∗, otherwise,

where:

• The labellings (x′v) and (x′′v) arise from the bijection V (T ) ∼= V (T ′) q
V (T ′′).

• We have

l′(e) =

{
h(T ′′), s(e) = a,

l(e), otherwise,

where h(T ′′) is the height of T ′′, when viewed as a subtree of the metric
tree (T, l).

• The metric l′′ is given by

l′′(e) = l(e)/h(T ′′).

1.3. Operad structure on ∂∗(Id)

Let Comm be the commutative operad in Top∗, with

Comm(i) = S0.

Ching observes that the partition poset description of ∂i(Id) gives rise to an equiv-
alence

∂i(Id) ' Σ∞B(Comm)(i)∨

of Σi-spectra. As B(Comm) is a cooperad in Top∗, Ching deduces that ∂∗(Id) is
an operad in spectra. Arone and Ching also show that, for any reduced finitary
homotopy functor F : Top∗ → Top∗, the derivatives ∂∗(F ) are a bimodule over
∂∗(Id) [AC]. In the case where F = Id, this bimodule structures is the one given
by letting ∂∗(Id) act on itself on both sides.

Our Dyer-Lashof-like operations will rely on a good understanding of ∂2(Id). There
is only one rooted tree with 2 leaves

•
?????? •

������

•

•
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and the space of weightings on this tree is homeomorphic to an interval I. Taking
the identifications into account, we deduce that B(Comm)(2) is homeomorphic to
I/∂I = S1, and thus

∂2(Id) = S−1

(with trivial Σ2-action).

1.4. Homology of extended powers

Let Y be a spectrum. We review the structure of the homology of the extended
powers Y ∧2

hΣ2
.

Lemma 1.3 of [May70] and Corollary I.2.3 of [BMMS86] imply the following.

Lemma 1.4.1. Let {yi}i∈I be an ordered basis of H∗(Y ). Then

H∗(Y
∧2
hΣ2

) = F2{ek ⊗ yi ⊗ yi}i,k ⊕ F2{e0 ⊗ yi1 ⊗ yi2}i1<i2 .

Following standard conventions, for y ∈ Hd(Y ) and j ≥ d, we define the Dyer-
Lashof operation Qj by

Qj(y) := ej−d ⊗ y ⊗ y ∈ Hd+j(Y
∧2
hΣ2

).

If a sequence (j1, . . . , jk) is allowable (i.e. js ≥ js+1 + · · · + jk + d for all s,
or equivalently, (j1, . . . , jk) has excess ≥ d) then iterating the extended power
construction gives elements

Qj1 o · · · oQjky ∈ Hd+j1+···+jk(Y ∧2k

hΣok2
).

Define R̃n(k) to be the F2-module

R̃n(k) := F2{Q̃J : J = (j1, . . . , jk) has excess ≥ n}

where

Q̃J := Qj1 o · · · oQjk .

The homology of the iterated extended power H∗(Y
∧2k

hΣok2
) contains a summand given

by

R̃(k) ⊗̂H∗(Y ) := F2{Q̃Jyi : i ∈ I, J = (j1, . . . , jk), QJyi allowable}

(so R̃n(k) = R̃(k) ⊗̂H∗(Sn)). The summand R̃n(k) ⊗̂H∗(Y ) is closed under the
dual action of the Steenrod algebra, and the dual Steenrod action is computed by
the Nishida relations

Sqr∗Q
s =

∑
t

(
s− r
r − 2t

)
Qs−r+tSqt∗.

For t ≥ 0, the diagonal map St → St ∧ St induces a suspension map

Et : (Σ−tY )∧2
hΣ2
→ Σ−tY ∧2

hΣ2

(see, for example, [BMMS86, Sec. 3]). The following lemma follows from [BMMS86,
Lem. II.5.6].
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Lemma 1.4.2. The induced map on homology

Et∗ : H∗((Σ
−tY )∧2

hΣ2
)→ H∗(Σ

−tY ∧2
hΣ2

)

satisfies

Et∗Q
jσ−ty =

{
σ−tQjy, j ≥ |y|,
0, otherwise.

For n ≥ 0, let Rn denote the Dyer-Lashof algebra over F2, generated by Qj for
j ≥ n and subject to the relations

Qj1 . . . Qjk = 0 if j1 < j2 + · · · jk + n,

QrQs =
∑
t

(
t+ s− r

2t− r

)
Qr+s−tQt (Adem relations).

A sequence (j1, . . . , jk) is admissible if js ≤ 2js+1 for all s. The Adem relations ex-
press every monomial in Rn of length k into a unique sum of admissible monomials,
each of which also has length k. Writing

Rn =
⊕
k≥0

Rn(k),

where Rn(k) is the summand of Rn spanned by monomials of length k, we have

Rn(k) = F2{QJ : J = (j1, . . . , jk) admissible, and of excess ≥ n}.

The homology of the extended power Y ∧2k

hΣ
2k

contains a summand

R(k) ⊗̂H∗(Y ) := F2{QJyi : i ∈ I, J = (j1, . . . , jk) is admissible of excess ≥ |yi|}

(so R(k)n = R(k) ⊗̂H∗(Sn)). This summand is closed under the dual action of the
Steenrod algebra, given by the Nishida relations. The restriction map

H∗(Y
∧2k

hΣok2
)→ H∗(Y

∧2k

hΣ
2k

)

acts on the length k summand by

Q̃Jy 7→ QJy.

Suppose that Y = Σ∞X is a suspension spectrum. The effect of the transfer

Tr : H∗(Y
∧4
hΣ4

)→ H∗(Y
∧2
hΣ2oΣ2

)

on length 2 summands is given by

QrQsy 7→ Qr oQsy +
∑
t

[(
s− r + t

s− t

)
+

(
s− r + t

2t− r

)]
Qr+s−t oQty

(see Theorem 7.1 and Example 7.5 of [Kuh85]). The following lemma is an obser-
vation of Priddy, which relates the above formula to a computation of Kahn-Priddy
[Pri73].
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Lemma 1.4.3. Suppose that s < r ≤ 2s. Then we have

Tr(QrQsy) =
∑
t

(
s− r + t

s− t

)
Qr+s−t oQty

= Qr oQsy +

r−s−1∑
`=0

(
2s− r + 1 + 2`

`

)
Q2s+1+` oQr−s−1−`y.

In particular

Tr(QrQsy) = Qr oQsy + terms Qr
′
Qs
′
y with r′ ≥ 2s′ + 1.

Proof. In the formula

Qr oQsy +
∑
t

(
s− r + t

s− t

)
Qr+s−t oQty +

∑
t

(
s− r + t

2t− r

)
Qr+s−t oQty

the last sum is the Adem relation in the Dyer-Lashof algebra. As (r, s) is admissible,
this sum yields only the term Qr o Qsy. This establishes the first equality of the
lemma:

Tr(QrQsy) =
∑
t

(
s− r + t

s− t

)
Qr+s−t oQty.

For the second equality we observe that if t ≥ r − s then(
s− r + t

s− t

)
=

(
s− r + t

2t− r

)
.

As this is again the binomial coefficient appearing in the Adem relation, and (r, s)
is admissible, we only get a contribution for t = s (note that s ≥ r − s). Thus we
can write∑

t

(
s− r + t

s− t

)
Qr+s−t oQty = Qr oQsy +

r−s−1∑
t=0

(
s− r + t

s− t

)
Qr+s−t oQty.

We have (letting ` = r − s− 1− t)
r−s−1∑
t=0

(
s− r + t

s− t

)
Qr+s−t oQty =

r−s−1∑
t=0

(
r − 1− 2t

s− t

)
Qr+s−t oQty

=

r−s−1∑
t=0

(
r − 1− 2t

r − s− 1− t

)
Qr+s−t oQty

=

r−s−1∑
t=0

(
2s− r + 1 + 2`

`

)
Q2s+1+` oQr−s−1−`y.

In particular, we have

2s+ 1 + ` ≥ r + 1 + ` > r − 2− 2` ≥ 2r − 2s− 2− 2`.

�

For n ≥ 1 let R̄n be the free F2-algebra generated by Q̄j for j ≥ 0, subject to the
relations



1.4. HOMOLOGY OF EXTENDED POWERS 7

(1)

Q̄j1 · · · Q̄jk = 0 if j1 < j2 + · · ·+ jk + n, and

(2)

Q̄rQ̄s =

r−s−1∑
`=0

(
2s− r + 1 + 2`

`

)
Q̄2s+1+`Q̄r−s−1−` if s < r ≤ 2s.

For a sequence J = (j1, . . . , jk) we define

Q̄J := Q̄j1 · · · Q̄jk .
We shall say that a monomial Q̄J is CU if the sequence J is a CU sequence (see
0.1). The relations amongst the Q̄j express every monomial in R̄n of length k into a
unique sum of CU monomials, each of which also has length k. We give the algebra
R̄n an internal grading by setting

|Q̄j | = j − 1.

(The reason we have chosen this to be j − 1 instead of j will be made clear in
Section 1.5.)

Writing

R̄n =
⊕
k≥0

R̄n(k),

where R̄n(k) is the summand of R̄n spanned by monomials of length k, we have

R̄n(k) = F2{Q̄J : J CU, |J | = k, e(J) ≥ n}.
(Here, e(J) is the excess of the CU sequence J , as defined in 0.1.) The formula for
the transfer gives a topological raison d’être for these modules:

ΣkR̄n(k){ιn} = im

Rn(k){ιn} ↪→ H∗((S
n)∧2k

hΣok2
)→

H∗((S
n)∧2k

hΣok2
)∑

i Tr(H∗((Sn)2k

hP̃i
))


where

(1.4.4) P̃i = Σ
o(i−1)
2 o Σ4 o Σo(k−i−1)

2 ⊆ Σ2k

(see the proof of Theorem 3.16 of [AM99]). The F2-vector space R̄n(k) has an
induced action of the dual Steenrod operations, given by combining the Nishida
relations with the relations in the algebra R̄n.

Remark 1.4.5. It is well known that as modules over the opposite of the Steenrod
algebra (c.f. [Kuh82b, Prop. 3.20], [AD01, Thm. 3.17]), there is an isomorphism

R̄0(k) ∼=
(

FkA
Fk+1A

)∗
.

Here {FkA} is the length filtration on the Steenrod algebra. However, despite any
misconceptions the reader might infer from the proofs of [Kuh82b, Prop. 3.20] and
[AM99, Thm. 3.17], for k ≥ 2 we do not have a correspondence

Q̄J ↔ (SqJ+1)∗

(such a correspondence does hold for k = 1). Rather, it is the case that

Q̄J = (SqJ+1)∗ + terms (SqJ
′+1)∗ with J ′ < J.
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For instance:

Q̄6Q̄2 = (Sq7Sq3)∗ + (Sq8Sq2)∗.

1.5. Dyer-Lashof-like operations

Recall from Section 1.3 that if F : Top∗ → Top∗ is a reduced finitary homotopy
functor, then the derivatives ∂∗(F ) have the structure of a ∂∗(Id)-bimodule. We
will only concern ourselves with the left module structure. Recall that this consists
of an associative and unital action map

∂∗(Id) ◦ ∂∗(F )→ ∂∗(F )

where ◦ denotes the composition product of symmetric sequences of spectra. In
particular, there are Σ2 o Σi-equivariant maps

∂2(Id) ∧ ∂i(F )∧2 → ∂2i(F ).

Consider the maps ξi given by the composites

ξi : Σ−1Di(F )(X)∧2
hΣ2
' (∂2(Id) ∧ ∂i(F )∧2 ∧X∧2i)hΣ2oΣi

→ (∂2i(F ) ∧X∧2i)hΣ2i

' D2i(F )(X)

induced by these left ∂∗(Id)-module structure maps. Define, for j ≥ d, operations

Q̄j : Hd(Di(F )(X))→ Hd+j−1(D2i(F )(X))

as follows. For x ∈ Hd(Di(F )(X)), define

Q̄jx := (ξi)∗σ
−1Qjx.

Our main observation is the following reinterpretation of the Arone-Mahowald com-
putation of H∗(D2k(Sn)).

Theorem 1.5.1. As a module over the operators Q̄j, we have⊕
k≥0

H∗(D2k(Sn)) = R̄n{ιn}.

where

ιn ∈ Hn(D1(Sn)) ∼= H̃n(Sn)

is the fundamental class. In particular, we have

H∗(D2k(Sn)) = F2{Q̄J ιn : J is CU, |J | = k, e(J) ≥ n} = R̄n(k){ιn}

and the operators Q̄j act according to the relations in the algebra R̄n. If J is a
CU sequence of length k with e(J) ≥ n, then under the isomorphism of [AM99,
Thm. 3.16], we have

QJ ιn 7→ σkQ̄J ιn.

Let Tk denote the unique tree with k + 2 levels, 2k leaves, and |I(v)| = 2 for all v
(see Figure 1.5.1). The tree Tk has 2k−1 internal vertices, its automorphism group
is given by

Aut(Tk) ∼= Σok2
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•

Figure 1.5.1. The tree T3.

and the set of isomorphism classes of leaf labellings is in bijective correspondence

with Σ2k/Σ
ok
2 . The proof of Theorem 1.5.1 rests on the following technical lemma.

Lemma 1.5.2. Let Φ be an operad in Top∗, and let

|B•(Φ)(i)|[s] ⊆ |B•(Φ)(i)| = B(Φ)(i)

denote the sth skeletal filtration of the geometric realization of the simplicial space
B•(Φ)(i). Then there are factorizations of the cooperadic structure maps:

|B•(Φ)(2k+1)|[k+1] //
� _

��

|B•(Φ)(2)|[1] ∧ |B•(Φ)(2k)|[k] ∧ |B•(Φ)(2k)|[k]
� _

��
B(Φ)(2k+1) // B(Φ)(2) ∧B(Φ)(2k) ∧B(Φ)(2k)

Furthermore, the following diagrams of pointed Σ2 o Σ2k spaces commute

B(Φ)(2k+1) // B(Φ)(2) ∧B(Φ)(2k) ∧B(Φ)(2k)

|B•(Φ)|[k+1]

pTk+1

��

//
?�

OO

|B•(Φ)(2)|[1] ∧ |B•(Φ)(2k)|[k] ∧ |B•(Φ)(2k)|[k]
?�

OO

pT1∧pTk∧pTk
��

Σ2k+1 ×
Σ
o(k+1)
2

∆k+1

∂∆k+1 ∧ Φ(2)∧2k+1−1

βk

// Σ2 o Σ2k ×
Σ
o(k+1)
2

∆1×∆k×∆k

∂(∆1×∆k×∆k)
∧ Φ(2)∧2k+1−1

Here, pT is the projection onto the space of simplices corresponding to the tree T ,
the map βk is given by

βk[σ, (t0, . . . , tk+1), (xv)] =

{
[σ, αk(t0, . . . , tk+1), (xv)], σ ∈ Σ2 o Σ2k ⊂ Σ2k+1 .

∗, otherwise,

where

αk :
∆k+1

∂∆k+1
→ ∆1 ×∆k ×∆k

∂(∆1 ×∆k ×∆k)
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_OO
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•

•

Figure 1.5.2. A metric tree with 5 levels

is the map given by

αk(t0, · · · , tk+1) = (t0, t1 + · · ·+ tk+1)×
(

t1
t1 + · · ·+ tk+1

, . . . ,
tk+1

t1 + · · ·+ tk+1

)
×
(

t1
t1 + · · ·+ tk+1

, . . . ,
tk+1

t1 + · · ·+ tk+1

)
,

and the group Σ
o(k+1)
2 acts trivially on ∆k+1

∂∆k+1 and permutes the two factors of ∆k

in ∆1×∆k×∆k

∂(∆1×∆k×∆k)
.

Proof. Observe that a point

[T, α, (xv), l] ∈ B(Φ)(i)

lies in the subspace |B•(Φ)(i)|[k] if the metric tree (T, l) has at most k + 2 distinct
levels. (By a level, we mean a height h ∈ [0, 1] for which there exists at least one
(possibly external) vertex of distance h from the root, see Figure 1.5.2).

Since there is only one tree with two leaves (the tree T1), and this tree has 3 levels,
we have

B(Φ)(2) = |B•(Φ)(2)|[1].

Furthermore, if a metric tree (T, l) is obtained by grafting the metric trees (T ′, l′)
and (T ′′, l′′) onto each of the limbs of (T1, l

′′′), then if (T ′, l′) has k′ + 2 levels, and
(T ′′, l′′) has k′′ + 2 levels, then

#levels of (T, l) ≥ max(k′, k′′) + 3.

So if (T, l) has at most k+3 levels, then k′ ≤ k and k′′ ≤ k. This proves the desired
factorization of the first part of the lemma.

The commutativity of the diagram in the second part of the lemma is a direct
consequence of the explicit description of the cooperad structure on B(Φ) given in
Section 1.2, together with the fact that the metric tree (Tk+1, lt) with k + 3 levels,
with

t = (t0, . . . , tk+1) ∈ ∆k+1

is obtained by grafting two copies of the metric tree (Tk, lt′′), with

t′′ =

(
t1

t1 + · · ·+ tk+1
, . . . ,

tk+1

t1 + · · ·+ tk+1

)
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onto the limbs of (T1, lt′), with

t′ = (t0, t1 + · · ·+ tk+1).

�

Proof of Theorem 1.5.1. The Arone-Mahowald calculations imply that, ap-
plying homology to the zigzag

D2k(Sn)
fk−→ F (|B•(Φ)(2k)|[k], Sn2k)hΣ

2k

gk←− Σ−k(Sn)∧2k

hΣok2

the map (fk)∗ is injective, and im(fk)∗ = im(gk)∗. The summand

Σ−kR̃{ιn} = F2{σ−kQ̃J ιn : J = (j1, . . . , jk), e(J) ≥ n} ⊆ H∗(Σ−k(Sn)∧2k

hΣok2
)

surjects onto im(fk)∗ under the map (gk)∗, with kernel spanned by the elements

σ−kTr i(Q
j1 o · · · oQji−1 oQjiQji+1 oQji+2 o · · · oQjk)

where Tr i denotes the transfer associated to the subgroup Pi ⊆ Σ2k (1.4.4).

We prove the theorem by induction on k. The cases of k = 0 is trivial. Assume the
result for k: for J = (j1, . . . , jk) a CU sequence with jk ≥ n we assume that

(fk)∗(Q̄
J ιn) = (gk)∗(σ

−kQ̃J ιn).

Observe that the map αk of Lemma 1.5.2 is homeomorphic to the suspension of the
diagonal

Σ∆ : ΣSk → ΣSk ∧ Sk.
Therefore the second diagram of Lemma 1.5.2, when applied to Φ = Comm and
dualized, gives rise to a diagram

Σ−1D2k(Sn)∧2
hΣ2

ξ
2k //

f∧2k
��

D2k+1(Sn)

fk+1

��
Σ−1F (|B•(Φ)(2k)|[k], Sn2k)∧2

hΣ2oΣ2k

ξ̃
2k // F (|B•(Φ)(2k+1)|[k+1], Sn2k+1

)hΣ
2k+1

Σ−1
(

Σ−k(Sn)∧2k

hΣok2

)∧2

hΣ2 Ek
//

g∧2k

OO

Σ−k−1(Sn)∧2k+1

hΣ
o(k+1)
2

gk+1

OO

We therefore have

(fk+1)∗(Q̄
jQ̄J ιn) = (fk+1)∗(ξ2k)∗(σ

−1QjQ̄J ιn)

= (ξ̃2k)∗(σ
−1Qj(fk)∗Q̄

J ιn)

= (ξ̃2k)∗(σ
−1Qj(gk)∗σ

−kQ̃J ιn)

= (gk+1)∗(σ
−1Ek∗Q

jσ−kQ̃J ιn)

= (gk+1)∗(σ
−k−1Qj o Q̃J ιn).

�





CHAPTER 2

The Goodwillie tower of the EHP sequence

In this chapter we explain how the Goodwillie tower interacts with the EHP se-
quence. In Section 2.1, we show that the EHP sequence induces fiber sequences
on the layers of the Goodwillie tower of the identity when evaluated on spheres.
The homological behavior of these fiber sequences is described in Section 2.2. The
transfinite Atiyah-Hirzebruch spectral sequences (TAHSS’s) which inductively com-
pute π∗L(k)n are constructed in Section 2.3. The transfinite Goodwillie spectral
sequence (TGSS) is constructed in Section 2.4.

2.1. Fiber sequences associated to the EHP sequence

The EHP sequence arises from the sequence of functors and natural transformations

(2.1.1) Id
E−→ ΩΣ

H−→ ΩΣSq.

Here Sq : Top∗ → Top∗ is the squaring functor

Sq(X) = X ∧X

and H is the adjoint to the projection onto the second summand of the James
splitting

H̃ : ΣΩΣX ' Σ
∨
i

X∧i → ΣX∧2.

There exist models for the map H̃ which are natural in X (see, for instance,
[CMT78]). 2-locally, the sequence (2.1.1) yields fiber sequences when evaluated
on spheres.

The following two lemmas are essentially Lemmas 4.6 and 4.7 of [AM99].

Lemma 2.1.2. The EHP sequence induces fiber sequences

Pi(Id)(Sn)
E−→ Pi(ΩΣ)(Sn)

P−→ Pi(ΩΣSq)(Sn),

Di(Id)(Sn)
E−→ Di(ΩΣ)(Sn)

P−→ Di(ΩΣSq)(Sn).

Proof. Given a topologically enriched functor F : Top∗ → Top∗, and a
pointed space X, one gets an associated functor G : Vect→ Top∗ with

G(V ) := ΩV F (ΣVX).

(Here, Vect is the category of finite dimensional real inner product spaces and
isometries.) Weiss’s orthogonal calculus [Wei95] yields a sequence of polynomial

13
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approximations P orth
i (G)(V ) with fibers which deloop to give spectra Dorth

i (G)(V ).
Furthermore, we have (see [Aro98, Lem. 1.2], [Wei95, Ex. 5.7])

P orth
i (G)(V ) ' ΩV Pi+1(F )(ΣVX),

Dorth
i (G)(V ) ' ΩV Di+1(F )(ΣVX).

