Secure and Verifiable Computation Outsourcing

Marina Blanton
Department of Computer Science and Engineering
University of Notre Dame

Summer School on Secure and Oblivious Computation and Outsourcing
May 2016
Motivation

- **Computation outsourcing** to a cloud comes with security risks
 - sensitive information might be revealed to third parties
 - computation might be corrupt or skipped resulting in invalid output

- Different **security objectives** might be desired
 - we might want to **protect confidentiality of client’s sensitive data** used in the computation
 - we might also want to **verify integrity of outsourced computation**

- The focus of this talk is primarily on the second security objective
• Application 1: Large-scale biometric computations
 – computation consists of distance computations as well as distribution computation
 • can be applicable to other domains
 – we would like to achieve both data confidentiality protection and computation integrity verification
• **In biometric research**, there is a need to test effectiveness of new algorithms on large data sets.

• After image selection and feature extraction, **two types of computations take place**

 – **AllPairs**(S, F) compares all members of set S pair-wise using function F, producing matrix M, where $M[i][j] = F(S[i], S[j])$

 – **Analyze**(M, C) extracts statistical data from matrix M and stores the result in C

• Because of the volume of the computation, the tasks are outsourced to computational nodes.
• Three types of distance computation F are of interest:
 – Hamming distance, Euclidean distance, and set intersection cardinality

• Each item consists of m elements and the distance is in the range $[0, \sigma]$

• To enable any type of statistical analysis, outsourced computation for Analyze consists of producing raw distribution data
 – it forms a vector $C' = (c_0, \ldots, c_{v-1})$, where c_i stores the number of times the distance was d_i
 – $[d] = \text{dist}([x], [y])$;
 for $i = 0, \ldots, v - 1$ do $[b_i] = ([d] \xrightarrow{?} [d_i])$; $[c_i] = [c_i] + [b_i]$;
Large-Scale Biometric Computations

- **Computation overview** (without verification):

 \[S' = S_1' + S_2' + \ldots + S_1'' + S_2'' \]

 Client

 Output

 \[C = C_1 + C_3 \]

 Tasks

 1. \[S_1' + S_1'' = M