As the functors and natural transformations in the EHP sequence are enriched in
topological spaces, we have fiber sequences

ΩV SV+m E−→ ΩV ΩΣSV+m H−→ ΩV ΩΣSqSV+m

of functors Vect→ Top∗. The lemma follows from applying orthogonal calculus to
these fiber sequences. �

Lemma 2.1.3. Let F : Top∗ → Top∗ be a reduced finitary homotopy functor which
is stably i-excisive for all i. Then there are equivalences

Pi(FSq) ' Pbi/2c(F )Sq,

Di(FSq) '

{
Di/2(F )Sq, i even,

∗, i odd.

Proof. The second equivalence follows from the first. By [Goo03], to prove
the first equivalence it suffices to prove (1) that Pbi/2c(F )Sq is i-excisive, and (2)
that FSq and Pbi/2c(F )Sq agree to order i.

The Goodwillie tower for Pbi/2c(F ), when evaluated at X ∧ X, has fibers of the
form

Ω∞(∂j(F ) ∧ (X ∧X)∧j)hΣj ' Ω∞([(Σ2j)+ ∧Σj ∂j(F )] ∧X2j)hΣ2j

for j ≤ bi/2c. These layers are all i-excisive in X. This establishes (1).

For (2), observe that since the functors F and Pbi/2c(F ) agree to order bi/2c under
the natural transformation

F → Pbi/2c(F )

there exists a c so that for Y sufficiently highly connected, the map

F (Y )→ Pbi/2c(F )(Y )

is (−c+(bi/2c+1)conn(Y ))-connected. Setting Y = X∧X for X sufficiently highly
connected, we deduce that

F (Sq(X))→ Pbi/2c(F )(Sq(X))

is (−c + 2(bi/2c + 1)conn(X))-connected. Therefore it is (−c + (i + 1)conn(X))-
connected, and we have established (2). �
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Corollary 2.1.4. The fiber sequences of Lemma 2.1.2 are equivalent to the fol-
lowing fiber sequences.

P2m(Sn)
E−→ ΩP2m(Sn+1)

H−→ ΩPm(S2n+1)

P2m+1(Sn)
E−→ ΩP2m+1(Sn+1)

H−→ ΩPm(S2n+1)

D2m(Sn)
E−→ Σ−1D2m(Sn+1)

H−→ Σ−1Dm(S2n+1)

D2m+1(Sn)
E−→ Σ−1D2m+1(Sn+1)

H−→ ∗

Proof. The corollary follows immediately from Lemma 2.1.2, Lemma 2.1.3,
and the identities

Pi(ΩF )(X) ' ΩPi(F )(X),

Pi(FΣ)(X) ' Pi(F )(ΣX),

Di(ΩF )(X) ' Σ−1Di(F )(X),

Di(FΣ)(X) ' Di(F )(ΣX).

�

Remark 2.1.5. Corollary 2.1.4 gives an amusing alternative proof of the 2-primary
case of Theorem 3.13 of [AM99]: if i = s2k for s odd, then if s 6= 1,

Di(Sn) ' ∗.

This can be deduced by induction on k. For k = 0, Corollary 2.1.4 implies that the
suspension

E : Ds(Sn)→ Σ−1Ds(Sn+1)

is an equivalence. Taking the colimit of these maps, we deduce that there are
equivalences

Ds(Sn)
'−→ D1(Ds)(Sn) ' ∗

(since s 6= 1). Suppose inductively that

Ds2k(Sn) ' ∗

for s 6= 1 odd. Then the inductive hypothesis, together with Corollary 2.1.4, implies
that the suspension

E : D2k+1s(S
n)→ Σ−1D2k+1s(S

n+1)

is an equivalence, and, as in the base case, this implies that D2k+1s(S
n) ' ∗.

Specializing Corollary 2.1.4 to the case of i = 2k, and applying the equivalences
(0.0.2), we recover fiber sequences of the same form as those discovered by Kuhn
[Kuh01, Prop. A.7] and Takayasu [Tak99].

Corollary 2.1.6. There are fiber sequences:

ΣnL(k − 1)2n+1
P−→ L(k)n

E−→ L(k)n+1.
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Remark 2.1.7. We are not asserting that the fiber sequences of Corollary 2.1.6
are equivalent to those of [Kuh01] and [Tak99], but it is likely that they are.
Indeed, Proposition 2.2.6 will demonstrate that both fiber sequences have the same
homological behavior. Our reason for using the L(k)n notation instead of the
D2k(Sn) notation is that the indexing in the fiber sequences is more compelling in
the L(k)n-notation.

2.2. Homological behavior of the fiber sequences

We wish to understand the homological behavior of the fiber sequences of Corol-
lary 2.1.6. Our first task is to identify the operations Q̄j on H∗(D2k(ΩΣ)) and
H∗(D2k(ΩΣSq)). We make some general observations in the next sequence of lem-
mas.

We make use of the Arone-Ching chain rule [AC]: if F,G : Top∗ → Top∗ are re-
duced finitary homotopy functors, there is an equivalence in the homotopy category
of symmetric sequences of spectra

∂∗(FG) ' B(∂∗(F ), ∂∗(Id), ∂∗(G)).

The technology of Arone-Ching (see, for example, the discussion after Proposi-
tion 0.4 of [AC]) also gives a simple method to compute the derivatives of any
finitary reduced homotopy functor F : Top∗ → Top∗ in terms of the dual deriva-
tives ∂∗(Σ∞F ) of the associated functor Σ∞F : Top∗ → Sp:

(2.2.1) ∂∗(F ) ' B(1,Comm, ∂∗(Σ∞F ))∨.

This is an equivalence of left ∂∗(Id)-modules, under the left action of

∂∗(Id) ' B(1,Comm, 1)∨

induced by the left coaction of B(1,Comm, 1) on B(1,Comm, ∂∗(Σ∞F )).

Lemma 2.2.2. Under the isomorphisms

susp∗ : H∗(Di(F )(ΣX))
∼=−→ H∗(Di(FΣ)(X))

we have

Q̄jsusp∗(x) = susp∗(Q̄
jx).

Proof. The derivatives of the functor

Σ : Top∗ → Top∗

are given by [AC, Examples 19.4]

∂i(Σ) ' ∂i(Id) ∧ Si

(where Σi acts on Si = (S1)∧i by permuting the factors). In [AC] it is established
that under this equivalence, the ∂∗(Id)-bimodule structure on ∂∗(Σ) is induced
from the bimodule structure of ∂∗(Id) over itself, and the appropriate diagonal
maps between smash products of spheres. In particular, the left module structure
maps

∂k(Id) ∧ ∂n1
(Id) ∧ Sn1 ∧ · · · ∧ ∂nk(Id) ∧ Snk → ∂n1+···+nk(Id) ∧ Sn1+···+nk
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are the maps induced from the operad structure map

∂k(Id) ∧ ∂n1
(Id) ∧ · · · ∧ ∂nk(Id)→ ∂n1+···+nk(Id)

and the left Comm∗-module structure maps

(2.2.3) S ∧ Sn1 ∧ · · · ∧ Snk ≈−→ Sn1+···+nk .

It follows from the chain rule [AC] that there are equivalences of left ∂∗(Id)-modules

∂∗(FΣ) ' B(∂∗(F ), ∂∗(Id), ∂∗(Σ)),

where the left ∂∗(Id)-module structure of the right-hand side is induced from the
left ∂∗(Id)-module structure on ∂∗(F ). Therefore, there are equivalences

∂∗(FΣ) ' B(∂∗(F ), ∂∗(Id), ∂∗(Id)) ∧ S∗ ' ∂∗(F ) ∧ S∗

where the induced left ∂∗(Id)-module structure on ∂∗(F )∧S∗ is given by the maps

∂k(Id) ∧ ∂n1(F ) ∧ Sn1 ∧ · · · ∧ ∂nk(F ) ∧ Snk → ∂n1+···+nk(F ) ∧ Sn1+···+nk

obtained by combining the left ∂∗(Id)-structure of ∂∗(F ) with the maps given by
(2.2.3).

Therefore, the following diagram commutes.

∂2(Id) ∧hΣ2
Di(FΣ)(X)∧2 //

'
��

D2i(FΣ)(X)

'
��

∂2(Id) ∧hΣ2
Di(F )(ΣX)∧2 // D2i(F )(ΣX)

The result follows by applying homology to the above diagram. �

Lemma 2.2.4. Under the isomorphisms

ω∗ : H∗(Di(ΩF )(X))
∼=−→ H∗(Σ

−1Di(F )(X))

we have

Q̄jω∗(x) = ω∗(Q̄
jx).

Proof. The proof follows the sames lines as the proof of Lemma 2.2.2, and
relies on the observation that there is an equivalence of left ∂∗(Id)-modules [AC,
Examples 19.4]

∂∗(ΩF ) ' F (S1, ∂∗(F )),

where the left ∂∗(Id)-structure on the right-hand side of this equivalence is induced
by the left module structure on ∂∗(F ), together with the diagonal on S1. �

Lemma 2.2.5. Under the isomorphisms of Lemma 2.1.3

sqrt∗ : H∗(D2i(FSq)(X))
∼=−→ H∗(Di(F )(X ∧X))

we have

Q̄jsqrt∗(x) = sqrt∗(Q̄
jx).
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Proof. The functor

Σ∞Sq : Top∗ → Sp

clearly has dual derivatives

∂i(Σ∞Sq) '

{
(Σ2)+, i = 2,

∗, i 6= 2.

We shall denote this symmetric sequence 2∗. The left action of Comm is trivial:
there is an equivalence of left Comm-modules

2∗ ' 1∗ ◦ 2∗.

Using (2.2.1), we have

∂∗(Sq) ' B(1,Comm, 2)∨

' B(1,Comm, 1 ◦ 2)∨

' B(1,Comm, 1)∨ ◦ 2∗

' ∂∗(Id) ◦ 2∗.

We deduce, using the chain rule, that there is an equivalence of left ∂∗(Id)-modules

∂∗(FSq) ' ∂∗(F ) ◦ 2∗

where the left ∂∗(Id)-module structure on the right-hand side is induced from the
left ∂∗(Id)-module structure on ∂∗(F ). In particular

∂2i(FSq) ' (Σ2i)+ ∧ΣioΣ2 ∂i(F ) ∧ (Σi2)+

' (Σ2i)+ ∧Σi ∂i(F ).

(This gives yet another computation of D2i(FSq)(X).) We deduce that the follow-
ing diagram commutes.

∂2(Id) ∧hΣ2
D2i(FSq)(X)∧2 //

'
��

D4i(FSq)(X)

'
��

∂2(Id) ∧hΣ2
Di(F )(X ∧X)∧2 // D2i(F )(X ∧X)

The lemma follows from applying homology. �

Write

H∗(L(k)n) = F2{σk−nQ̄J ιn : J CU, |J | = k, e(J) ≥ n}.
It will be convenient to define

[j1, . . . , jk] := σk−nQ̄j1 · · · Q̄jk ιn ∈ H∗(L(k)n).

Proposition 2.2.6. The fiber sequences in Corollary 2.1.6 induce short exact se-
quences in homology, and we have

P∗([j1, . . . , jk−1]) = [j1, . . . , jk−1, n],

E∗([j1, . . . , jk]) =

{
0, jk = n,

[j1, . . . , jk], jk > n.



2.2. HOMOLOGICAL BEHAVIOR OF THE FIBER SEQUENCES 19

Proof. Since on D1 the natural transformation E is an equivalence, the asso-
ciated map in homology

H∗(D1(Id)(Sn)) −−→
E∗

H∗(D1(ΩΣ)(Sn))
∼=−−−−−→

ω∗susp∗
H∗(Σ

−1D1(Sn+1))

is given by:

ω∗susp∗E∗(ιn) = σ−1ιn+1.

By naturality of the operations Q̄j , together with Lemmas 2.2.2 and 2.2.4, we
deduce that

ω∗susp∗E∗(Q̄
j1 · · · Q̄jk ιn) = Q̄j1 · · · Q̄jkω∗susp∗E∗ιn

=

{
0, jk = n,

σ−1Q̄j1 · · · Q̄jk ιn+1, jk > n.

(Here we are using the excess relation in R̄n: Q̄jιn+1 = 0 for j < n+ 1.)

Define

fibE : Top∗ → Top∗

by

fibE(X) := fiber(X
E−→ ΩΣX).

As the composite

Id
E−→ ΩΣ

H−→ ΩΣSq

is naturally null homotopic, there is an induced natural transformation

fibE
ρ−→ Ω2ΣSq.

The EHP sequence implies that this natural transformation gives equivalences

fibE(Sn)
'−→
ρ

Ω2S2n+1

and Lemma 2.1.2 implies that there are induced equivalences

D2k(fibE)(Sn)
'−→
ρ

D2k(Ω2ΣSq)(Sn)
'−−−−−−−→

ω2susp sqrt
Σ−2D2k−1(S2n+1)

on the layers. As ∂2(Id) ' S−1, in the case of k = 1, the fiber sequence

D2(fibE)(Sn)
i−→ D2(Id)(Sn)→ D2(ΩΣ)(Sn)

is equivalent to the fiber sequence

S2n−1 → Σ−1(Sn)∧2
hΣ2

E−→ Σ−2(Sn+1)∧2
hΣ2

‖ ‖
Σn−1P∞n Σn−1P∞n+1

Therefore we deduce

P∗(σ
−2ι2n+1) = Q̄nιn.
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Again naturality of the operations Q̄j , combined with Lemmas 2.2.2, 2.2.4, and
2.2.5, implies

P∗(σ
−2Q̄j1 · · · Q̄jk−1ι2n+1) = i∗ρ

−1
∗ sqrt−1

∗ s−1
∗ ω−2

∗ Q̄j1 · · · Q̄jk−1σ−2ι2n+1

= Q̄j1 · · · Q̄jk−1i∗ρ
−1
∗ sqrt−1

∗ s−1
∗ ω−2

∗ σ−2ι2n+1

= Q̄j1 · · · Q̄jk−1P∗(σ
−2ι2n+1)

= Q̄j1 · · · Q̄jk−1Q̄nιn.

It is clear from these formulas that the sequence

0→ H∗(Σ
nL(k − 1)2n+1)

P∗−−→ H∗(L(k)n)
E∗−−→ H∗(L(k)n+1)→ 0.

is exact. �

2.3. Transfinite Atiyah-Hirzebruch spectral sequences

Define L(k)mn to be the fiber

L(k)mn := fiber

(
L(k)n

Em−n+1

−−−−−→ L(k)m+1

)
.

Note that L(1)mn ' Pmn . The homology of these spectra is easily computed with
Proposition 2.2.6.

Proposition 2.3.1. We have

H∗(L(k)mn ) := F2{[J ] : J CU, |J | = k, n ≤ e(J) ≤ m}.

The spectra L(k)mn endow L(k)n with an increasing filtration:

· · · → L(k)mn → L(k)m+1
n → · · · → L(k)n,

lim−→
m

L(k)mn ' L(k)n.

The filtration quotients are given by the cofiber sequences

L(k)m−1
n → L(k)mn → ΣmL(k − 1)2m+1.

Thus, the L(k)n spectra are built out of the spectra L(k − 1)2m+1, and there are
associated Atiyah-Hirzebruch-type spectral sequences

E1
∗,t =

⊕
m≥n

πt(Σ
mL(k − 1)2m+1)⇒ πt(L(k)n).

These spectral sequences give an inductive means of computing π∗(L(k)n), starting
with π∗(L(0)) = πs∗. One way to think about this is that there is a sequence of
spectral sequences⊕
(j1,...,jk) CU

jk≥n

πt(S
j1+···+jk)⇒

⊕
(j2,...,jk) CU

jk≥n

πt(Σ
j2+···+jkL(1)2j2+1)⇒ · · · ⇒ πt(L(k)n).

Alternatively, one can view this as a single transfinite spectral sequence (in the sense
of [Hu99]). As in Section A.1, let G(ωk) be the Grothendieck group of ordinals less
than ωk:

G(ωk) = {j1 + j2ω + · · ·+ jkω
k−1 : js ∈ Z}.
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We define a degreewise finite G(ωk)-indexed tower under L(k)n (Section A.2)

{[L(k)n]j1+j2ω+···+jkωk−1} = {[L(k)n]j1,...,jk}
as follows.

[L(k)n]0,...,0,jk =

{
L(k)jk jk > n,

L(k)n, else,

[L(k)n]0,...,0,jk−1,jk =


cofiber

(
ΣjkL(k − 1)

jk−1−1
2jk+1 → [L(k)n]0,...,0,jk

)
, jk ≥ n,
jk−1 > 2jk + 1,

[L(k)n]0,...,0,jk , else,

...

[L(k)n]j1,...,jk =



cofiber
(

Σj2+···+jkL(1)j1−1
2j2+1 → [L(k)n]0,j2,...,jk

)
, j1 > 2j2 + 1,

js ≥ 2js+1 + 1

for 2 ≤ s ≤ k − 1,

jk ≥ n,

[L(k)n]0,j2,...,jk , else.

We have

H∗([L(k)n]J) = F2{[T ] : T CU, |T | = k, e(T ) ≥ n, T ≥ J}.

The filtration induced by this tower implies that cells e‖J‖, associated to CU se-
quences J of length k, only attach to cells corresponding to lesser sequences. The
quotient complex [L(k)n]J is obtained from L(k)n by collapsing out all cells corre-
sponding to sequences T < J .

For CU sequences J = (j1, . . . , jk), jk ≥ n, and

µ(J) := j1 + j2ω + · · ·+ jkω
k−1 ∈ G(ωk),

there are fiber sequences

S‖J‖ → [L(k)n]µ(J) → [L(k)n]µ(J)+1.

For all other µ ∈ G(ωk) we have [L(k)n]µ = [L(k)n]µ+1. The G(ωk)-indexed trans-
finite spectral sequence associated to this tower (Section A.2) takes the form

E1
t,µ(L(k)n)⇒ πt(L(k)n)

with

E1
t,µ(L(k)n) =

{
πt(S

‖J‖), µ = µ(J), J CU, |J | = k, e(J) ≥ n,
0, else.

We shall refer to this as the transfinite Atiyah-Hirzebruch spectral sequence (TAHSS).
As the only important G(ωk) indices for this spectral sequence are those of the form
µ(J), we will write E1

t,J(L(k)n) for E1
t,µ(J)(L(k)n). Elements in the E1

t,J -term of

the TAHSS will be denoted

α[J ]
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for α ∈ πt(S‖J‖). Differentials in the TAHSS take the form

dL(k)n
µ (α[J ]) = α′[J ′]

where J ′ < J ,

µ = j1 − j′1 + (j2 − j′2)ω + · · · (jk−1 − j′k−1)ωk−1,

and

|α′|+ ‖J ′‖ = |α|+ ‖J‖ − 1.

As the length µ of the above differential is somewhat cumbersome to write as an
element of G(ωk), and is completely determined by J and J ′, it will typically be
omitted from the notation.

Differentials in the TAHSS, as in any Atiyah-Hirzebruch-type spectral sequence, can
be effectively computed from a sound understanding of the attaching map structure
in the CW-spectrum L(k)n. The cells e‖J‖ associated to CU sequences J are in
bijective correspondence with the homology elements

[J ] ∈ H∗(L(k)n).

Often, these attaching maps can be determined from the action of the dual Steenrod
operations on

H∗(L(k)n) ∼= R̄n
given by the Nishida relations. This will be our main technique for determining
TAHSS differentials in the sample calculations of Chapter 6.

2.4. Transfinite Goodwillie spectral sequence

Combining the Goodwillie spectral sequence with the TAHSS gives a sequence of
spectral sequences⊕

k≥0

⊕
(j1,...,jk) CU

jk≥n

πt(S
j1+···+jk)⇒ · · · ⇒

⊕
k≥0

πt(L(k)n)⇒ πt+n−k(Sn).

which we again wish to regard as a transfinite spectral sequence: the transfinite
Goodwillie spectral sequence (TGSS). Since the TAHSS’s are indexed on G(ωk) for
varying k, we must index the TGSS on G(ωα) for an ordinal α larger than ωω.

To accomplish this, define a degreewise finite G(ωω+1)-indexed tower {[Sn]µ} on
Sn as follows. There are fiber sequences

P2k(Sn)→ P2k−1(Sn)→ Ω∞Σn−k+1L(k)n.

We define

[Sn]0 := P1(Sn),

[Sn]µ := ∗, µ > 0.

For k ≥ 1, and µ of the form

µ = j1 + j2ω + · · ·+ jkω
k−1 − kωω,

we define [Sn]µ to be the fiber

[Sn]µ → P2k−1(Sn)→ Ω∞Σn−k+1[L(k)n]j1+···+jkωk−1 .
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In particular, we have
[Sn]−kωω = P2k(Sn).

We fill in the rest by setting

[Sn]µ := P2k−1(Sn)

for k ≥ 1 and either
ωk − kωω ≤ µ < −(k − 1)ωω

or µ in the right subset of the (−kωω, ωk − kωω)-gap (see [Hu99, Def. 1]).

For k ≥ 0, J = (j1, . . . , jk) a CU sequence with jk ≥ n, and

µ[J ] := j1 + j2ω + · · ·+ jkω
k−1 − kωω,

there are fiber sequences

QSn−k+‖J‖ → [Sn]µ[J] → [Sn]µ[J]+1.

For all other µ ∈ G(ωω+1), we have [Sn]µ = [Sn]µ+1. The TGSS is the G(ωω+1)-
indexed transfinite spectral sequence associated to this tower under Sn; it takes the
form

E1
t,µ(Sn)⇒ πt(S

n)

with

E1
t,µ(Sn) =

{
πt(S

n−|J|+‖J‖), µ = µ[J ], J CU, |J | ≥ 0, e(J) ≥ n,
0, else.

This spectral sequence computes unstable homotopy groups of spheres from stable
homotopy groups of spheres.

As the only relevant terms in this spectral sequence are those of the form E1
t,µ[J]

for J a CU sequence with e(J) ≥ n, we will often write E1
t,J(Sn) for E1

t,µ[J](S
n).

Elements in the E1
t,J -term of the TGSS will be denoted

α[J ]

for α ∈ πt(S
n−|J|+‖J‖). If J = ∅, the empty sequence of length zero, we shall

simply write
α = α[∅] ∈ E1

t,∅(S
n).

Differentials in the TGSS spectral sequence take the form

dS
n

µ (α[J ]) = α′[J ′]

where J ′ < J , where µ is given by

µ = j1− j′1 + (j2− j′2)ω+ · · ·+ (jk− j′k)ωk−1− j′k+1ω
k−· · ·− jk′ωk

′−1 + (k′−k)ωω,

and
|α′|+ ‖J ′‖ − |J ′| = |α|+ ‖J‖ − |J | − 1.

As the expression for µ is rather cumbersome, and completely determined by J and
J ′, we will often omit it from the notation, expressing dS

n

µ simply as dS
n

.





CHAPTER 3

Goodwillie filtration and the P map

The purpose of this chapter is to contemplate the meaning of the Goodwillie filtra-
tion, and the nature of detecting elements in the TGSS. The notion of Goodwillie
filtration is reviewed in Section 3.1. Section 3.2 introduces the notion of the degree
of instability of an element, and assigns elements of the unstable stems stable names
through a tracking of its “lineage” in the EHP sequence. In Section 3.3 we show
the E and P maps give well behaved maps of TAHSS’s. In Section 3.4 we show
that these maps of TAHSS’s extend to maps of TGSS’s. In Section 3.5 we observe
that these maps of spectral sequences imply a close connection between Goodwillie
filtration and degree of instability, and furthermore the lineage of unstable elements
is often encoded in the names of detecting elements in the TGSS. In Section 3.6 we
note that the relationship of the P map to Whitehead products gives yet another
interpretation of Goodwillie filtration.

3.1. Goodwillie filtration

We shall say that a non-zero element β in πt(S
n) is of Goodwillie filtration 2k if its

image in πt(P2k−1(Sn)) is null, but its image in πt(P2k(Sn)) is non-zero.

The elements of Goodwillie filtration 2k are precisely the elements which are de-
tected by elements of the form

α[j1, . . . , jk]

in the TGSS.

By definition, the elements of Goodwillie filtration 1 are precisely those homotopy
elements which are stably non-trivial. We shall refer to such homotopy elements
as stable elements. The elements of Goodwillie filtration greater than 1 are the
unstable elements. It stands to reason that the Goodwillie filtration is a measure
of the degree of instability.

3.2. The genealogy of unstable elements

The EHP sequence supplies another measure of instability, which we will now ex-
plain. If β ∈ πt(Sn) is unstable and nonzero, let r1 be minimal such that

Er1+1(β) = 0 ∈ πt+r1+1(Sn+r1+1)

25
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(i.e. β dies on Sn+r1+1). By exactness of the EHP sequence, there exists a (neces-
sarily non-trivial) element α1 ∈ πt+r1+2(S2(n+r1)+1) such that

Er1(β) = P (α1).

We will refer to such an element α1 as a child of β and write

β ∈ E−r1P (α1).

There are two possibilities: α1 is either stable or unstable. If α1 is unstable, then
we can repeat the above procedure, and express

β ∈ E−r1PE−r2P (α2)

for a child α2 of α1. Continuing in this manner, if we have

β ∈ E−r1P · · ·E−r`P (α`)

we shall say that α` is a (`th generation) descendant of β. We shall say that
β is unstable of degree k if k is maximal such that there exists a kth generation
descendant αk of β:

β ∈ E−r1P · · ·E−rkP (αk).

The homotopy element αk in the above expression is necessarily stable, and there
is a zig-zag:

α ∈ πs∗ π∗S
2j1+1 3 αkE∞

oo

P

��
π∗S

j1 π∗S
2j2+1 3 αk−1

Erk
oo

P

��
π∗S

j2

π∗S
jk

. . .

π∗S
n 3 β

Er1
oo

We call such a sequence (α1, . . . , αk) a lineage of β, and write

β ∈ α〈j1, j2, . . . , jk〉.

Note that the sequence (j1, . . . , jk) is necessarily CU of excess greater than or equal
to n.

We wish to compare the notion of degree of instability with the Goodwillie filtration,
and relate detection in the TGSS with the notion of lineage. To prepare for this
analysis, we will need to understand the maps of TAHSS’s and TGSS’s induced by
the maps P and E. This will be accomplished in the next two sections.
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3.3. Behavior of the E and P maps in the TAHSS

Lemma 3.3.1. For all µ ∈ G(ωk−1), there are maps of towers

ΣnL(k − 1)2n+1
P //

��

L(k)n

��
Σn[L(k − 1)2n+1]µ // [L(k)n]µ+nωk−1

Proof. The maps are produced by a downward induction on s: given maps

Σn[L(k − 1)2n+1]js+1ωs+···+jk−1ωk−2 → [L(k)n]js+1ωs+···+jk−1ωk−2+nωk−1

we obtain an induced map of cofibers:

Σjs+1+···+jk−1+nL(s)js−1
2js+1

��

Σjs+1+···+jk−1+nL(s)js−1
2js+1

��
Σn[L(k − 1)2n+1]js+1ωs+···+jk−1ωk−2

��

// [L(k)n]js+1ωs+···+jk−1ωk−2+nωk−1

��
Σn[L(k − 1)2n+1]jsωs−1+···+jk−1ωk−2 // [L(k)n]jsωs−1+···+jk−1ωk−2+nωk−1 .

�

Corollary 3.3.2. The P map induces a map of TAHSS’s

E1
t−n,J(L(k − 1)2n+1) +3

P∗

��

πtΣ
nL(k − 1)2n+1

P

��
E1
t,[J,n](L(k)n) +3 πtL(k)n

which on E1-terms is given by

P∗(α[J ]) = α[J, n].

Lemma 3.3.3. For all µ ∈ G(ωk), there are maps of towers

L(k)n
E //

��

L(k)n+1

��
[L(k)n]µ // [L(k)n+1]µ

Proof. The proof is similar to Lemma 3.3.1, except simpler. �

Corollary 3.3.4. The E map induces a map of TAHSS’s

E1
t,J(L(k)n) +3

E∗

��

πtL(k)n

E

��
E1
t,J(L(k)n+1) +3 πtL(k)n+1
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which on E1-terms is given by

P∗(α[J ]) =

{
α[J ], e(J) ≥ n+ 1,

0, else.

Remark 3.3.5. Corollaries 3.3.2 and 3.3.4 give an inductive scheme for computing
the TAHSS’s {Eα∗,∗(L(k)n)}. Suppose we have computed the TAHSS

{Eα∗,∗(L(k))}

for L(k) = L(k)1. Then the map of spectral sequences induced by En−1

En−1
∗ : {Eα∗,∗(L(k))} → {Eα∗,∗(L(k)n)}

determines the spectral sequence {Eα∗,∗(L(k)n)} as it is just a truncation of the
spectral sequence {Eα∗,∗(L(k))}. That is to say, the TAHSS for L(k)n is obtained
from the TAHSS for L(k) by performing the following actions:

• Set E1
t,J = 0 for e(J) < n.

• Set to zero all differentials of the form

dL(k)(α[J ]) = α′[J ′]

with e(J ′) < n.

The map P faithfully embeds the TAHSS for L(k − 1)2m+1 into the TAHSS for
L(k)m: the differentials

dL(k)m : E∗∗,[J,m](L(k)m)→ E∗∗,[J′,m](L(k)m)

are in bijective correspondence with the differentials

dL(k−1)2m+1 : E∗∗,J(L(k − 1)2m+1)→ E∗∗,J′(L(k − 1)2m+1).

Combining this with the suspension truncation, we deduce that the differentials in
the TAHSS for L(k) of the form

dL(k)(α[J,m]) = α′[J ′,m]

come from differentials

dL(k−1)(α[J ]) = α′[J ′]

in the TAHSS for L(k − 1).

Thus, if we want to compute the TAHSS for L(k)n, we can start by computing the
AHSS for L(1). By truncating this spectral sequence appropriately, this gives us
all of the differentials of the form

dL(2)(α[j1, j2]) = α′[j′1, j2]

in the TAHSS for L(2). We then must compute only the remaining longer differ-
entials of the form

dL(2)(α[j1, j2]) = α′[j′1, j
′
2]

for j′2 < j2. Having computed the TAHSS for L(2), we now know all of the differ-
entials in the TAHSS for L(3) of the form

dL(3)(α[j1, j2, j3]) = α′[j′1, j
′
2, j3],
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and we are left with computing the differentials which lower j3. We continue in this
manner until we get up to L(k), and then truncate to get L(k)n. This procedure
will be implemented to compute πtL(k) for t . 20 and k ≤ 3 in Chapter 6.

3.4. Behavior of the E and P maps in the TGSS

Lemma 3.4.1. For all k ≥ 1 and µ ∈ G(ωω), there are maps of towers

Ω2S2n+1 P //

��

Sn

��
Ω2[S2n+1]µ−(k−1)ωω

// [S2n+1]µ+nωk−1−kωω

Proof. Suppose that k ≥ 2. Corollary 2.1.4 implies that P lifts to give com-
patible maps

Ω2P2k−1(S2n+1)→ P2k(Sn).

Lemma 3.3.1 then produces maps which induce the desired maps on fibers:

Ω2[S2n+1]µ−(k−1)ωω
//

��

[Sn]µ+nωk−1−kωω

��
Ω2P2k−2(S2n+1) //

��

P2k−1(Sn)

��
Ω∞Σ2n−k+1[L(k − 1)2n+1]µ // Ω∞Σn−k+1[L(k)n]µ+nωk−1 .

This argument certainly makes sense for µ ∈ G(ωk−1), but it also makes sense for
µ ∈ G(ωω) if we define

[L(k)n]µ :=

{
L(k)n, µ ∈ G(ωω)\G(ωk−1), µ < 0,

∗, µ ∈ G(ωω)\G(ωk−1), µ > 0

for µ ∈ G(ωω)\G(ωk−1). For k = 1, the lemma is verified in a similar manner, but
this fringe case is more trivial. �

This map of G(ωω+1)-indexed towers of Lemma 3.4.1 induces a map of TGSS’s.

Lemma 3.4.2. The P map induces a map of TGSS’s:

E1
t+2,J(S2n+1) +3

P∗

��

πt+2(S2n+1)

P

��
E1
t,[J,n](S

n) +3 πt(Sn)

On E1-terms, this map is described by

P∗(α[J ]) = α[J, n].

In particular, the P map takes an element of Goodwillie filtration 2k−1 to an element
of Goodwillie filtration at least 2k.



30 3. GOODWILLIE FILTRATION AND THE P MAP

Note that the transfinite indexing of the TGSS shifts under the P map, as does the
length of all potential non-trivial differentials. The reader need not let this be an
issue of concern: the P map does not change the order of differentials. Explicitly,
the P map sends a differential

dS
2n+1

(α[J ]) = α′[J ′]

to a differential

dS
n

(α[J, n]) = α′[J ′, n].

The analysis of the E map is similar, but easier, using Corollary 2.1.4.

Lemma 3.4.3. There is a map of G(ωω+1)-indexed towers

Sn
E //

��

ΩSn+1

��
[Sn]µ // Ω[Sn+1]µ.

Lemma 3.4.4. The E map induces a map of TGSS’s:

E1
t,J(Sn) +3

E∗

��

πt(S
n)

E

��
E1
t+1,J(Sn) +3 πt+1(Sn+1).

On E1-terms, this map is described by

E∗(α[J ]) =

{
α[J ], e(J) ≥ n+ 1,

0, else.

In particular, the E map takes an element of Goodwillie filtration 2k to an element
of Goodwillie filtration at least 2k.

3.5. Detection in the TGSS

The relationship between Goodwillie filtration and degree of instability is explained
in the following immediate consequence of Lemmas 3.4.2 and 3.4.4.

Theorem 3.5.1. Suppose that we have a TGSS element

α[j1, . . . , jk] ∈ E1
∗,J(Sn).

Then on the level of TGSS E1-terms, we have

α[j1, . . . , jk] ∈ E−`k∗ P∗E
−`k−1
∗ P∗ · · ·E−`1∗ P∗α

for α ∈ E1
∗,∅(S

2j1+1) and

`s = js − (2js+1 + 1), 1 ≤ s < k

`k = jk − n.
If, for all s, the elements

α[j1, . . . , js−1] ∈ E1
∗,[j1,··· ,js−1](S

2js+1)
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are permanent cycles in the TGSS, converging to elements αs ∈ π∗(S2js+1), then
we have

E`s(αs+1) ≡ P (αs)

modulo elements of higher Goodwillie filtration.

Theorem 3.5.1 tells us that, under favorable circumstances, if β ∈ π∗(Sn) is detected
by

α[j1, . . . , jk],

then
β ∈ E−`kPE−`k−1P · · ·E−`1Pα̃

where `s are as in Theorem 3.5.1, and α̃ ∈ π∗(S2j1+1) stabilizes to α ∈ πs∗. Under
favorable circumstances, the degree of instability of the element β is equal to k, and
β has lineage

β ∈ α〈j1, . . . , jk〉.
However, as we are dealing with maps of spectral sequences in opposing directions,
these principles could potentially fail wildly.

One might conjecture that every element of Goodwillie filtration 2k has degree of
instability equal to k. However, this is easily seen to be false, as the following
example illustrates.

Example 3.5.2. This example implicitly uses the calculations of Chapter 6. Define

x = α6/3[4] + 1[11, 5] ∈ π18(S4)

where α6/3[4] ∈ π18(S4) is the unique element element detected by α6/3[4] in the

TGSS for S4 with the property that

E(α6/3[4]) = 0,

and 1[11, 5] ∈ π18(S4) is the unique element detected by 1[11, 5] in the TGSS for
S4. Then x has Goodwillie filtration 21, but degree of instability 2. Indeed

E(x) = P (P (1))

for 1 ∈ π23(S23) and x has lineage

x ∈ 1〈11, 5〉
yet x is detected by α6/3[4] in the TGSS for S4.

The reader should rightfully feel that Example 3.5.2 fails on a technicality: our
choice of x detected by α6/3[4] could have been modified to have degree of instability
equal to 1. A more reasonable question is therefore the following.

Question 3.5.3. Suppose that x ∈ π∗(S
n) has Goodwillie filtration 2k, and is

detected by α[J ] in the TGSS for Sn. Then does there exist an x′ ∈ π∗(S
n)

which is equivalent to x modulo Goodwillie filtration 2k+1, such that the degree of
instability of x′ is k and the lineage of x′ is given by

x′ ∈ α〈J〉?

Question 3.5.3 does not always have an affirmative answer, as the following example
illustrates.
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Example 3.5.4. Let η2[13] ∈ π27(S13) be the unique element detected by η2[13] in
the TGSS for S13 (see the calculations of Chapter 6). Then we have

P (η2[13]) = η2[13, 6] ∈ π25(S6)

where η2[13, 6] is the (unique) element detected by η2[13, 6] in the TGSS for S6.

However, in Section 5.4 it is shown that the (unique) desuspension α8/5[5] of

η2[13, 6] to π24(S5) is detected by α8/5[5] in the TGSS for S5. Thus

α8/5[5] ∈ E−1PP η̃2.

and

α8/5[5] ∈ η2〈13, 6〉.
In particular, every element of π24(S5) detected by α8/5[5] has degree of instability
equal to 2.

Remark 3.5.5. By way of analogy, if x ∈ π∗(Sn) is detected by α[J ] in the TGSS
for Sn, then the element α[J ] should be regarded as the “DNA” of x. Then the
above examples illustrate that DNA tests are not 100% effective at determining the
lineage of an element.

Counterexamples to Question 3.5.3 are difficult to find, and represent non-trivial
EHP phenomena. Indeed, the calculations of Chapter 6 demonstrate that Exam-
ple 3.5.4 is the only counterexample to Question 3.5.3 in the Toda range.

Question 3.5.3 is clearly answered in the affirmative for k = 0. It also holds for
k = 1 in the metastable range, as the following proposition demonstrates.

Proposition 3.5.6. Suppose that 0 6= β ∈ πt+m(Sm) is detected by α[n] in the
TGSS for Sm and that t ≤ 3n− 2. Then

0 6= En−mβ = P (α) ∈ πt+n(Sn)

under the isomorphism

α ∈ πst−n+1
∼= πt+n+2(S2n+1).

Proof. The element En−m(β) is detected by α[n] in the TGSS for Sn. Using
Remark 3.3.5 we see that every TGSS differential with target α[n] pulls back to
the TGSS for Sm. We deduce that α[n] is not the target of any differentials in
the TGSS for Sn and therefore En−mβ 6= 0. Our conditions on t ensure πst−n+1

∼=
πt+n+2(S2n+1), and under this isomorphism the stable element α corresponds to
an unstable element

α ∈ πt+n+2(S2n+1)

detected by α[∅] in the TGSS for S2n+1. In the TGSS for Sn,

P∗(α[∅]) = α[n]

and thus P (α) and En−mβ agree modulo elements of Goodwillie filtration greater
than 2. But our assumption on t implies that there are no non-zero elements
of πt+n(Sn) of Goodwillie filtration greater than 2. Thus P (α) = En−mβ, as
desired. �
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3.6. Relationship with Whitehead products

The P map gets is name because of its close relationship with the Whitehead
product, as explained in the following well known proposition (see [Whi78]).

Proposition 3.6.1. If α is an element of πi+n+1(S2n+1), and there is an element
α̃ ∈ πi(Sn) so that α = En+1α̃, then we have

P (α) = [ιn, α̃].

Proposition 3.6.1, together with Theorem 3.5.1, suggests that

α[j1, . . . , jk]

is the prime candidate to detect the iterated Whitehead product

[ιjk , [ιjk−1
, [· · · [ιj1 , α̃] · · · ]

where α̃ is a suitable desuspension of α. (In fact, every term of the Whitehead
product must be desuspended appropriately for the expression to make sense.)





CHAPTER 4

Goodwillie differentials and Hopf invariants

In this chapter we prove theorems which can be used to determine differentials in
the GSS. In Section 4.1 we review the notion of the Hopf invariant (HI). By con-
structing a transfinite refinement of the EHPSS (TEHPSS), we define a generalized
Hopf invariant (GHI). In Section 4.2, we recall the relationship between metastable
homotopy and P2(X), and recall how the James-Hopf map and Kahn-Priddy the-
orem allow for the definition of another invariant, the stable Hopf invariant (SHI).
When the Hopf invariant is stable, it agrees with the stable Hopf invariant. In
Section 4.3, we show that the stable Hopf invariant can be used to compute d1-
differentials emanating from the zero line in the GSS. In Section 4.4, we explain
how generalized Hopf invariants can be used to compute dr-differentials emanat-
ing from the zero line in the GSS. In Section 4.5, we explain how the E and P
maps allow us to propagate dr-differentials emanating from the zero line of the
GSS to arbitrary locations. Section 4.6 discusses the case of the Goodwilllie spec-
tral sequence for S1. The calculus form of the Whitehead conjecture predicts that
this spectral sequence collapses at E2 to give a proof of the Whitehead conjecture
(Kuhn’s theorem). We explain how our d1-differentials are compatible with this
conjecture. In Section 4.7, we discuss two classes of GSS differentials which do not
arise as Hopf invariants: these are the geometric boundary effect differentials and
the bizarre differentials. The geometric boundary effect differentials come from the
geometric boundary theorem. The bizarre differentials come from the GSS for S1.

4.1. Hopf Invariants and the transfinite EHPSS

Consider the EHPSS:

E1
m,t = πt+m+1S

2m+1 ⇒ πst .

The Hopf invariant HI(α) of an element 0 6= α ∈ πst is the coset of elements
β ∈ πt+m+1S

2m+1 which detect α in the EHPSS. For such a detecting element β
we write

β ∈ HI(α).

Explicitly, given 0 6= α ∈ πst , lift α to an unstable element α̃ ∈ πt+m+1(Sm+1) for
m minimal. Then the image of α̃ under the H map

πt+m+1(Sm+1)
H−→ πt+m+1(S2m+1)

satisfies

H(α̃) ∈ HI(α).

35
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Note that the minimality of m implies that H(α̃) 6= 0. If we wish to emphasize the
sphere of origin Sm+1 of such an element α with Hopf invariant β ∈ πt(S2m+1), we
will write

β(m) ∈ HI(α).

One can also speak of the Hopf invariant of an unstable element. Given 0 6= α ∈
πt+n(Sn), the Hopf invariant of α is the coset of elements in the E1-term of the
truncated EHPSS ⊕

0≤m<n

πt+m+1(S2m+1)⇒ πt+n(Sn)

which detect α. Explicitly, lift α to a element α̃ ∈ πt+m+1(Sm+1) for m ≤ n − 1
minimal. Then

0 6= H(α̃) ∈ HI(α) ⊂ πt+m+1(S2m+1).

Again, if β ∈ πt(S2m+1) is a Hopf invariant of α, and we wish to emphasize the
sphere of origin Sm+1 of α, we will write

β(m) ∈ HI(α).

Combining the EHPSS with the TGSS, there is a sequence of spectral sequences⊕
k≥0
m≥0

⊕
(j1,...,jk) CU

jk≥2m+1

πt−m+k(Sj1+···+jk)⇒ · · · ⇒
⊕
m≥0

πt+m+1(S2m+1)⇒ πst .

We wish to construct this sequence of spectral sequences as a single G(ωω+2)-
indexed transfinite spectral sequence. We will refer to the resulting transfinite
spectral sequence as the transfinite EHP spectral sequence (TEHPSS).

The EHPSS arises from the filtration

· · · → ΩmSm → Ωm+1Sm+1 → · · · → QS0.

We wish to refine this filtration to a transfinite filtration indexed on G(ωω+2). To
accomplish this, we define, for m ≥ 0 and µ′ ∈ G(ωω+1),

Fµ′+mωω+1QS0 := fiber
(
Ωm+1Sm+1 → Ωm+1S2m+1 → Ωm+1[S2m+1]µ′+1

)
.

In particular, we have

Fmωω+1QS0 = Ωm+1Sm+1.

For J = (j1, . . . , jk) define

µ〈J,m〉 = j1 + j2ω + · · ·+ jkω
k−1 − kωω +mωω+1 ∈ G(ωω+2).

For m ≥ 0 and J a CU sequence with e(J) ≥ 2m+ 1, there are fiber sequences

Fµ〈J,m〉−1QS
0 → Fµ〈J,m〉QS

0 → QS‖J‖+m−|J|.

The TEHPSS is the G(ωω+2)-indexed spectral sequence associated to this filtration,
and takes the form

E1
t,µ ⇒ πst

where

E1
t,µ =

{
πt+|J|(S

‖J‖+m), µ = µ〈J,m〉, m ≥ 0, J CU, e(J) ≥ 2m+ 1.

0 else.
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This spectral sequence computes the stable homotopy groups of spheres from the
stable homotopy groups of spheres. We will denote E1

t,µ〈J,m〉 by E1
t,[J,m]. Elements

in E1
∗,[J,m] given by

γ ∈ πt+|J|(S‖J‖+m)

will be denoted
γ[J,m].

For 0 6= α ∈ πst we define the generalized Hopf invariant to be the coset

GHI(α) ⊂ πt+|J|(S‖J‖+m)

of elements which detect α in the TEHPSS. If

γ[J,m] ∈ GHI(α)

then α is born on Sm+1, with Hopf invariant which is detected by γ[J ] in the TGSS
for S2m+1.

4.2. Stable Hopf invariants and metastable homotopy

For X ∈ Top∗, let
JH : QX → QX∧2

hΣ2

denote the James-Hopf map. It is adjoint to the map

Σ∞QX → Σ∞X∧2
hΣ2

coming from the Snaith splitting. The following theorem is well-known (see [AM99]).

Theorem 4.2.1. Let
P2(X)→ P1(X) = QX

be the first map in the Goodwillie tower of the identity. Then the sequence

P2(X)→ QX
JH−−→ QX∧2

hΣ2
.

is a fiber sequence.

Theorem 4.2.1 follows from the fact that the map

πt(X)→ πt(fiber(QX
JH−−→ QX∧2

hΣ2
))

is an isomorphism for t ≤ 3 · conn(X). The homotopy groups π∗(P2(X)) are classi-
cally known as the metastable homotopy groups of X. In the case where X = Sn,
these maps take the form

QSn
JH−−→ QΣnP∞n ' Ω∞ΣnL(1)n.

Suppose that 0 6= α ∈ πst with t ≥ 1 and take n = 1 (so that L(1)n = L(1) =
Σ∞RP∞). The Kahn-Priddy theorem implies that JH(α) 6= 0. We define the
stable Hopf invariant

SHI(α) ⊂ πt(Sm)

to be the coset of elements in the E1-term of the AHSS

E1
m,t(L(1)) =

{
πt(S

m), m ≥ 1,

0, else
⇒ πtL(1)
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which detect JH(α). For β ∈ SHI(α) ⊂ πt(Sm) as above, we will sometimes write

β[m] ∈ SHI(α)

to emphasize the cell which detects JH(α).

The Snaith splitting gives restrictions of the James-Hopf map

JHm : Ωm+1Sm+1 → Ω∞L(1)m.

Kuhn [Kuh82a] showed that these are compatible, in the sense that there is a map
of fiber sequences

ΩmSm
E //

JHm−1

��

Ωm+1Sm+1 H //

JHm

��

Ωm+1S2m+1

E∞

��
Ω∞L(1)m−1 // Ω∞L(1)m // QSm.

Thus there is a well-known map of spectral sequences

(4.2.2) E1
m,t = πt+m+1(S2m+1)

E∞

��

+3 πt(QS0)

JH

��
E1
m,t(L(1)) = πt(S

m) +3 πtL(1)

from the EHPSS to the AHSS for L(1). We deduce the following lemma.

Lemma 4.2.3. Suppose that t ≥ 1 and 0 6= α ∈ πst has Hopf invariant β ∈
πt+m+1(S2m+1). Then one of the following two possibilities occurs.

(1) β is stable, and

E∞β ∈ SHI(α) ⊂ πt(Sm).

(2) β is unstable, and

SHI(α) ⊂ πt(Sm
′
), for m′ < m.

4.3. Goodwillie d1 differentials and stable Hopf invariants

In this section we will observe that the stable Hopf invariant may be used to compute
d1-differentials in the GSS. The reader is reminded that the TGSS is set up so that
GSS d1-differentials correspond to TGSS differentials

dS
n

: E∗∗,J(Sn)→ E∗∗,J′(S
n)

for |J ′| = |J |+ 1.

The following theorem gives a complete computation of the GSS d1-differentials
emanating from the 0-line of the GSS.

Theorem 4.3.1. Suppose that t ≥ 1 and we have a nontrivial element of the E1-
term of the TGSS for Sn:

α ∈ πt(Sn) = E1
t,∅(S

n)
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with β[m] ∈ SHI(α). If m ≥ n, there is a non-trivial TGSS differential

dS
n

(α) = β[m].

Otherwise, α is in the kernel of all of the differentials of the form

dS
n

: E∗∗,∅(S
n)→ E∗∗,[j](S

n)

for j ≥ n.

Proof. Theorem 4.2.1 implies that in the TGSS for S1 there is a non-trivial
differential

dS
1

(α) = β[m].

Consider the map of TGSS’s induced by the suspension (Lemma 3.4.4)

En−1
∗ : {E∗∗,∗(S1)} → {E∗∗+n−1,∗(S

n)}.

Suppose that m ≥ n. Then there is a differential

(4.3.2) dS
n

(α) = β[m]

in the TGSS for Sn. Suppose that β[m] is the target of a shorter dS
n

-differential.
The only possibility is that β[m] is the target of a differential in the AHSS for L(1)n.
Since the AHSS for L(1)n is a truncation of the AHSS for L(1)1, this would imply
that β[m] is the target of a differential in the AHSS for L(1)1. This is impossible,
as β[m] detects JH(α) 6= 0. We conclude that the differential (4.3.2) must be
non-trivial.

Suppose that m < n. Then we conclude that α is in the kernel of the differential

dS
n

: E∗∗,∅(S
n)→ E∗∗,[m](S

n).

In particular, α is in the kernel of the shorter differentials

dS
n

: E∗∗,∅(S
n)→ E∗∗,[j](S

n), j ≥ n.

�

4.4. Higher Goodwillie differentials and unstable Hopf invariants

In this section we will explain how dr-differentials, for r > 1, emanating from the 0-
line of the GSS correspond to unstable Hopf invariants. The reader is reminded that
the TGSS is set up so that GSS dr-differentials correspond to TGSS differentials

dS
n

: E∗∗,J(Sn)→ E∗∗,J′(S
n)

for |J ′| = |J |+ r.

Suppose that we are given a TGSS element

0 6= α ∈ πt(Sn) = E1
t,∅(S

n)

and that α is born on the (m + 1)-sphere with unstable Hopf invariant. Accord-
ing to Lemma 4.2.3, this implies that β[m′] ∈ SHI(α) for m′ < m. Then, by
Theorem 4.3.1, if n ≤ m′, there is a non-trivial TGSS differential

dS
n

(α) = β[m′].
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If m′ < n ≤ m, then the element α must support a non-trivial differential in
the GSS, and by Theorem 4.3.1, the GSS differential must be a dr-differential for
r > 1. The following theorem tells us that often this longer differential is given by
the (unstable) Hopf invariant of α, and the length of this differential is determined
by the degree of instability of this Hopf invariant.

Theorem 4.4.1. Suppose that α ∈ πst is born on Sm+1. Then in the TGSS for Sm

there is a differential

dS
m

(α) = β[J,m]

where
β[J,m] ∈ GHI(α).

In the TGSS for Sn, with n < m, either the element α supports a shorter differen-
tial, or

dS
n

(α) = β[J,m].

Proof. Lemmas 3.4.1 and 3.4.3 allow us to apply Lemma A.4.1 to the TGSS’s
of the fiber sequence

Ω2Sm+1 H−→ Ω2S2m+1 P−→ Sm
E−→ ΩSm+1.

By assumption, α is a permanent cycle in the TGSS for Sm+1. By the proof of
Lemma A.4.1, we are in Case (5). Thus there exists a lift α̃ ∈ πt+m+1(Sm+1) of α
so that

dS
m

(α) = β[J,m]

and either β[J ] detects H(α̃) or it is the target of a longer differential in the TGSS
for S2m+1. However, any longer differentials in the spectral sequence have source
in a zero group. We conclude that

β[J,m] ∈ GHI(α).

The second part of the theorem is deduced from Lemma 3.4.4. �

4.5. Propagating differentials with the P and E maps

The P and E maps allow us to propagate the 0-line GSS dr-differentials of Theo-
rems 4.3.1 and 4.4.1 to give a plethora of dr-differentials throughout the GSS.

Proposition 4.5.1. Suppose that ` > 0 and in the TGSS for Sn there is a non-
trivial differential

dS
n

(α[J ]) = β[J ′].

If n < m then one of the following possibilities occurs in the TGSS for Sm.

(1) Either e(J ′) < m or β[J ′] is the target of a non-trivial differential

dS
m

(γ[I]) = β[J ′]

for I < J , |I| ≤ |J | − 1 and α[J ] is in the kernel of the differential

dS
m

: E∗∗,J(Sm)→ E∗∗,J′(S
m).

(2) There is a non-trivial differential

dS
m

(α[J ]) = β[J ′].
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Proof. The proposition follows immediately from Lemma 3.4.4. The fact that
the length of the sequence I in Case (1) must be less than |J ′| follows from the fact
that if |I| = |J ′| then there is a differential

dS
n

(γ[I]) = β[J ′]

in the TGSS for Sn (see Remark 3.3.5). Since I < J , this would violate our
assumption that the differential

dS
n

(α[J ]) = β[J ′].

was non-trivial. �

Proposition 4.5.2. Suppose that ` > 0 and in the TGSS for Sn there is a non-
trivial differential

dS
n

(α[J ]) = β[J ′].

If m < n then one of the following possibilities occurs in the TGSS for Sm.

(1) The element α[J ] supports a shorter non-trivial dS
m

differential

dS
m

(α[J ]) = γ[I]

for I > J ′.
(2) There is a non-trivial differential

dS
m

(α[J ]) = β[J ′].

Proof. This proposition follows immediately from Lemma 3.4.4. �

Proposition 4.5.3. Suppose that ` > 0 and in the TGSS for S2n+1 there is a
non-trivial differential

dS
2n+1

(α[J ]) = β[J ′].

Then one of the following possibilities occurs in the TGSS for Sn.

(1) The element β[J ′, n] is the target of a non-trivial differential

dS
n

(γ[I])→ β[J ′, n]

for I > [J, n], |I| < |J ′|+ 1 and α[J, n] is in the kernel of the differential

dS
n

: E∗∗,[J,n] → E∗∗,[J′,n].

(2) There is a non-trivial differential

dS
n

(α[J, n]) = β[J ′, n].

Proof. The proposition follows immediately from Lemma 3.4.2. The fact
that the sequence I in Case (1) satisfies |I| < |J ′| + 1 follows from the fact that
otherwise this differential comes from an differential in the TGSS for S2n+1 (see
Remark 3.3.5), and this would violate our assumption that the differential

dS
2n+1

(α[J ]) = β[J ′].

was non-trivial. �

Combining Propositions 4.5.2 and 4.5.3 gives the following corollary.
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Corollary 4.5.4. Suppose that m ≤ 2n + 1, m′ ≤ n, and in the TGSS for Sm

there is a non-trivial differential

dS
m

(α[J ]) = β[J ′]

for |J ′| > |J |. Then in the TGSS for Sm
′
, one of the following occurs.

(1) The element β[J ′] is the target of a dS
2n+1

differential

dS
2n+1

(γ[I]) = β[J ′]

for I > J and |I| < |J ′|.
(2) The element α[J, n] supports a non-trivial dS

m′

differential

dS
m′

(α[J, n]) = γ′[I ′]

for I ′ < [J ′, n].
(3) There is a differential

dS
m′

(α[J, n]) = β[J ′, n].

The significance of Corollary 4.5.4 is that differentials emanating from the k-line
of the GSS can be propagated to differentials emanating from the (k + 1)-line in
the GSS. As Theorems 4.3.1 and 4.4.1 give us many differentials emanating from
the 0-line, these “Hopf invariant” differentials populate the entire GSS through the
mechanism of Corollary 4.5.4.

4.6. Calculus form of the Whitehead conjecture

Consider the GSS for S1:

Ek,t1 (S1) ∼= πt+k−1(L(k))⇒ πt(S
1).

The appearance of a spectral sequence with E1-term given by the homotopy of the
L(k)-spectra, converging to Z(2), bears a striking resemblance to the the 2-primary
Whitehead conjecture, as originally proved by Kuhn [Kuh82b].

In his proof of the 2-primary Whitehead conjecture, Kuhn formed a Kahn-Priddy
sequence

S1 � Ω∞ΣL(0)
∂1

�
δ0

Ω∞ΣL(1)
∂2

�
δ1

Ω∞ΣL(2)
∂3

�
δ2

· · ·

where the maps ∂k are the infinite loop space maps induced by the composites

L(k) ' Σ−kSp2k(S)/Sp2k−1(S)
∂−→ Σ−k+1Sp2k−1(S)/Sp2k−2(S) ' L(k − 1)

and the maps δk are given by the composites

Ω∞ΣL(k)→ Q(S1)∧2k

hΣok2

JH−−→ Q(S1)∧2k+1

hΣ
o(k+1)
2

→ Ω∞ΣL(k + 1).

Kuhn showed that the sum

∂k+1δk + δk−1∂k



4.6. CALCULUS FORM OF THE WHITEHEAD CONJECTURE 43

is a self-equivalence of L(k). Paired with the observation that ∂2 ' 0, this estab-
lishes that the differentials ∂k give an acyclic chain complex, where δk serves as the
contracting homotopy.

The k-invariants of the Goodwillie tower for Sn give maps

δS
n

k : Ω∞Σn−kL(k)n → Ω∞Σn−kL(k + 1)n.

Arone, Dwyer, and Lesh [ADL08] have proven that the maps δS
n

k admit k-fold
deloopings

δ̃S
n

k : Ω∞ΣnL(k)n → Ω∞ΣnL(k + 1)n.

The following calculus version of the Whitehead conjecture has been postulated and
studied by Arone, Dwyer, Kuhn, Lesh, and Mahowald (see [AL10], [ADL08]).1

Conjecture 4.6.1 (Calculus form of the Whitehead conjecture). The sum

∂k+1δ̃
S1

k + δ̃S
1

k−1∂k

is a self-equivalence of Ω∞ΣL(k).

Conjecture 4.6.1 would follow immediately from Kuhn’s Theorem if we had the

following conjectural description of the Goodwillie k-invariants δS
1

k .

Conjecture 4.6.2 (Calculus form of the Whitehead conjecture (strong form)).
We have

(4.6.3) Ωkδk = δS
1

k .

Remark 4.6.4. Actually, N. Kuhn has proposed an even stronger conjecture. Both

δk and δS
1

k extend to natural transformations between functors from vector spaces
to spaces (see the proof of Lemma 2.1.2). Kuhn conjectures that (4.6.3) holds on

the level of these natural transformations. Note that the delooping δ̃S
V

k of Arone,
Dwyer, and Lesh is natural in V .

Theorem 4.2.1 affirms the k = 0 version of this conjecture. The compatibility of
the Goodwillie tower with E and P given by Corollary 2.1.4 implies the following
diagrams commute.

Ω∞Σn−kL(k)n
δS
n

k //

E

��

Ω∞Σn−kL(k + 1)n

E

��
Ω∞Σn−kL(k)n+1

δS
n+1

k

// Ω∞Σn−kL(k + 1)n+1

Ω∞Σ2n−kL(k − 1)2n+1

δS
2n+1

k−1 //

P

��

Ω∞Σ2n−kL(k)2n+1

P

��
Ω∞Σn−kL(k)n

δS
n

k

// Ω∞Σn−kL(k + 1)n

1Since the time of writing Conjecture 4.6.2 has been proven. In fact two independent proofs
were discovered at essentially the same time: the first is due to the author [Beh] and the second
is due to Arone-Dwyer-Lesh.
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Together with Theorem 4.3.1, these imply the following slight strengthening of
Corollary 4.5.4 in the context of GSS d1-differentials.

Theorem 4.6.5. Suppose that α ∈ πs∗ is non-trivial with stable Hopf invariant

β[m] ∈ SHI(α).

Suppose that α[j1, . . . , jk] is a permanent cycle in the TAHSS for L(k)n and m ≥
2j1 + 1. Then in the TGSS for Sn, we have

dS
n

(α[j1, . . . , jk]) = β[m, j1, . . . , jk].

Theorem 4.3.1 can be summarized by the slogan:

dGSS1 (α[J ]) = SHI(α)[J ] + lower terms.

This is consistent with Conjecture 4.6.2.

Conjecture 4.6.1 implies the following weaker conjecture.

Conjecture 4.6.6. The GSS for S1 collapses at the E2-page.

The low dimensional calculations of the GSS for S1 in Chapter 6 are consistent
with Conjecture 4.6.6.

4.7. Exotic Goodwillie differentials

We shall see in Chapter 6 that Theorems 4.3.1, 4.4.1, 4.6.5 and Corollary 4.5.4
account for most, but not all, of the GSS differentials in our sample computations.
We think of these differentials that are given by stable Hopf invariants and Hopf
invariants as “typical”.

The remaining differentials we regard as “exotic”. All of the exotic differentials
which appear in our low dimensional calculations are instances of two different
phenomena:

• Geometric Boundary Effect: such exotic differentials can be deduced from
TAHSS differentials and non-exotic GSS differentials when Lemma A.4.1
is applied to the EHP sequence.

• Bizarre: these differentials show up without explanation in the GSS for
S1 — the only reason the author knows they are present is because he
already knows π∗(S

1), and these differentials are necessary to get the
right answer. These differentials in the GSS for S1 induce bizarre differ-
entials throughout the GSS for Sn for various n through the mechanisms
of Proposition 4.5.1 and Corollary 4.5.4.

The geometric boundary effect differentials are a consequence of the following the-
orem.

Theorem 4.7.1. Suppose that there is a non-trivial TGSS differential

dS
n

(α[J ]) = β[J ′, n]
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and there are non-trivial differentials

dS
2n+1

(α[J ′]) = γ[T ′],

dS
n

(δ[T ]) = −γ[T ′, n].

Assume the following technical condition:

(∗) For all non-trivial differentials

dS
2n+1

(τ [I]) = τ ′[I ′]

with
T ′ < I ′ < I < J ′ and |I| < |I|′

the induced differential under the P map

dS
n

(τ [I, n]) = τ ′[I ′, n]

is non-trivial.

Then there is a differential

dS
n+1

(α[J ]) = δ[T ].

Proof. Apply Lemma A.4.1 to the sequence

Ω2Sn+1 H−→ Ω2S2n+1 P−→ Sn
E−→ ΩSn+1.

Since

E∗α[J ′, n] = 0

we are not in Case (1). Since E∗ and P∗ induce short exact sequences on the level
of GSS E1-terms, H∗ = 0, and therefore we cannot be in Case (2). Since α[J ′]
is assumed to support a non-trivial differential, we are in Case (3). Therefore,
Lemma A.4.1(3) supplies us with elements x′′ and y′′ = δ[T ] so that

dS
2n+1

(β[J ′]) = x′′,

dS
n

(y′′) = P∗x
′′,

dS
n+1

(α[J ]) = E∗y
′′.

The theorem would be proven if we knew that x′′ = γ[T ′]. Suppose not. Then
x′′ = τ ′[I ′] with I ′ > T ′ and [I ′, n] < T , and τ ′[I ′] must be the target of a non-
trivial differential

dS
2n+1

(τ [I]) = τ ′[I ′]

with I ′ < I < J ′. The non-triviality condition on x′′ in Lemma A.4.1(3) implies
[I, n] > T . Thus the induced differential under the P map

dS
n

(τ [I, n]) = τ [I ′, n]

is trivial, since τ [I ′, n] was already killed by the shorter dS
n

differential supported

by δ[T ]. We must therefore have |I| < |I ′|, since TGSS differentials dS
2n+1

α with
α ∈ G(ωω) are mapped faithfully to TGSS dS

n

differentials under the P map (see
Remark 3.3.5). But then we are in violation of condition (∗). We conclude that
x′′ = γ[T ′], as desired. �
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Example 4.7.2. We give an example of an exotic GSS differential which comes
from the geometric boundary effect. The element εη[4] is a permanent cycle in the
TAHSS for L(1). We have

ε[1] ∈ SHI(εη)

but this does not help us compute dS
2

(εη[4]) since the sequence (1, 4) is not CU.
Instead we apply Theorem 4.7.1. In the TGSS for S1 there is a differential

dS
1

(εη[4]) = α6/3[1]

coming from a differential in the AHSS for L(1). In the TGSS for S3 there is a
differential

dS
3

(α6/3) = 8σ[4]

coming from the fact that 8σ ∈ HI(α6/3). In the TGSS for S1 there is a differential

dS
1

(η3[8, 2]) = 8σ[4, 1]

coming from a differential in the TAHSS for L(2). Condition (∗) of Theorem 4.7.1
is verified by checking (see Table 6.5.1) that there are no elements of π11(L(1)3)
detected on the 3-cell which could support an intervening differential. We deduce
that there is an exotic TGSS differential

dS
2

(εη[4]) = η3[8, 2].

Tables 6.5.6–6.5.10 show several exotic GSS d1 differentials which arise from the
geometric boundary effect (in these tables, these differentials are labeled with a
(∗)).

Example 4.7.3. The computations of Chapter 6 show that there are precisely four
bizarre differentials in the GSS for S1 through the 20-stem (the first three of these
appear in Table 6.5.5, denoted with dotted arrows, the last is just beyond the range
displayed in the table):

dS
1

(θ3[4]) = 1[15, 3],

dS
1

(θ3[4, 1]) = 1[15, 3, 1],

dS
1

(νκ[2]) = κ[4, 1],

dS
1

(θ3[8]) = 1[15, 7].

(Note that the second of these differentials follows from the first by Corollary 4.5.4.)
Proposition 4.5.1 can be used to produce bizarre differentials

dS
n

(θ3[4]) = 1[15, 3],

dS
n

(θ3[8]) = 1[15, 7].

in the GSS for Sn for various n.

We shall see in Chapter 5 that exotic GSS differentials can induce exotic EHPSS
differentials.



CHAPTER 5

EHPSS differentials

In this chapter we explain how to lift differentials from the TGSS to produce EH-
PSS differentials. In Section 5.1, we discuss two naming conventions for elements
of the E1-term of the EHPSS: one coming from the TEHPSS, the other coming
from the notion of lineage, and explain the relationship between these two naming
conventions. Section 5.2 proves some theorems which allow for the computation of
the H map by means of the TGSS. These theorems are then used in Section 5.3 to
determine TEHPSS differentials from TGSS differentials. This method is remark-
ably robust, and accounts for all but one differential in the EHPSS through the
Toda range. This rogue differential is discussed in Section 5.4.

5.1. EHPSS naming conventions

As explained in Section 4.1, the TEHPSS allows us to refer to elements in the
E1-term of the EHPSS with the notation

x[N,n]

where x is an element of the stable stems, and N = (n1, n2, . . . , ns) is a CU se-
quence with e(N) ≥ 2n + 1. The construction of the TEHPSS gives the following
interpretation of this notation. One can use the TAHSS followed by the GSS to
compute the unstable homotopy groups that give the E1-term of the EHPSS.

πt−n+s(S
‖N‖)

TAHSS
+3 πt−n+s(L(s)2n+1)

GSS
+3 πt+n+1(S2n+1)

Then an element

α ∈ πt−n+1(S2n+1)

in the E1-term of the EHPSS corresponds to the TEHPSS element

x[N,n] ∈ πt−n+s(S
‖N‖)

if x[N ] detects α in the TGSS for S2n+1.

Recall that the EHPSS may be truncated to give the Sk-EHPSS:

E1
m,t(k) =

{
πt+m+1(S2m+1), 0 ≤ m < k,

0, else.
⇒ πt+k(Sk)

The notions of lineage in Section 3.2 give rise to a different naming convention
for elements of the EHPSS E1-term which only involves the EHPSS and the Sk-
EHPSS for various k. In this alternative naming convention we name elements of

47
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the EHPSS E1-term with the notation

x〈N〉[n] ∈ πt+n+1(S2n+1)

to indicate an element of πt+n+1(S2n+1) with lineage x〈N〉. The lineage of such
an element can be traced using the EHPSS. If |N | = 0, then x〈n〉 has a nontrivial
image in the stable stems, and we have, under the stabilization map

πk+n+1(S2n+1)
E∞−−→ πsk−n,

x[n] 7→ x.

Otherwise, |N | > 0 and x〈N〉[n] is unstable, and is detected by an element of the
EHPSS which is the target of a differential. Then there is a zig-zag

x〈n1, . . . , ns〉[n] y1〈J1〉[m1]
S2n+1

EHPSS
ks

x〈n1, . . . , ns−1〉[ns]

dEHP

OO

y2〈J2〉[m2]
S2ns+1

EHPSS
ks

dEHP

OO

. . .

ys〈Js〉
S2n2+1

EHPSS
ks

x[n1]

dEHP

OO

where x[n1] is stable.

Remark 5.1.1. Theorem 3.5.1 leads one to expect a correspondence between EH-
PSS elements

(5.1.2) x〈N〉[n]↔ x[N,n].

In general, the correspondence (5.1.2) is more of a slogan than a theorem. Nev-
ertheless, there is only one example in the Toda range of an an element (modulo
higher Goodwillie filtration) whose lineage differs from the name of the element
which detects it in the TGSS, in the 19-stem (see Example 3.5.4). This produces
in the EHPSS E1-term a violation of (5.1.2)

η2〈13, 6〉[2]↔ α8/5[5, 2].

(This discrepancy lies in the 21-stem of the EHPSS, and hence lies outside the range
of our EHPSS calculations.) The calculations of Chapter 6 demonstrate that there
exists a set of generators of the E1-term of the EHPSS through the 20-stem for
which (5.1.2) holds. Using Proposition 3.5.6, we see that (5.1.2) always holds for
elements of the EHPSS E1-term πt+2n+1(S2n+1) for t ≤ 6n+ 1 (metastable range).

Example 5.1.3. In k = 15 there is an element in the EHPSS E1-term

ν〈9, 4〉[1] ∈ E1
1,15 = π17(S3).

In the TGSS for S3 this element is detected by the element

ν[9, 4] ∈ π16(S13).
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On the other hand, there is a there is the following zig-zag.

ν[9, 4, 1] ση[5, 2]
S3

EHPSS
ks

ν[9, 4]

dEHP

OO

ν2[5]
S9

EHPSS
ks

ν[9]

dEHP

OO

Thus ν〈9, 4〉[1]↔ ν[9, 4, 1].

5.2. Using the TGSS to compute the H map

As demonstrated by Lemmas 3.4.4 and 3.4.2, the E and P maps are typically
easy to understand in the TGSS. In fact, we have seen that the maps of spectral
sequences E∗ and P∗ induces short exact sequences of TGSS E1-terms. Therefore,
the H map always is zero on the level of TGSS E1-terms. The following lemma
explains how to use the geometric boundary theorem to compute the H map in
terms of TGSS elements.

Theorem 5.2.1. Suppose that α[J ] ∈ E1
t,J(Sn+1) is a non-trivial permanent cycle

in the TGSS for Sn+1. Suppose there is a TGSS differential

dS
n

(α[J ]) = β[J ′, n].

Then there exists an element x ∈ πt(S
n+1) detected by α[J ] so that one of the

following two alternatives holds.

(1) The element β[J ′] is the target of a differential in the TGSS for S2n+1,
and H(x) is either zero or detected in the TGSS by γ[I] for I < J ′.

(2) The element β[J ′] detects H(x) in the TGSS for S2n+1.

Proof. The theorem follows from applying Lemma A.4.1 to the fiber sequence

Ω2Sn+1 H−→ Ω2S2n+1 P−→ Sn
E−→ ΩSn+1.

Since α[J ] is assumed to be a permanent cycle in the TGSS for Sn+1, we are in
Case (5). �

The above theorem is good when we want to compute H(x) for some element x
detected by α[J ] in the TGSS, but is insufficient if we actually need to compute
H(x) for a specific x. We therefore also present the following variant of the above
theorem.

Theorem 5.2.2. Suppose that x ∈ πt+1(Sm+1) is detected by α[J, n] in the TGSS
for Sm+1, and suppose that β[J ′] detects H(x) in the TGSS for S2m+1. Then one
of the following two alternatives holds.
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(1) There is a non-trivial TGSS differential

dS
m

(α[J, n]) = β[J ′,m].

(2) There is a TGSS differential

dS
m

(γ[I, `]) = β[J ′,m]

for [I, `] < [J, n], and α[J, n] is in the kernel of the TGSS differential

dS
m

: E∗∗,[J,n] → E∗∗,[J′,m].

Proof. The theorem follows from applying Lemma A.4.6 to the fiber sequence

Ω2Sm+1 H−→ Ω2S2m+1 P−→ Sm
E−→ Sm+1.

�

5.3. TEHPSS differentials from TGSS differentials

Theorem 5.2.2 allows us to deduce many TEHPSS differentials from TGSS differ-
entials, as we will now explain.

Differentials in the EHPSS are computed as follows. Suppose we are given an
EHPSS E1-element

α ∈ πt+n+1(S2n+1) = E1
n,t

and we wish to compute its EHPSS differential. Take P (α) ∈ πt+n−1(Sn) and
desuspend it to its sphere of origin

γ ∈ πt+m(Sm+1), En−m−1γ = P (α).

Then

dEHP
n−m(α) = H(γ) ∈ πt+m(S2m+1).

Differentials in the TEHPSS take the form

(5.3.1) dTEHP : E∗∗,[J,n] → E∗∗,[J′,m]

for m < n, or n = m and J ′ < J . Differentials (5.3.1) the case of n = m all arise
from TGSS differentials: the presence of a TEHPSS differential

dTEHP (α[J, n]) = β[J ′, n]

is equivalent to the presence of a TGSS differential

dS
2n+1

(α[J ]) = β[J ′].

Differentials (5.3.1) for m < n are essentially EHPSS differentials: the presence of
a TEHPSS differential

dTEHP (α[J, n]) = β[J ′,m], m < n

is equivalent to the presence of an EHPSS differential

dEHP (x) = y,

where α[J ] detects x in the TGSS for S2n+1 and β[J ′] detects y in the TGSS for
S2m+1.
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Theorem 5.3.2. Suppose the following conditions hold.

(1) The element α[J ] is permanent cycle in the TGSS for S2n+1.
(2) For m < n, there is a TGSS differential

dS
m

(α[J, n]) = β[J ′,m].

(3) The element α[J, n] is a permanent cycle in the TGSS for Sm+1.
(4) For m ≤ ` < n there do not exist any non-trivial TGSS differentials

dS
`

(γ′[I ′, `′]) = γ[I, `]

for ` < `′ and [J ′,m] < [I, `] < [I ′, `′] < [J, n] such that γ′[I ′, `′] is a not
a permanent cycle in the TGSS for S`+1.

Then there is a TEHPSS differential

dTEHPα[J, n] = β[J ′,m].

Proof. We prove the theorem by induction on the length of the differential
in condition (2). By (1), there exists an element x ∈ π∗(S2n+1) which is detected
by α[J ] in the TGSS. The element P (x) ∈ π∗(S

n) is detected by α[J, n] in the
TGSS for Sn. By our inductive hypothesis (applied by allowing the “β” in (2) to
be trivial) there are no non-trivial TEHPSS differentials

dTEHP (α[J, n]) = β′[J ′′,m′]

for m′ > m, and so there exists a desuspension y of P (x):

y ∈ π∗(Sm+1)
En−m+1

−−−−−→ π∗+n−m+1(Sn) 3 P (x).

By condition (3), y is detected by α[J, n] in the TGSS for Sm+1. We now use
Theorem 5.2.2 to compute H(y). Suppose that we are in Case (2) of Theorem 5.2.2.
Then H(y) is detected in the TGSS for S2m+1 by γ[I] for I > J ′, and there is a
non-trivial TGSS differential

dS
m

(γ′[I ′, `]) = γ[I,m].

for [I ′, `] < [J, n]. Now, if ` = m, then the differential pulls back under P to give a
differential

dS
2m+1

(γ′[I ′]) = γ[I]

and this means γ[I] does not detect anything in the TGSS for S2m+1. Otherwise,
` > m, and (4) implies that γ′[I ′, `] is a permanent cycle in the TGSS for Sm+1.
Then the inductive hypothesis implies that there is a differential

dTEHP (γ′[I ′, `]) = γ[I,m].

In particular, γ[I,m] cannot detect a Hopf invariant. We conclude that we must
be in Case (1) of Theorem 5.2.2. Then H(y) is detected by β[J, n], and there is a
TEHPSS differential

dTEHP : α[J, n] = β[J ′,m]

or β[J ′,m] is the target of a shorter TGSS differential, and α[J, n] is in the kernel
of the TEHPSS differential

dTEHP : E∗∗,[J,n] → E∗∗,[J′,m].

�
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Remark 5.3.3. Condition (4) of Theorem 5.3.2 can be labor intensive to verify,
but there is a shortcut to checking it. Namely, if (5.1.2) holds for all of the relevant
TEHPSS elements, then suppose that there is a TGSS differential

dS
`

(γ′[I ′, `′]) = γ[I, `]

where γ′[I ′, `′] is not a permanent cycle in the TGSS for S`+1. Then the differential
cannot lift to a TEHPSS differential

dTEHP (γ′[I ′, `′]) = γ[I, `],

for if it did, then γ[I, `] would be a non-trivial permanent cycle in the S`+1-EHPSS,
and converge to an element detected by γ′[I ′, `′] in the TGSS for S`+1. So the set
of intervening TGSS differentials that violate condition (4) is a subset of the set of
TGSS differentials as above, with ` < `′ which do not lift to the TEHPSS.

Example 5.3.4. The most typical manner in which Theorem 5.3.2 is used is to “lift”
differentials from the TAHSS’s for the L(k) spectra in a manner which generalizes
the manner Mahowald and others lift differentials from the AHSS to the EHPSS
(using (4.2.2)). For example, there is a differential in the S1-TGSS (see Table 6.5.2,
k = 7)

dS
1

(1[5, 2]) = η[4, 1].

Theorem 5.3.2 can be used to deduce the TEHPSS differential

dTEHP (1[5, 2]) = η[4, 1].

Example 5.3.5. Theorem 5.3.2 can also be used to obtain TEHPSS differentials
from exotic TGSS differentials coming from the geometric boundary effect (see
Section 4.7). Consider the geometric boundary effect TGSS differential

dS
2

(ηε[4]) = η3[8, 2].

This differential arises from applying Theorem 4.7.1 to the system of TGSS differ-
entials:

ηε[4]
_

dS
1

��

η3[8, 2]
_

dS
1

��
α6/3[1] 8σ[4, 1]

α6/3
�

dS
3
//

_
P∗

OO

8σ[4]
_
P∗

OO

Theorem 5.3.2 gives a TEHPSS differential

dTEHP (ηε[4]) = η3[8, 2].

Example 5.3.6. Theorem 5.3.2 even produces bizarre TEHPSS differentials from
bizarre TGSS differentials (see Section 4.7). Consider the bizarre differential

dGSS(θ3[4]) = 1[15, 3]

in the TGSS for S1. Theorem 5.3.2 gives a corresponding TEHPSS differential

dTEHP (θ3[4]) = 1[15, 3].
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5.4. A bad differential

The calculations of Chapter 6 demonstrate that through the 20-stem, with one
exception, all of the differentials in the TEHPSS can be obtained by lifting TGSS
differentials through the application of Theorem 5.3.2. We discuss this exception,
which is the root of the counterexamples in Example 3.5.4 and Remark 5.1.1. This
“rogue differential” is given by the following lemma.

Lemma 5.4.1. There is a non-trivial TEHPSS differential

dTEHP (η2[13, 6]) = ηα8/5[3].

Proof. The differentials

dS
5

(η2[13, 6]) = 4ν[12, 5],

dS
11

(4ν[12]) = 0

imply, using Theorem 5.3.2, that η2[13, 6] is in the kernel of the TEHPSS differen-
tials

dTEHP : E∗∗,[6,2] → E∗∗,[J,5]

for all J . This implies that if η2[13] ∈ π27(S13) is the unique element which is

detected by η2[13] in the TGSS for S13, then P (η2[13]) must desuspend to S4.

Now, on the level of TGSS E1-terms, we have

P∗(η
2[13]) = η2[13, 6] ∈ E1

25,[13,6](S
6).

Consulting Table 6.5.10, we see that η2[13, 6] is a non-trivial permanent cycle in the

TGSS for S6. Therefore, we conclude that P (η2[13]) 6= 0. Therefore, there must

exist a non-zero element x ∈ π23(S4) whose double suspension is P (η2[13]). In the
TGSS the element x must be detected by an element with transfinite Goodwillie
filtration greater than or equal to µ[13, 6], but x must have Goodwillie filtration
greater than 1 since E3(x) = 0. Consulting Table 6.5.8, there are two possibilities
of TGSS elements which can detect x:

ηα8/5[4] and α8/5[5].

Now, if x were detected by ηα8/5[4], then since

E∗(ηα8/5[4]) = 0 ∈ E1
24,[4](S

5),

the element E(x) ∈ π24S
5 must be detected by an element of transfinite Goodwillie

filtration less than µ[4]. Consulting Table 6.5.9, we see that the only such elements
in the TGSS for S5 are stable. Since E(x) is not stable, we have arrived at a
contradiction, and we deduce that x must be detected by α8/5[5] in the TGSS for

S4.

We now compute H(x). Using Theorem 5.2.1, the TGSS differential

dS
3

(α8/5[5]) = ηα8/5[3]

allows us to conclude that there exists an element x′ ∈ π23(S4) detected by α8/5[5]

in the TGSS for S4 such that H(x) is detected by ηα8/5 in the TGSS for S7.
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Tables 6.5.8 and 6.5.9 reveal that E(x) = E(x′). Thus x′ is also a desuspension of

Pη2[13]. We have therefore shown that there is an EHPSS differential

dEHP (η2[13]) = H(x′).

Since η2[13] is detected in the TGSS by η2[13], and H(x′) is detected in the TGSS
by ηα8/5, there is a TEHPSS differential

dTEHP (η2[13, 6]) = ηα8/5[3].

�



CHAPTER 6

Calculations in the 2-primary Toda range

In this chapter we illustrate the computational effectiveness of our methods by
completely computing the TAHSS for L(k) for 1 ≤ k ≤ 3 (Tables 6.5.1–6.5.3), the
TGSS for Sn for 1 ≤ n ≤ 6 (Tables 6.5.5–6.5.10), and the TEHPSS (Table 6.5.4),
in the Toda range (i.e. up to and including the 19-stem).

We summarize the methods and notations of our computations in the first several
sections of this chapter. Section 6.1 describes the inductive low dimensional com-
putations of the TAHSS’s for the L(k) spectra. This data will be used to give the
E1-terms of the TGSS’s, and to give the differentials in the EHPSS. The TAHSS
computations feed into Sections 6.2 and 6.3, where we compute the TGSS for Sn,
1 ≤ n ≤ 6 in the Toda range. In Section 6.4 we describe the computation the
TEHPSS in the Toda range. Note that since πn+∗(S

n) is metastable for ∗ ≤ 19
and n ≥ 7, we do not bother to compute the TGSS for Sn for n ≥ 7: in the Toda
range it can be completely read off of the TEHPSS.

The methodology of these computations can be summarized as follows.

(1) Inductively compute the TAHSS for L(k), facilitated by an understanding
of the dual action of the Steenrod algebra on the homology of the L(k)-
spectra, and an excellent understanding of the structure of the stable
homotopy ring in low dimensions.

(2) Feed the TAHSS computations into the TGSS for Sn for various n, starting
with n = 1. Use stable Hopf invariant computations to fill in most of the
differentials for the TGSS for S1, and then deduce bizarre differentials
using our knowledge of π∗(S

1). Then fill in the differentials for the TGSS
for Sn inductively on n, using the E map to map differentials from the
TGSS for Sn−1 to the TGSS for Sn. The remaining differentials come
from the geometric boundary effect (Theorem 4.7.1) or unstable Hopf
invariants (Theorem 4.4.1).

(3) The unstable Hopf invariants, and to some degree the stable Hopf invari-
ants, require a concurrent computation of the TEHPSS. Differentials in
the TEHPSS are lifted from the TAHSS and TGSS using Theorem 5.3.2.

6.1. AHSS calculations

The TAHSS’s for π∗(L(s)) in the Toda range for 1 ≤ s ≤ 3 are given in Tables 6.5.1,
6.5.2, and 6.5.3. As the TAHSS for L(k) completely determines the Eα-pages of
the TAHSS for L(k + 1) for α ∈ G(ωk), we really only need to start the TAHSS

55
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for L(k) at the Eω
k

-pages of the TAHSS’s for L(k − 1)2m+1 for various m (see
Remark 3.3.5).

The terms are given in terms of an F2-basis of the associated graded with respect
to the 2-adic filtration. The notation

x(2m)[n1, . . . , ns]

represents the span (in the associated graded) of the elements

{x[N ], 2x[N ], 4x[N ], . . . , 2m−1x[N ]}

where N is a CU sequence of length s, and x is an element of the stable stems. If
m = 1, then the “(2m)” in the notation is omitted.

We list all elements which are not the targets of differentials. If an element supports
a non-trivial differential, then the differential is represented by an arrow which
points toward the target.

We use standard terminology for the generators of the stable stems, most of which
originates with Toda [Tod62]. The generators of the v1-periodic homotopy groups
are given using a variation on the notation of Ravenel [Rav86]. The element αk/l
is a v1-periodic element of order 2l in the (2k − 1)-stem.

The most difficult of these computations is the computation of π∗(L(1)) given
in Table 6.5.1. These computations are effectively contained in [Mah67]. The
differentials on the v1-periodic elements are mostly deduced from the J-homology
AHSS for P∞, as computed in [Mah82].

The remaining differentials may be deduced in this range from the dual action of
the Steenrod algebra on H∗(L(1)). For instance, in the k = 5 list, the formula

Sq2
∗Q̄

4 = Q̄2

implies the AHSS differential

d2(η[4]) = η · η[2] = η2[2]

and in k = 12, the formula

Sq2
∗Sq

1
∗Q̄

6 = Q̄3

implies the AHSS differential

d3(ν2[6]) = 〈η, 2, ν2〉[3] = ε[3].

The TAHSS’s for L(k), k = 2, 3 in the Toda range are actually much less compli-
cated. The Steenrod operations on H∗(L(s)) are given by the Nishida relations.
There are subtleties associated with the transfinite AHSS filtration. We give an
example that nicely illustrates how to interpret things. We look at the TAHSS
for L(2), k = 19. The Nishida relations, together with the relations amongst the
Q̄j-operations, give

Sq4
∗Q̄

9Q̄4 = Q̄7Q̄2 + Q̄5Q̄4 = Q̄7Q̄2.

We would initially think that this should give an AHSS differential

dL(2)(ν2[9, 4]) = ν3[7, 2] = (ση2 + εη)[7, 2]
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except that (ση2 + εη)[7] is null in π∗(L(1)7). In the AHSS for L(1), (ση2 + εη)[7]
is killed by the differential dL(1)((ση + ε)[9]) induced from

Sq2
∗Q̄

9 = Q̄7.

However, something more is going on in L(2). The Nishida relations give

Sq2
∗Q̄

9Q̄2 = Q̄8Q̄1 + Q̄7Q̄2

which translate into the fact that in L(2), we have

dL(2)((ση + ε)[9, 2]) = (ση2 + εη)[8, 1] + (ση2 + εη)[7, 2]

so the terms in the right-hand side are equated. Thus we actually have

dL(2)(ν2[9, 4]) = (ση2 + εη)[7, 2] = (ση2 + εη)[8, 1].

6.2. Calculation of the GSS for S1

The TGSS for π∗(S
1) is given in Table 6.5.5. We know that π∗(S

1) is concentrated
in degree 1, and consistent with Conjecture 4.6.6, the only differentials it has are
are GSS d1’s.

The Eα terms for α ∈ G(ωω) may be read off of Tables 6.5.1, 6.5.2 and 6.5.3.
The other L(k)’s are too highly connected to contribute anything in our range of
computation. The d1’s originating in the first column of Table 6.5.5 are exactly the
stable Hopf invariants, by Theorem 4.3.1. For example, we have SHI(η) = 1 and

d1(η) = 1[1].

Most of the other d1’s are also given by stable Hopf invariants, using Theorem 4.6.5.
The ones that are not are the bizarre differentials: these are indicated by dashed
arrows in Table 6.5.5. They are necessary to make the spectral sequence acyclic.

Actually, in this range, these stable Hopf invariants are rather easy to deduce from
the Hopf invariants of η, ν, and σ and the attaching map structure in L(1). We
also used the relation of Hopf invariants to root invariants [MR93].

6.3. GSS calculations

Tables 6.5.6–6.5.10 display calculations of the TGSS for Sn for 2 ≤ n ≤ 6. In the
Toda range, the TGSS for Sn can be completely read off of the TEHPSS for n ≥ 7
(metastable range).

As in Section 6.2, the Eα terms for α ∈ G(ωω) may be read off of Tables 6.5.1,
6.5.2 and 6.5.3. The unmarked differentials all arise from the application of The-
orems 4.6.5 and 4.4.1. The geometric boundary effect differentials deduced from
Theorem 4.7.1 are denoted with a (∗). The bizarre differentials induced from the
TGSS for S1 (using Proposition 4.5.1) are denoted with a (∗∗).

Note that there are precisely two longer differentials in the TGSS for S2 obtained
from Theorem 4.4.1: we must use our TEHPSS calculations to compute these
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generalized Hopf invariants. For example, in the TGSS for S2 in n = 16 there is a
TGSS differential

dS
2

(ηα8/5) = η2[13, 2].

This arises from the fact that the unstable Hopf invariant HI(ηα8/5) is detected

by η2[13] in the TGSS for S5. The stable element ηα8/5 has an unstable Hopf
invariant, and this is precisely the mechanism which results in such a longer TGSS
differential.

6.4. Calculation of the EHPSS

Table 6.5.4 displays the TEHPSS in the Toda range. The Eα-page of the TEHPSS
can be read off of Tables 6.5.1, 6.5.2, 6.5.3, 6.5.5, 6.5.7, and 6.5.9. Table 6.5.4

consists of lists of the non-trivial permanent cycles in the Eω
ω+1

-pages of the TGSS’s
for the various S2m+1. If an element is the target of a TEHPSS differential, then
this is displayed with an left arrow followed by the source of the differential. If an
element is not the target of a differential, then it is boxed, and a double right arrow
gives the name of the element of the stable stems that it detects in the TEHPSS.
From this, one can read off the (unstable) Hopf invariants of the elements of the
stable stems.

The elements in the E1
t,N -term of the TEHPSS are given with the notation

x(2m)[n1, . . . , ns, n]

where x is an element of the stable stems, and N = (n1, n2, . . . , ns, n) is a CU
sequence. The parenthetical (2m) is the order of the element, and this notation
is omitted if m = 1. The meaning of this notation is completely explained in
Section 5.1.

With the exception of the one bad differential (marked with a (∗∗)) described in
Section 5.4, all of the TEHPSS differentials in the Toda range come from lifting a
TGSS differential using Theorem 5.3.2. The differentials with unmarked arrows all
arise from lifting differentials from the TAHSS’s in Tables 6.5.1, 6.5.2, and 6.5.3.
Differentials obtained from lifting geometric boundary effect differentials are labeled
with a (∗), and differentials obtained from lifting bizarre differentials are labeled
with a (∗ ∗ ∗).

6.5. Tables of computations

This section consists of the actual tables containing the 2-primary Toda range
computations discussed in the previous sections.

Tables 6.5.1–6.5.3: The AHSS for πk(L(k)), 1 ≤ k ≤ 3
Table 6.5.4: The EHPSS
Tables 6.5.5–6.5.10: The GSS for πt+n(Sn), 1 ≤ n ≤ 6
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6.5.1. The AHSS for πk(L(1)).

k = 1
1(∞)[1]

k = 2
η[1]
1(∞)[2]→ 2(∞)[1]

k = 3
η2[1]
η[2]
1[3]

k = 4
ν[1]
1(∞)[4]→ 2(∞)[3]

k = 5
ν(4)[2]→ 2ν(4)[1]
η[4]→ η2[2]
1[5]→ η[3]

k = 6
ν[3]
η2[4]→ 4ν[2]
η[5]→ η2[3]
1(∞)[6]→ 2(∞)[5]

k = 7
ν2[1]
ν(4)[4]→ 2ν(4)[3]
4ν[4]
η2[5]
η[6]
1[7]

k = 8
σ[1]
ν2[2]
ν[5]
1(∞)[8]→ 2(∞)[7]

k = 9
ση[1]
ε[1]
σ(8)[2]→ 2σ(8)[1]
8σ[2]
ν2[3]
ν(4)[6]→ 2ν(4)[5]
η[8]→ η2[6]
1[9]→ η[7]

k = 10
ση2[1]
α5[1]
ση[2]
σ[3]
η2[8]→ 4ν[6]
η[9]→ η2[7]
1(∞)[10]→ 2(∞)[9]

k = 11
ηα5[1]
α5[2]
σ(8)[4]→ 2σ(8)[3]
8σ[4]
ν(4)[8]→ 2ν(4)[7]
4ν[8]→ εη[1]
η2[9]→ ε[2]
η[10]→ ν2[4]
1[11]→ ν[7]

k = 12
ση[4]→ ση2[2]
ε[4]→ εη[2]
σ[5]→ ση[3]
ν2[6]→ ε[3]
ν[9]→ ν2[5]
1(∞)[12]→ 2(∞)[11]

k = 13
α6/3(4)[2]→ α6/2(4)[1]

εη[4]
ση2[4]

}
→ α6/3[1]

α5[4]→ α5η[2]
ση[5]→ ση2[3]
ε[5]→ εη[3]
σ(8)[6]→ 2σ(8)[5]
8σ[6]→ α5[3]
ν(4)[10]→ 2ν(4)[9]
η[12]→ η2[10]
1[13]→ η[11]

k = 14
α5η[4]→ α6[2]
α5[5]→ α5η[3]
ε[6]
σ[7]
ν2[8]→ (ση2 + εη)[4]
ν[11]→ ν2[7]
η2[12]→ 4ν[10]
η[13]→ η2[11]
1(∞)[14]→ 2(∞)[13]

k = 15
θ3[1]
κ[1]
α6/3(4)[4]→ α6/2(4)[3]
α6[4]
α5η[5]
α5[6]
σ(8)[8]→ 2σ(8)[7]
8σ[8]
ν2[9]→ (ση2 + εη)[5]
ν(4)[12]→ 2ν(4)[11]
4ν[12]
η2[13]→ α6/3[3]
η[14]→ εη[5]
1[15]→ ση[6]
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Table 6.5.1, cont’d

k = 16
α8/5[1]
θ3[2]
κ[2]
ση[8]→ ση2[6]
ε[8]→ εη[6]
σ[9]→ ση[7]
ν2[10]→ ε[7]
ν[13]
1(∞)[16]→ 2(∞)[15]

k = 17
η4[1]
α8/5η[1]
α8/5(16)[2]→ α8/4(16)[1]
α8[2]
θ3[3]
κ[3]
α6/3(4)[6]→ α6/2(4)[5]

ση2[8]
εη[8]

}
→ α6/3[5]

(ση2 + εη)[8]→ κη[1]
α5[8]→ α5η[6]
ση[9]→ ση2[7]
ε[9]→ εη[7]
σ(8)[10]→ 2σ(8)[9]
8σ[10]→ α5[7]
ν2[11]
ν(4)[14]→ 2ν(4)[13]
η[16]→ η2[14]
1[17]→ η[15]

k = 18
η4η[1]
α9[1]
η4[2]
θ3[4]
κ[4]→ κη[2]
α5η[8]→ α6[6]
ση2[9]
α5[9]→ α5η[7]
ση[10]
σ[11]
η2[16]→ 4ν[14]
η[17]→ η2[15]
1(∞)[18]→ 2(∞)[17]

k = 19
ν∗[1]
α9η[1]
κν[2]
α9[2]
α8/5(16)[4]→ α8/4(16)[3]
16α8/5[4]
κη[4]→ κν[1]
θ3[5]
κ[5]→ κη[3]
α6/3(4)[8]→ α6/2(4)[7]
α6[8]→ α8/5η

2[1]
α5η[9]→ α8/5η[2]
α5[10]→ α8/5[3]
σ(8)[12]→ 2σ(8)[11]
8σ[12]→ α6/3[7]
ν(4)[16]→ 2ν(4)[15]
4ν[16]→ εη[9]
η2[17]→ ε[10]
η[18]→ ν2[12]
1[19]→ ν[15]

k = 20
σ[1]
ν∗(4)[2]→ 2ν∗(4)[1]
κν[3]
η4[4]→ η4η[2]
α8/5η[4]→ α8/5η

2[2]
α8/5[5]→ α8/5η[3]
κη[5]
θ3[6]→ η4[3]
κ[6]
ση[12]→ ση2[10]
ε[12]→ εη[10]
σ[13]→ ση[11]
ν2[14]→ ε[11]
ν[17]→ ν2[13]
1(∞)[20]→ 2(∞)[19]

k = 21
κ[1]
σ[2]
α10/3(4)[2]→ α10/2(4)[1]
ν∗[3]
η4η[4]→ 4ν∗[2]
α8/5η

2[4]→ α10/3[1]
κν[4]
α9[4]→ α9η[2]
η4[5]→ η4η[3]
α8/5η[5]→ α8/5η

2[3]
α8/5(16)[6]→ α8/4(16)[5]
α8[6]→ α9[3]
θ3[7]
α6/3(4)[10]→ α6/2(4)[9]

ση2[12]
εη[12]

}
→ α6/3[9]

α5[12]→ α5η[10]
ση[13]→ ση2[11]
ε[13]→ εη[11]
σ(8)[14]→ 2σ(8)[13]
8σ[14]→ α5[11]
ν(4)[18]→ 2ν(4)[17]
η[20]→ η2[18]
1[21]→ η[19]
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Table 6.5.1, cont’d

k = 22
σ3[1]
κη[1]
κ(4)[2]→ 2κ(4)[1]
4κ[2]
σ[3]
ν∗(4)[4]→ 2ν∗(4)[3]
4ν∗[4]
α9η[4]→ α10[2]
η4η[5]
α9[5]→ α9η[3]
η4[6]
θ3[8]
κ[8]→ κη[6]
α5η[12]→ α6[10]
α5[13]→ α5η[11]
ε[14]→ κ[7]
ν2[16]→ (ση2 + εη)[12]
ν[19]→ ν2[15]
η2[20]→ 4ν[18]
η[21]→ η2[19]
1(∞)[22]→ 2(∞)[21]

k = 23(outgoing diffs only)

α10/3(4)[4]→ α10/2(4)[3]
α8/5(16)[8]→ α8/4(16)[7]
κη[8]→ κν[5]
κ[9]→ κη[7]
α6/3(4)[12]→ α6/2(4)[11]
α6[12]→ α10/3[3]
α5η[13]→ α8/5η

2[5]
α5[14]→ α8/5η[6]
σ(8)[16]→ 2σ(8)[15]
8σ[16]→ α8/5[7]
ν2[17]→ ση2[13]
ν(4)[20]→ 2ν(4)[19]
4ν[20]→ α6/3[11]
η2[21]→ εη[13]
η[22]→ ση[14]
1[23]→ σ[15]

6.5.2. The AHSS for πk(L(2)).

k = 4
1[3, 1]

k = 7
ν[3, 1]
1[5, 2]→ η[4, 1]

k = 8
1[7, 1]
η[5, 2]→ η2[4, 1]

k = 9
ν[5, 1]
η2[5, 2]→ η3[4, 1]
η[6, 2]→ η2[5, 1]
1[7, 2]→ η[6, 1]

k = 10
ν2[3, 1]
ν[5, 2]
1[7, 3]

k = 11
σ[3, 1]

k = 13
η3[8, 2]→ 8σ[4, 1]
η2[9, 2]→ η3[8, 1]
η[10, 2]→ η2[9, 1]
1[9, 4]→ η[8, 3]

k = 14
σ[5, 2]→ ση[4, 1]
ν2[6, 2]→ ε[4, 1]
η[9, 4]→ η2[8, 3]

k = 15
σ[7, 1]
ε[5, 2]→ εη[4, 1]
8σ[6, 2]→ α5[4, 1]
η2[9, 4]→ η3[8, 3]
η[10, 4]→ η2[9, 3]
1[11, 4]→ η[10, 3]
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Table 6.5.2, cont’d

k = 16
α5[5, 2]→ ηα5[4, 1]
ε[6, 2]
σ[7, 2]
ν2[8, 2]→ ε[6, 1]
ν[9, 4]→ ση[5, 2]
1[11, 5]→ ν[9, 3]

k = 17
ν[13, 1]
ηα5[5, 2]→ α6[4, 1]
α5[6, 2]→ ηα5[5, 1]
8σ[8, 2]→ α5[6, 1]
η3[12, 2]→ 8σ[8, 1]
η2[13, 2]→ η3[12, 1]
σ[7, 3]

k = 18
θ3[3, 1]
ν2[11, 1]
ν[13, 2]
1[15, 3]
ν[11, 4]→ ν2[8, 3]

k = 19
θ3[4, 1]
κ[4, 1]
σ[11, 1]
(ση2 + εη)[8, 2]→ κ[3, 1]
ν2[9, 4]→ (ση2 + εη)[8, 1]
η3[12, 4]→ 8σ[8, 3]
η2[13, 4]→ η3[12, 3]
η[14, 4]→ η2[13, 3]
1[15, 4]→ η[14, 3]
ν[11, 5]→ ν2[9, 3]
1[13, 6]→ η[12, 5]

k = 20
θ3[5, 1]
ση[10, 2]→ ση2[9, 1]
σ[11, 2]→ ση[10, 1]
σ[9, 4]→ ση[8, 3]
ν2[10, 4]→ ε[8, 3]
ν[13, 4]→ ν2[11, 2]
1[15, 5]→ ν[13, 3]
η[13, 6]→ η2[12, 5]

k = 21
κ[6, 1]
θ3[5, 2]
κ[5, 2]→ κη[4, 1]
α6[8, 2]→ α8[4, 1]
ηα5[9, 2]→ α6[8, 1]
α5[10, 2]→ ηα5[9, 1]
σ[11, 3]
ση[9, 4]→ ση2[8, 3]
ε[9, 4]→ εη[8, 3]
8σ[10, 4]→ α5[8, 3]
ν2[11, 4]→ ση2[9, 2]
ν[13, 5]→ ν2[11, 3]
η2[13, 6]→ 4ν[12, 5]
η[14, 6]→ η2[13, 5]
1[15, 6]→ η[14, 5]

k = 22
ν∗[3, 1]
νκ[4, 1]
θ3[7, 1]
α8/5[5, 2]→ ηα8/5[4, 1]
κη[5, 2]→ νκ[3, 1]
θ3[6, 2]→ η4[4, 1]
κ[6, 2]→ κη[5, 1]
ση2[9, 4]
α5[9, 4]→ ηα5[8, 3]
ση[10, 4]→ ση2[9, 3]
σ[11, 4]→ ση[10, 3]
ν2[11, 5]
ν[13, 6]
1[15, 7]

k = 23(outgoing diffs only)

η4[5, 2]→ ηη4[4, 1]
ηα8/5[5, 2]→ η2α8/5[4, 1]
α8[6, 2]→ α9[4, 1]
ηα5[9, 4]→ α6[8, 3]
α5[10, 4]→ ηα5[9, 3]
8σ[12, 4]→ α5[10, 3]
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6.5.3. The AHSS for πk(L(3)).

k = 11
1[7, 3, 1]

k = 18
σ[7, 3, 1]
1[11, 5, 2]→ ν[9, 4, 1]

k = 19
1[15, 3, 1]

k = 21
ν[11, 5, 2]→ ν2[9, 4, 1]

k = 22
σ[11, 3, 1]
1[15, 5, 2]→ ν[13, 4, 1]

k = 23
1[15, 7, 1]
ν[13, 5, 2]→ ν2[11, 4, 1]

6.5.4. The EHPSS.

k = 0

1(∞)[0] ⇒ 1(∞)

k = 1

1[1] ⇒ η

2(∞)[1]← 1(∞)[2]

k = 2

η[1] ⇒ η2

k = 3

η2[1] ⇒ 4ν

η[2] ⇒ 2ν

1[3] ⇒ ν

2(∞)[3]← 1(∞)[4]

k = 4
2ν(4)[1]← ν(4)[2]
η2[2]← η[4]
η[3]← 1[5]

k = 5
η[4, 1]← 1[5, 2]
4ν[2]← η2[4]
η2[3]← η[5]
2(∞)[5]← 1(∞)[6]

k = 6
η2[4, 1]← η[5, 2]

ν[3] ⇒ ν2

2ν(4)[3]← ν(4)[4]

k = 7

4ν[4] ⇒ 8σ

η2[5] ⇒ 4σ

η[6] ⇒ 2σ

1[7] ⇒ σ

2(∞)[7]← 1(∞)[8]

k = 8

ν2[2] ⇒ ε

ν[5] ⇒ ση

2ν(4)[5]← ν(4)[6]
η2[6]← η[8]
η[7]← 1[9]

k = 9

ε[1] ⇒ εη

8σ[2] ⇒ α5

ν2[3] ⇒ ση2

4ν[6]← η2[8]
η2[7]← η[9]
2(∞)[9]← 1(∞)[10]

k = 10
ηε[1]← 4ν[8]

α5[1] ⇒ ηα5

ε[2]← η2[9]
2σ(8)[3]← σ(8)[4]
ν2[4]← η[10]
ν[7]← 1[11]
2ν(4)[7]← ν(4)[8]

k = 11

ηα5[1] ⇒ α6

η3[8, 1]← η2[9, 2]
η2[9, 1]← η[10, 2]
εη[2]← ε[4]

α5[2] ⇒ α6/2

ση2[2]← ση[4]
ε[3]← ν2[6]
ση[3]← σ[5]
η[8, 3]← 1[9, 4]

8σ[4] ⇒ α6/3

ν2[5]← ν[9]
2(∞)[11]← 1(∞)[12]
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Table 6.5.4, cont’d

k = 12
α6/2(4)[1]← α6/3(4)[2]
ε[4, 1]← ν2[6, 2]
ση[4, 1]← σ[5, 2]

η3[8, 2]←
{
ση2[4]
εη[4]

(∗)

ηα5[2]← α5[4]
εη[3]← ε[5]
α5[3]← 8σ[6]
ση2[3]← ση[5]
η2[8, 3]← η[9, 4]
2σ(8)[5]← σ(8)[6]
2ν(4)[9]← ν(4)[10]
η2[10]← η[12]
η[11]← 1[13]

k = 13
εη[4, 1]← ε[5, 2]
α5[4, 1]← 8σ[6, 2]
α6[2]← ηα5[4]
η3[8, 3]← η2[9, 4]
ηα5[3]← α5[5]
η2[9, 3]← η[10, 4]
η[10, 3]← 1[11, 4]
(ση2 + εη)[4]← ν2[8]
ν2[7]← ν[11]
4ν[10]← η2[12]
η2[11]← η[13]
2(∞)[13]← 1(∞)[14]

k = 14
ηα5[4, 1]← α5[5, 2]
ση[5, 2]← ν[9, 4]
α6/3[3]← η2[13]
α6/2(4)[3]← α6/3(4)[4]
ν[9, 3]← 1[11, 5]
(ση2 + εη)[5]← ν2[9]
εη[5]← η[14]
ση[6]← 1[15]

ε[6] ⇒ κ

σ[7] ⇒ θ3

2σ(8)[7]← σ(8)[8]
2ν(4)[11]← ν(4)[12]

k = 15
ν[9, 4, 1]← 1[11, 5, 2]

ν2[8, 2] ⇒ κη

α6[4] ⇒ α8

ηα5[5] ⇒ α8/2

ση2[6]← ση[8]
εη[6]← ε[8]

α5[6] ⇒ α8/3

ση[7]← σ[9]
ε[7]← ν2[10]

8σ[8] ⇒ α8/4

4ν[12] ⇒ α8/5

2(∞)[15]← 1(∞)[16]

k = 16
κη[1]← (ση2 + εη)[8]

η2[13, 2] ⇒ ηα8/5

ν2[8, 3]← ν[11, 4]

α6/3[5]←
{
ση2[8]
εη[8]

ηα5[6]← α5[8]
ση2[7]← ση[9]
εη[7]← ε[9]
α5[7]← 8σ[10]
2σ(8)[9]← σ(8)[10]

ν[13] ⇒ η4

2ν(4)[13]← ν(4)[14]
η2[14]← η[16]
η[15]← 1[17]

k = 17

ηα8/5[1] ⇒ η2α8/5

(ση2 + εη)[8, 1]← ν2[9, 4]
κη[2]← κ[4]

α8[2] ⇒ α9

η2[13, 3]← η[14, 4]
ν2[9, 3]← ν[11, 5]
η[14.3]← 1[15, 4]
1[15, 3]← θ3[4] (∗ ∗ ∗)
κ[3] ⇒ κν

η[12, 5]← 1[13, 6]
α6[6]← ηα5[8]
ηα5[7]← α5[9]

ν2[11] ⇒ ηη4

4ν[14]← η2[16]
η2[15]← η[17]
2(∞)[17]← 1(∞)[18]
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Table 6.5.4, cont’d

k = 18
η2α8/5[1]← α6[8]

α9[1] ⇒ ηα9

ν2[9, 4, 1]← ν[11, 5, 2]
κ[4, 1]← κν[2] (∗ ∗ ∗)
(ση2 + εη)[8, 2]← κη[4] (∗)
ηα8/5[2]← ηα5[9]
κη[3]← κ[5]
α8/3(8)[3]← α8/4(8)[4]
ση[8, 3]← σ[9, 4]
ε[8, 3]← ν2[10, 4]
η2[13, 4]← α5[10] (∗)
η2[12, 5]← η[13, 6]
α6/3[7]← 8σ[12]
α6/2(4)[7]← α6/3(4)[8]

ση2[9] ⇒ 4ν∗

εη[9]← 4ν[16]

ση[10] ⇒ 2ν∗

ε[10]← η2[17]

σ[11] ⇒ ν∗

ν2[12]← η[18]
ν[15]← 1[19]
2ν(4)[15]← ν(4)[16]

k = 19

ηα9[1] ⇒ α10

κη[4, 1]← κ[5, 2]
α6[8, 1]← ηα5[9, 2]
ηα5[9, 1]← α5[10, 2]
η2α8/5[2]← ηα8/5[4]

α9[2] ⇒ α10/2

α5[8, 3]← 8σ[10, 4]
ηα8/5[3]← η2[13, 6] (∗∗)
ση2[8, 3]← ση[9, 4]
εη[8, 3]← ε[9, 4]

α8[4] ⇒ α10/3

θ3[5] ⇒ σ

η2[13, 5]← η[14, 6]
η[14, 5]← 1[15, 6]
1[15, 5]← θ3[6] (∗)
ση2[10]← ση[12]
εη[10]← ε[12]
ση[11]← σ[13]
ε[11]← ν2[14]
ν2[13]← ν[17]
2(∞)[19]← 1(∞)[20]
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6.5.5. The GSS for πn+1(S1).

n πn(L(0)) πn−1(L(1)) πn−2(L(2)) πn−3(L(3))

0 1(∞) 1[1]

1 η

33hhhhhhhhhhhh η[1]

2 η2

44iiiiiiiiiiii η2[1]

η[2]

1[3] 1[3, 1]

3 4ν

<<yyyyyyyyyyyyyy ν[1]

44iiiiiiiiiii

2ν

;;wwwwwwwwwwwwww
ν

99ssssssssssssss

4

5 ν[3] ν[3, 1]

6 ν2

44iiiiiiiiiiii ν2[1]

44jjjjjjjjjjj

η3[4]

η2[5]

η[6]

1[7] 1[7, 1]

7 8σ

@@���������������� σ[1]

44iiiiiiiiiii

4σ

??���������������

2σ

>>~~~~~~~~~~~~~~~~ ν2[2]

σ

>>|||||||||||||||| ν[5] ν[5, 1]

8 ε

77ppppppppppppp ση[1]

44iiiiiiiiiii

ση

88ppppppppppppp ε[1] ν2[3, 1]

ν2[3] ν[5, 2]

8σ[2] 1[7, 3] 1[7, 3, 1]

9 εη

;;xxxxxxxxxxxxxxx ση2[1]

??~~~~~~~~~~~~~ σ[3, 1]

55kkkkkkkkkk

ση2

=={{{{{{{{{{{{{{ ση[2]

=={{{{{{{{{{{{{{

α5

<<zzzzzzzzzzzzzz σ[3]

<<yyyyyyyyyyyyyy

α5[1]

10 ηα5

44jjjjjjjjjjj ηα5[1]

α5[2]

8σ[4]

11 α6

<<yyyyyyyyyyyyy
α6/2

<<xxxxxxxxxxxxx
α6/3

;;wwwwwwwwwwww

12

13 ε[6] σ[7, 1]

σ[7]

κ

77ooooooooooooo θ3[1]

88rrrrrrrrrrrr

θ3

77ppppppppppppp
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n πn(L(0)) πn−1(L(1)) πn−2(L(2)) πn−3(L(3))

ε[6]

σ[7] σ[7, 1]

14 κ

77ooooooooooooo θ3[1]

44iiiiiiiiiii

θ3

77ppppppppppppp κ[1]

α6[4]

ηα5[5]

α5[6]

8σ[8] σ[7, 2]

η3[12] ε[6, 2]

15 ηκ

DD



















 θ3[2]

99rrrrrrrrrrrr

α8

EE�������������������� κ[2]

88qqqqqqqqqqqqq
α8/2

FF
α8/3

EE�������������������
α8/4

EE������������������� ν[13] σ[7, 3]
α8/5

FF������������������� α8/5[1] ν[13, 1] σ[7, 3, 1]

16 η4

88qqqqqqqqqqqqq θ3[3]

99rrrrrrrrrrrr θ3[3, 1]

66lllllllll

ηα8/5

;;vvvvvvvvvvv η4[1]

99ssssssssssss

ν2[11]

ηα8/5[1] ν2[11, 1]

κ[3] ν[13, 2]

α8[2] 1[15, 3] 1[15, 3, 1]

17 ηη4

BB��������������� ηη4[1]

??������������� θ3[4, 1]

66lllll

η2α8/5

EE�������������� η4[2]

==|||||||||||||

νκ

@@���������������� θ3[4]

>>|
|

|
|

|
|

|

α9

AA���������������� ση2[9]

ση[10]

σ[11] κ[4, 1]

α9[1] σ[11, 1]

18 4ν∗

AA��������������� νκ[2]

88r
r

r
r

r
r

2ν∗

AA��������������� ν∗[1]

99ssssssssssss

ν∗

@@���������������� θ3[5]
ηα9

AA��������������� ηα9[1]

α9[2]

α8[4] θ3[5, 1]

19 σ

??���������������� σ[1]

44iiiiiiiiiii

α10

AA��������������� κν[3] κ[6, 1]
α10/2

BB��������������� κη[5] θ3[5, 2]
α10/3

BB��������������� κ[6] σ[11, 3] σ[11, 3, 1]

4κ

<<yyyyyyyyyyyyyy κ[1]

<<yyyyyyyyyyyyyy ν∗[3, 1]

66mmmmmmmmm

2κ

<<yyyyyyyyyyyyyy σ[2]

<<zzzzzzzzzzzzzz

κ

;;wwwwwwwwwwwwwww ν∗[3]

==|||||||||||||
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6.5.6. The GSS for πn+2(S2).

n πn(L(0)2) πn−1(L(1)2) πn−2(L(2)2) πn−3(L(3)2)

0 1(∞)

1 η 1(∞)[2]

2 η[2]

η2 1[3]

3 2ν

66nnnnnnnnnnnnnn
ν

55kkkkkkkkkkkkkk
4ν

4 2ν[2]

ν[2]

5 ν[3] 1[5, 2]

6 ν2

33fffffffffffff η3[4]

η2[5]

η[6]

1[7] η[5, 2]

7 8σ

>>~~~~~~~~~~~~~~~~

4σ

>>}}}}}}}}}}}}}}}} η2[5, 2]

2σ

==|||||||||||||||| ν2[2] η[6, 2]

σ

=={{{{{{{{{{{{{{{{{ ν[5] 1[7, 2]

8 ε

77oooooooooooooo 4σ[2]

<<zzzzzzzzzzzzzz

ση

77oooooooooooooo 2σ[2]

<<xxxxxxxxxxxxxx

σ[2]

;;wwwwwwwwwwwwwww

8σ[2] ν[5, 2]

ν2[3] 1[7, 3]

9 α5

77ppppppppppppp ση[2]

88qqqqqqqqqqqqq

ση2

88ppppppppppppp σ[3]

77ppppppppppppp
εη

10 4ν[8]

α5[2]
ηα5 8σ[4]

11 α6/2

88qqqqqqqqqqqq η2[9, 2]
α6/3

88qqqqqqqqqqqq η[10, 2]
α6 η3[8, 2]

12 εη[4]
(∗)iiiii

44iiiii

α6/2[2] σ[5, 2]

α6/3[2] ν2[6, 2]
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13 ε[6] ε[5, 2]

σ[7] 8σ[6, 2]

14 κ

77ppppppppppppp α6[4] α5[5, 2]

θ3

88ppppppppppppp ηα5[5]

α5[6] ε[6, 2]

8σ[8] σ[7, 2]

4ν[12] ν2[8, 2]

15 α8

CC����������������� κ[2]

::tttttttttttttttt ηα5[5, 2]
α8/2

EE����������������� θ3[2]

::uuuuuuuuuuuuuuu α5[6, 2]
α8/3

DD
















 8σ[8, 2]
α8/4

DD
















 η3[12, 2]
α8/5

EE����������������� σ[7, 3]
κη

99rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ν[13] η2[13, 2] 1[11, 5, 2]

16 η4

44jjjjjjjjjjj α8/2[2]

EE��������������������

ηα8/5

33ggggggggggggggggggggggggggg α8/3[2]

EE






















α8/4[2]

EE���������������������

α8/5[2]

EE���������������������

θ3[3]

DD����������������������

(ση2 + εη)[8]

α8[2]

κ[3] ν[13, 2]

ν2[11] 1[15, 3]

17 α9

==zzzzzzzzzzzzzz η4[2]

77oooooooooooooo ν2[9, 4]

νκ

<<yyyyyyyyyyyyyy θ3[4]

(∗∗)oooooo

77oooooo

ηη4

>>}}}}}}}}}}}}} ση2[9]

ση[10]

η2α8/5 σ[11] (ση2 + εη)[8, 2]

18 4ν∗

>>~~~~~~~~~~~~~ κη[4]
(∗)llll

66llll

2ν∗

>>~~~~~~~~~~~~~ νκ[2]

ν∗

==zzzzzzzzzzzzzz α6[8]

α9[2]

α8[4] ση[10, 2]
ηα9 θ3[5] σ[11, 2] ν[11, 5, 2]

19 α10/2

>>}}}}}}}}}}}}} 2ν∗[2]

88ppppppppppppp κ[5, 2]
α10/3

>>}}}}}}}}}}}}} ν∗[2]

77oooooooooooooo ηα5[9, 2]

σ

<<xxxxxxxxxxxxxx νκ[3] α5[10, 2]

κη[5] α6[8, 2]
α10 κ[6] σ[11, 3] 1[15, 5, 2]

4κ

==zzzzzzzzzzzzzz η2α8/5[4]

(∗)rrrrr

99rrrrr

θ3[6, 2]
(∗)llll

55llll

2κ

=={{{{{{{{{{{{{{ ν∗[3]

77pppppppppppppp

κ

;;wwwwwwwwwwwwww
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6.5.7. The GSS for πn+3(S3).

n πn(L(0)3) πn−1(L(1)3) πn−2(L(2)3)

0 1(∞)

1 η

2 η2 1[3]

3 ν

33fffffffffffff
4ν
2ν

4 η[4]

5 η2[4]

ν[3]

6 ν2

33fffffffffffff η3[4]

η2[5]

η[6]

1[7]

7 8σ

>>~~~~~~~~~~~~~~~~
4σ

=={{{{{{{{{{{{{{{
2σ

<<xxxxxxxxxxxxxxx

σ

;;vvvvvvvvvvvvvvvv ν[5]

8 ση

33ggggggggggggg

ε ν2[3] 1[7, 3]

9 ση2

44iiiiiiiiiiii σ[3]

44hhhhhhhhhhhh
α5
εη

10 4ν[8]

η2[9]
ηα5 8σ[4]

11 α6/3

44hhhhhhhhhhh

α6 ση[4]
α6/2 ε[4]

12 εη[4]

α5[4]
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13 ηα5[4]

ε[6]

σ[7]

14 κ

77ppppppppppppp α6[4] ν[9, 4]

θ3

88ppppppppppppp ηα5[5]

α5[6]

8σ[8]

4ν[12]

15 α8

CC�����������������
α8/2

DD																
α8/3

CC����������������
α8/4

CC���������������
α8/5

CC���������������

κη ν[13] σ[7, 3]

16 η4

44iiiiiiiiiii θ3[3]

55jjjjjjjjjj

ηα8/5 (ση2 + εη)[8]

κ[3]

ν2[11] 1[15, 3]

17 νκ

88qqqqqqqqqqqqq θ3[4]
(∗∗)kkkk

55kkkk

ν2[9, 4]
ηη4

99tttttttttttt κ[4]

ση2[9]
α9 ση[10]

η2α8/5 σ[11]

18 4ν∗

>>~~~~~~~~~~~~~ κη[4]

2ν∗

>>~~~~~~~~~~~~~ α6[8]

ν∗

==zzzzzzzzzzzzzz ηα5[9]

α8[4]
ηα9 θ3[5] ν[13, 4]

19 α10/3

::ttttttttttt η4[4]

55kkkkkkkkkk

σ

88qqqqqqqqqqqqq ηα8/5[4]

νκ[3]
α10 κη[5] σ[11, 3]
α10/2 κ[6] ν2[11, 4]

4κ

==zzzzzzzzzzzzzz ν∗[3]

::uuuuuuuuuuu

2κ

==zzzzzzzzzzzzzz ηη4[4]

;;wwwwwwwwww

κ

;;vvvvvvvvvvvvvv
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6.5.8. The GSS for πn+4(S4).

n πn(L(0)4) πn−1(L(1)4) πn−2(L(2)4)

0 1(∞)

1 η

2 η2

3 4ν
2ν 1(∞)[4]
ν

4 η[4]

1[5]

5 η2[4]

η[5]

6 ν2 2ν[4]

ν[4]

η3[4]

η2[5]

η[6]

1[7]

7 8σ

>>~~~~~~~~~~~~~~~~
4σ

=={{{{{{{{{{{{{{{
2σ

<<xxxxxxxxxxxxxxx

σ

;;vvvvvvvvvvvvvvvv ν[5]

8 ση

33ggggggggggggg
ε

9 ση2

α5
εη

10 4σ[4]

2σ[4]

σ[4]

4ν[8]

η2[9]
ηα5 8σ[4]

11 α6/3

44iiiiiiiiiii ση[4]

ε[4]
α6 σ[5]
α6/2 ν2[6]

12 εη[4] η[9, 4]

α5[4]

ση[5]

ε[5]

8σ[6]
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13 ηα5[4] η2[9, 4]

α5[5] η[10, 4]

ε[6] 1[11, 4]

σ[7]

14 κ

77ppppppppppppp α6/2[4] ν[9, 4]

θ3

88qqqqqqqqqqqqq α6/3[4] 1[11, 5]

η2[13]

α6[4]

ηα5[5]

α5[6]

8σ[8]

4ν[12]

15 α8

CC�����������������
α8/2

DD																
α8/3

CC����������������
α8/4

CC���������������
α8/5

CC���������������

κη ν[13]

16 η4

44iiiiiiiiiii (ση2 + εη)[8] ν[11, 4]
ηα8/5 ν2[11]

17 ηη4

55kkkkkkkkkk θ3[4] ν2[9, 4]

κ[4] η[14, 4]

1[15, 4]

νκ ση2[9] ν[11, 5]

α9 ση[10] η3[12, 4]

η2α8/5 σ[11] η2[13, 4]

18 4ν∗

??������������� α8/5[4]

<<zzzzzzzzzz σ[9, 4]

2ν∗

??������������� α5[10]

(∗)xxxx

<<xxxx

ν2[10, 4]

ν∗

==|||||||||||||| α8/4(8)[4]

κη[4]

κ[5]

α6[8]

ηα5[9]

α8[4] ν[13, 4]
ηα9 θ3[5] 1[15, 5]

19 α10/3

::ttttttttttt η4[4]

99ttttttttttt ση[9, 4]

σ

88ppppppppppppp θ3[6]

(∗)ttttt

99ttttt

ε[9, 4]

ηα8/5[4] 8σ[10, 4]

α8/5[5]

α10 κη[5] ν2[11, 4]
α10/2 κ[6] ν[13, 5]

2κ

88rrrrrrrrrrrr ηη4[4]

;;wwwwwwwwww

κ

77ppppppppppppp η4[5]

99ttttttttttt
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6.5.9. The GSS for πn+5(S5).

n πn(L(0)5) πn−1(L(1)5) πn−2(L(2)5)

0 1(∞)

1 η

2 η2

3 4ν
2ν
ν

4 1[5]

5 η[5]

6 ν2 η2[5]

η[6]

1[7]

7 8σ
4σ

=={{{{{{{{{{{{{{{
2σ

<<xxxxxxxxxxxxxxx

σ

;;vvvvvvvvvvvvvvvv ν[5]

8 ση

33ggggggggggggg
ε

9 ση2

α5
εη

10 4ν[8]

η2[9]
ηα5 η[10]

11 α6 σ[5]
α6/2 ν2[6]
α6/3

12 ση[5]

ε[5]

8σ[6]
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13 α5[5]

ν2[8]

ε[6]

σ[7]

14 κ

77ppppppppppppp η2[13]

θ3

88qqqqqqqqqqqqq ηα5[5] 1[11, 5]

α5[6]

8σ[8]

4ν[12]

15 α8/2

BB��������������
α8/3

AA��������������
α8/4

@@��������������
α8/5

@@�������������
α8

κη ν[13]

16 η4

44iiiiiiiiiii (ση2 + εη)[8]
ηα8/5 ν2[11]

17 ηη4

44iiiiiiiiii

νκ ση2[9] ν[11, 5]
α9 ση[10]

η2α8/5 σ[11]

18 4ν∗

>>~~~~~~~~~~~~~ κ[5]

2ν∗

>>~~~~~~~~~~~~~ α6[8]

ν∗

==zzzzzzzzzzzzzz ηα5[9]

α5[10]
ηα9 θ3[5] 1[15, 5]

19 σ

44iiiiiiiiiiii θ3[6]
(∗)kkkk

55kkkk

α10 α8/5[5]
α10/2 κη[5]
α10/3 κ[6] ν[13, 5]

2κ

88rrrrrrrrrrrr η4[5]

55kkkkkkkkk

κ

77ooooooooooooo
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6.5.10. The GSS for πn+6(S6).

n πn(L(0)6) πn−1(L(1)6) πn−2(L(2)6)

0 1(∞)

1 η

2 η2

3 4ν
2ν
ν

4

5 1(∞)[6]

6 ν2 η[6]

1[7]

7 8σ
4σ
2σ

<<xxxxxxxxxxxxxxx
σ

::uuuuuuuuuuuuuuu

8 ση 2ν[6]

ε ν[6]

9 ση2

α5
εη

10 4ν[8]

η2[9]
ηα5 η[10]

11 α6 ν2[6]
α6/2 ν[9]
α6/3

12 8σ[6]

4σ[6]

2σ[6]

σ[6]
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13 ν2[8]

ε[6]

σ[7]

14 κ

::uuuuuuuuuuu ν2[9]

θ3

;;wwwwwwwwwww η2[13]

η[14]

α5[6]

8σ[8]

4ν[12]

15 α8
α8/2

α8/3

FF��������������
α8/4

FF
α8/5

FF�������������

κη ν[13]

16 η4

66mmmmmmmmm α6/2[6]

α6/3[6]

ση2[8]

εη[8]
ηα8/5 ν2[11]

17 ηη4

66mmmmmmmm

νκ ση2[9] 1[13, 6]
α9 ση[10]

η2α8/5 σ[11]

18 4ν∗

CC�����������

2ν∗

BB����������� α6[8]

ν∗

@@����������� ηα5[9]
ηα9 α5[10] η[13, 6]

19 σ θ3[6] η2[13, 6]
α10 η[14, 6]
α10/2 1[15, 6]
α10/3 κ[6]

κ

44jjjjjjjjj





APPENDIX A

Transfinite spectral sequences associated to towers

In this appendix we review Hu’s notion of a transfinite spectral sequence [Hu99],
specialized to the situation of a space or spectrum which is the inverse limit of a
transfinite tower. We restrict our attention to degreewise finite towers, as these
give rise to spectral sequences with particularly good convergence properties. In
Section A.1 we review the Grothendieck group of ordinals, which serves as the index-
ing set for transfinite spectral sequences. In Section A.3 we associate a transfinite
spectral sequence to a transfinite tower of spaces or spectra, following Bousfield and
Kan. In Section A.4 we prove some general “geometric boundary” type theorems
for such transfinite spectral sequences.

Throughout this appendix we work in either the category of pointed spaces or
spectra.

A.1. The Grothendieck group of ordinals

Fix a countable ordinal ν = ωβ (where β < ν is an ordinal) closed under addition.
We consider transfinite spectral sequences indexed on the Grothendieck group ν
of ordinals less than ν with respect to maximal addition (see [Hu99, Sec. 1]). A
general ordinal less than ν takes the form

j1ω
α1 + · · ·+ jkω

αk , js ∈ N, α1 < · · · < αk < β.

A general element of the Grothendieck group G(ν) takes the form

j1ω
α1 + · · ·+ jkω

αk , js ∈ Z, α1 < · · · < αk < β.

Addition in G(ν) is defined by

(j1ω
α1 + · · ·+ jkω

αk) + (j′1ω
α1 + · · ·+ j′kω

αk) = (j1 + j′1)ωα1 + · · ·+ (jk + j′k)ωαk .

The elements of G are ordered via right lexicographical ordering.

A.2. Towers

A G(ν)-indexed tower under X consists of a set

{X → Xµ}µ∈G
79
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of objects under X, and compatible maps

X

~~}}}}}}}}

!!BBBBBBBB

Xµ // Xµ′

for µ < µ′. We shall say that the tower {Xµ} is degreewise finite if the following
conditions hold.

(1) For each t, and each (α, β)-gap in G(ν), with left subset L and right subset
R (see [Hu99, Def. 1]), there exist γ ∈ L and γ′ ∈ R such that for all
γ ≤ δ ≤ γ′ the maps

πt(Xγ)→ πt(Xδ)→ πt(Xγ′)

are isomorphisms.
(2) For a fixed t, the maps

πt(Xµ)→ πt(Xµ+1)

are isomorphisms for all but finitely many µ ∈ G(ν).
(3) For a fixed t, there exist β, β′ ∈ G(ν) such that the map

πt(X)→ πt(Xµ)

is an isomorphism for µ ≤ β, and

πt(Xµ) = 0

for µ ≥ β′.

A.3. The transfinite homotopy spectral sequence of a tower

Given a degreewise finite G(ν)-indexed tower under X, define fibers

Aµ → Xµ → Xµ+1.

Applying π∗ gives rise to a G(ν)-indexed exact couple, and we get a G(ν)-indexed
spectral sequence

(A.3.1) E1
t,µ = πt(Aµ)⇒ πt(X).

Remark A.3.2. In the case where we are working in the category Top∗, some care
must be taken in the handling of π1 and π0 (analogous to the treatment of [BK71,
IX.4]). In the cases we are considering in this book, each of the spaces Xµ and Aµ
are actually connected with abelian fundamental group.

Remark A.3.3. Our degreewise finite assumption on the tower {Xµ} under X
implies that (in the language of [Hu99]) the transfinite spectral sequence (A.3.1)
is locally of finite type, eventually constant, and converges strongly.

We have chosen a different indexing scheme from that used in [Hu99]. In our
indexing scheme, dα differentials take the form

dα : Eαt,µ → Eαt−1,µ−α.
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One way of thinking of these differentials is to consider the associated “increasing
filtration” {Xµ} on X defined by the fiber sequences

Xµ → X → Xµ+1.

Using Verdier’s axiom (see [Hov99, Prop. 6.3.6] in the Top∗ case) we have fiber
sequences

Xµ−1 → Xµ → Aµ.

The differentials dα are then given by the zigzag

πtAµ
∂−→ πt−1Xµ−1 ← πt−1Xµ−α → πt−1Aµ−α.

Convergence means that with respect to the G(ν)-indexed filtration

FµπtX := ker (πtX → πtXµ+1)

we have

Eνt,µ
∼=

FµπtX

Fµ−1πtX
.

In Section A.4, we shall make use of the following notation. For µ ≤ µ′, define Xµ′

µ

to be the fiber

Xµ′

µ → Xµ → Xµ′+1.

Then we have

Aµ = Xµ
µ .

Our degreewise finite assumption implies that we have

Xν
µ := lim−→

µ′≥µ
Xµ′

µ ' Xµ,

Xµ′

−ν := lim←−
µ′≥µ

Xµ′

µ ' Xµ′ ,

Xν
−ν := lim←−

µ→−ν
lim−→
µ′≥µ

Xµ′

µ ' lim−→
µ′→ν

lim←−
µ′≥µ

Xµ′

µ ' X.

With this notation, there are fiber sequences

Xµ′

µ → Xµ′′

µ → Xµ′′

µ′+1, −ν ≤ µ ≤ µ′ < µ′′ ≤ ν.

An alternative way to view a dα differential is to lift x ∈ πtX
µ
µ = E1

t,µ to x̃ ∈
πtX

µ
µ−α+1. Then dα(x) is detected by the image of x̃ under the composite

πtX
µ
µ−α+1

∂−→ πt−1X
µ−α → πt−1X

µ−α
µ−α = E1

t−1,µ−α.

A.4. Geometric boundary theorem

Suppose that

ΩZ
j−→ X

i−→ Y
p−→ Z

is a fiber sequence, and that {Xµ}, {Yµ} and {Zµ} are compatible locally finite
G(ν)-indexed towers under X, Y , and Z, such that each of the sequences

Xµ → Yµ → Zµ



82 A. TRANSFINITE SPECTRAL SEQUENCES ASSOCIATED TO TOWERS

is also a fiber sequence. Let

Eαt+1,µ(Z)
j∗−→ Eαt,µ(X)

i∗−→ Eαt,µ(Y )
p∗−→ Eαt,µ(Z)

denote the corresponding maps of spectral sequences. Let dXα , dYα , and dZα denote
the differentials in each of these spectral sequences.

The following lemma is a kind of technical generalization of the “geometric bound-
ary theorem.” The classical geometric boundary theorem [Rav86, Thm. 2.3.4] is
closely related to Case (5) when α = 1 in this lemma.

Lemma A.4.1. Suppose that y ∈ Eαt,µ(Y ) and that there is a non-trivial differential

dYα (y) = y′ 6= 0 ∈ Eαt−1,µ−α(Y ).

Then one of the following five possibilities occurs.

(1) There is a non-trivial differential

dZα (p∗y) = p∗y
′.

(2) There exists α′ ≥ 1 and classes

x ∈ E1
t−1,µ−α(X),

0 6= z ∈ E1
t−1,µ−α−α′(Z), (non-zero in Eα

′+1)

0 6= x′ ∈ E1
t−2,µ−α−α′(X),

so that

i∗(x) = y′,

dXα′(x) = x′,

j∗z = x′,

dZα+α′(p∗y) = z.

(3) There exists α′, α′′ ≥ 1 and classes

x ∈ E1
t−1,µ−α(X),

0 6= x′′ ∈ E1
t−2,µ−α−α′−α′′(X), (non-zero in Eα

′′+1)

0 6= z ∈ E1
t−1,µ−α−α′(Z), (non-zero in Eα

′+1)

y′′ ∈ E1
t−1,µ−α−α′(Y )

so that

i∗(x) = y′,

dXα′+α′′(x) = x′′,

dYα′′(y
′′) = −i∗(x′′),

p∗(y
′′) = z,

dZα+α′(p∗y) = z.
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(4) There exists α′ ≥ 1 and classes

x ∈ E1
t−1,µ−α(X),

0 6= y′′ ∈ Eα
′+1

t−1,µ−α−α′(Y ),

0 6= z ∈ Eα
′+1

t−1,µ−α−α′(Z),

x̄ ∈ πt−1(X),

so that

i∗(x) = y′,

x̄ is

{
detected by x, x is not the target of a differential in E∗∗,∗(X),

in Fµ−α−1πt−1(X), x is the target of a differential in E∗∗,∗(X),

i(x̄) is

{
detected by − y′′, y′′ is not the target of a differential in E∗∗,∗(Y ),

in Fµ−α−α′−1πt−1(Y ), y′′ is the target of a differential in E∗∗,∗(Y ),

p∗(y
′′) = z,

dZα+α′(p∗y) = z.

(5) There exist classes

z̄ ∈ πt(Z),

0 6= x ∈ Eαt−1,µ−α(X)

so that

z̄ is

{
detected by p∗(y), p∗(y) is not the target of a differential in E∗∗,∗(Z),

in Fµ−1πt(Z), p∗(y) is the target of a differential in E∗∗,∗(Z),

i∗(x) = y′,

j(z̄) is

{
detected by x, x is not the target of a differential in E∗∗,∗(X),

in Fµ−α−1πt−1(X), x is the target of a differential in Eγ∗,∗(X), γ > α.

Proof. We will need to introduce some more notation. For α ∈ G(ν), define
fibers Y µ,µ−α by

Y µ,µ−α → Y µ → Zµµ−α+1.

Verdier’s axiom gives a diagram of fiber sequences

Xµ
  

!!BBBBB Y µ
��

��>>>>> Zµµ−α+1

Y µ,µ−α

<<xxxxxx

##HHHHH Zµ

==|||||

Zµ−α

??~~~~~

We then define Ỹ µµ−α,µ−α−α′ , for α, α′ ≥ 0, by fibre sequences

Ỹ µµ−α,µ−α−α′ → Y µ−α−1,µ−α−α′−1 → Y µ.
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Although, in the Top∗ case, Ỹ µµ−α,µ−α−α′ is not necessarily a loop space, we define

πtY
µ
µ−α,µ−α−α′ := πt−1(Ỹ µµ−α,µ−α−α′).

so that

Ỹ µµ−α,µ−α−α′ = “ΩY µµ−α,µ−α−α′”.

Having established the notation above, we are now ready to begin proving the
lemma. Since p induces a map of spectral sequences, we always have

dZα (p∗y) = p∗(y
′).

If p∗(y
′) 6= 0 in the Eα-page, then we are in Case (1).

Otherwise p∗(y
′) = 0 in Eαt,µ−α(Z). This, together with the fact that y persists to

Eαt,µ(Y ), implies that there exists a lift

ỹ ∈ πtY µµ−α+1,µ−α → πtY
µ
µ 3 y.

Let α′ ≤ ν be maximal such that there exists a lift˜̃y ∈ πtY µµ−α+1,µ−α−α′+1 → πtY
µ
µ 3 y.

By the above, α′ ≥ 1. Suppose that α′ < ν. Fix a lift ˜̃y as above. Consider the
following commutative diagram, where µ′ := µ− α and µ′′ := µ− α− α′.
(A.4.2)

πtZ
µ
µ′′+1

//

∂

xxqqqqqqqqqqq
πtZ

µ
µ

EDGF
dZ
α+α′

o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

@A�O �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

///o/o

πt−1Z
µ′′

��

∂

��;;;;;;;;;;;;;;;;;;;
πtY

µ
µ′+1,µ′′+1

//

∂

��

OO

πtY
µ
µ′+1

∂

��

// πtY µµ

p∗

OO

dYα

�� �D
�D
�D
�D
�D
�D
�D
�D
�D
�D
�D

πt−1Y
µ′,µ′′ //

ffMMMMMMMMMMM

πt−1X
µ′

µ′′+1

��∂
xxqqqqqqqqqqq

πt−1Y
µ′

��

πt−1Z
µ′′

µ′′

j∗ &&LLLLLLLLLL
πt−2X

µ′′

��

πt−1X
µ′

µ′ i∗
//

dX
α′xx x8 x8 x8 x8 x8 x8

πt−1Y
µ′

µ′

πt−2X
µ′′

µ′′

The lift ˜̃y gives compatible elements in all entries of the diagram. Let

x ∈ πt−1X
µ′

µ′

x′ ∈ πt−2X
µ′′

µ′′

z ∈ πt−1Z
µ′′

µ′′
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The maximality of α′ guarantees that z is non-trivial in the Eα
′+1-page. Assume

that x′ is non-trivial on the E1-page. Then we are in Case (2), and the consequence
of this is obtained by chasing the perimeter of the diagram.

Suppose now that we are in the situation in the previous paragraph, except that

x′ = 0 ∈ E1
t−1,µ′′ . Let x̃ ∈ πt−1X

µ′

µ′′+1 be the image of ˜̃y. Let α′′ ≤ ν be maximal

so that x̃ lifts to an element ˜̃x ∈ πt−1X
µ′

µ′′−α′′+1.

Fix such a lift. Because of our assumption on the triviality of x′, we have α′′ ≥ 1.
Suppose that α′′ < ν. Then we are in Case (3), as we will now demonstrate. Define
µ′′′ := µ− α− α′ − α′′. Since the relative homotopy class

∂˜̃y − ˜̃x ∈ πt−1(Y µ
′,µ′′ , Xµ′′′)

maps to 0 ∈ πt−1(Xµ′

µ′′+1), it lifts to give a relative homotopy class

˜̃
y′′ ∈ πt−1(Y µ

′′
, Xµ′′′) = πt−1(Y µ

′′

µ′′′+1,−ν).

Consider the following commutative diagram.
(A.4.3)

πtZ
µ
µ′′+1

//

∂

yyssssssssss
πtZ

µ
µ

EDGF
dZ
α+α′o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

��
�O
�O
�O
�O
�O

πt−1Z
µ′′

µ′′ πt−1Z
µ′′oo πtY

µ
µ′+1,µ′′+1

//

∂

��

OO

πtY
µ
µ′+1

∂

��

// πtY µµ

p∗

OO

dYα

�� �H
�H
�H
�H
�H
�H
�H
�H
�H
�H
�H

πt−1Y
µ′′

µ′′

p∗

OO

GF

@A

dY
α′′

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

oo

πt−1Y
µ′,µ′′ //

eeJJJJJJJJJJJ

πt−1X
µ′

µ′′+1

��

πt−1Y
µ′

��

πt−1Y
µ′′

µ′′′+1

OO

∂

��

πt−1Y
µ′′

µ′′′+1,−ν
oo

OO

∂ %%KKKKKKKKKK
πt−1X

µ′

µ′′′+1

∂

��

::vvvvvvvvv

πt−1X
µ′

µ′ i∗
//

dX
α′+α′′

�� �C
�C
�C
�C
�C
�C
�C
�C
�C
�C
�C

πt−1Y
µ′

µ′

πt−2Y
µ′′′

��

πt−2X
µ′′′

��

oo

πt−2Y
µ′′′

µ′′′ πt−2X
µ′′′

µ′′′i∗
oo

The elements ˜̃y, ˜̃x, and
˜̃
y′′ induce a compatible collection of elements in each of the

entries of the above diagram, except that the images of ˜̃x and
˜̃
y′′ in the entries

πt−2X
µ′′′ , πt−2X

µ′′′

µ′′′ , πt−2Y
µ′′′ , and πt−2Y

µ′′′

µ′′′
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differ by a sign. We get images

x ∈ πt−1X
µ′

µ′ ,

x′′ ∈ πt−2X
µ′′′

µ′′′ , (Image of ˜̃x)

z ∈ πt−1Z
µ′′

µ′′ ,

y′′ ∈ πt−1Y
µ′′

µ′′ , (Image of
˜̃
y′′).

Note that the maximality of α′ implies that z is non-zero in the Eα
′+1-page, and

the maximality of α′′ implies that x′′ is non-zero in the Eα
′′+1-page. The conclusion

of Case (3) is deduced from chasing around the perimeter of the diagram.

Assume that we are in the situation of Case (3), except that α′′ = ν. Then we are
in Case (4). Since α′′ = ν, the element x̃ lifts to an element˜̃x ∈ πt−1X

µ′ .

Fix such a lift. Since the homotopy class

∂˜̃y − ˜̃x ∈ πt−1(Y µ
′,µ′′)

maps to 0 ∈ πt−1(Xµ′

µ′′+1), it lifts to give a homotopy class

˜̃
y′′ ∈ πt−1(Y µ

′′
).

Consider the following commutative diagram.

(A.4.4)

πtZ
µ
µ′′+1

//

∂

{{wwwwwwwww
πtZ

µ
µ

EDGF
dZ
α+α′o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

��
�O
�O
�O
�O
�O

πt−1Z
µ′′

µ′′ πt−1Z
µ′′oo πtY

µ
µ′+1,µ′′+1

//

∂

��

OO

πtY
µ
µ′+1

∂

��

// πtY µµ

p∗

OO

dYα

�� �H
�H
�H
�H
�H
�H
�H
�H
�H
�H
�H

πt−1Y
µ′′

µ′′

p∗

OO

��
1111111111111111

1111111111111111
πt−1Y

µ′′oo

��

OO

πt−1Y
µ′,µ′′ //

ccFFFFFFFFF

πt−1X
µ′

µ′′+1

��

πt−1Y
µ′

��

πt−1Y
µ′

��

πt−1X
µ′

��

::vvvvvvvvv
oo πt−1X

µ′

µ′ i∗
//

v~ ttttttttt

ttttttttt
πt−1Y

µ′

µ′

πt−1Y πt−1X
i

oo

The elements ˜̃y, ˜̃x, and
˜̃
y′′ induce a compatible collection of elements in each of the

entries of the above diagram, except that the images of ˜̃x and
˜̃
y′′ in the entries

πt−1Y
µ′ and πt−1Y
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differ by a sign. We get images

x ∈ πt−1X
µ′

µ′ ,

x̄ ∈ πt−1X, (Image of ˜̃x)

z ∈ πt−1Z
µ′′

µ′′ ,

y′′ ∈ πt−1Y
µ′′

µ′′ .

Note that the maximality of α′ implies that z is non-zero in the Eα
′+1-page. As

p∗(y
′′) = z, the element y′′ must also be non-zero in the Eα

′+1-page. The conclusion
of Case (4) is deduced from chasing around the perimeter of the diagram.

Assume that we are in the situation of Case (2), except that α′ = ν. Then we are
in Case (5). Since α′ = ν, there exists a lift

˜̃y ∈ πtY µµ−α,−ν → πtY
µ
µ 3 y.

Consider the following diagram.

πtZ

j

��

πtZ
µoo //

∂

zzuuuuuuuuuu
πtZ

µ
µ

qy

πt−1X πt−1X
µoo πtY

µ
µ′+1,−ν

OO

//

∂

��

πtY
µ
µ′+1

∂

��

// πtY µµ

dYα

��
�F
�F
�F
�F
�F
�F
�F
�F
�F
�F

p∗

OO

πt−1X
µ′ //

ddIIIIIIIII

��

πt−1Y
µ′

��

πt−1X
µ′

µ′ i∗
//

_gGGGGGGGGGGGGGGGGGGGGGG

GGGGGGGGGGGGGGGGGGGGGG

πt−1Y
µ′

µ′

The images of ˜̃y give compatible elements of each of the entries in the diagram
above. In particular, we get

x ∈ πt−1X
µ′

µ′ ,

z̄ ∈ πt(Z).

Chasing the perimeter gives the desired conclusions. Note that since y′ was assumed
to be non-zero in the Eα-page, and i∗(x) = y′, the element x must also be nonzero
in the Eα-page. �

Remark A.4.5. Lemma A.4.1 and its proof, while technical, have a geometric
interpretation that may help the reader. Suppose that X is a subspace of Y , that
Y is the union of an increasing sequence of subspaces Y µ, and let

Xµ := Y µ ∩X
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be the induced filtration on X. Then we have

πt(Z) = πt(Y,X),

πt(Z
µ) = πt(Y

µ, Xµ).

Then an element of πtY
µ
µ′+1,µ′′+1 can be represented as a map of a disk

Dt → Y µ

whose boundary lies in Xµ′ ∪ Y µ′′ , and an element of πt(Y
µ) can be represented

by a map

St → Xµ′ ∪ Y µ
′′

(see Figure A.4.1). Lemma A.4.1 can be regarded as a kind of moving lemma for a
boundary. Specifically, the differential

dYα y = y′

corresponds to a map

y : Dt → Y µ

such that y(∂Dt) ⊆ Y µ′ , giving

y′ = y|∂Dt : St−1 → Y µ
′
.

Then Figure A.4.2 displays the geometric situation represented by each of the cases
of Lemma A.4.1, as described below.

Case (1): The element p∗(y
′) ∈ πt(Y µ, Xµ) is non-trivial.

Case (2): The element y can be represented by a map of a disk whose

boundary maps into Y µ
′,µ′′ , with µ′′ minimal, and so that the relative

class y′ ∈ πt−1(Y µ
′,µ′′ , Xµ′ ∪ Y µ′′−1) is non-zero.

Case (3): As in Case (2), except that the relative class y′ ∈ πt−1(Y µ
′,µ′′ , Xµ′∪

Y µ
′′−1) is zero, and there exists a relative homotopy class

x′ ∈ πt−1(Xµ′′ , Xµ′′′)

with essential boundary such that the images of x′ and y′ in the relative
homotopy group πt−1(Xµ, Xµ′′) are equal.

Case (4): As in Case (3), except that the boundary of the relative homotopy
class x′ is null.

Case (5): As in Case (2), except that the relative homotopy class y′ ∈
πt−1(Y µ

′
, Xµ′) is zero.
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''µ

'µ

µ

ZX

Y Y

X Z

µ

µ'

µ''

Figure A.4.1. Geometric interpretation of an element of
πtY

µ
µ′+1,µ′′+1 (left) and an element of πtY

µ′,µ′′ (right).

Case (5)Case (4)Case (3)Case (2)Case (1)

'µ -1

ZX

Y

'µ

µµ

µ'

Y

X Z

-1µ'

µ''

''µ -1-1''µ

µ''

-1µ'

ZX

Y

'µ

µ µ

µ'

Y

X Z

'µ -1

''µ

µ'' -1

µ'''

'''µ -1

'µ -1

µ'

ZX

Y

µ

Figure A.4.2. Geometric interpretation of the various cases of Lemma A.4.1.



90 A. TRANSFINITE SPECTRAL SEQUENCES ASSOCIATED TO TOWERS

Lemma A.4.1, Case (5), gives a method of computing the map j, but it is insufficient
if one wants to compute j(z̄) for a particular choice of z̄. We therefore offer the
following variant, whose proof is almost identical to that of Lemma A.4.1, Case (5).

Lemma A.4.6. Suppose that z̄ ∈ πt(Z) is detected by z ∈ E1
t,µ(Z) where j∗(z) =

0, and suppose that x ∈ E1
t−1,µ−α detects j(z̄). Then one of the following two

alternatives holds.

(1) There is a y ∈ E1
t,µ(Y ) and a non-trivial differential

dYα (y) = i∗(x).

(2) Either i∗(x) = 0, or there is a non-trivial differential

dYα′(y
′) = i∗(x)

for α′ < α.
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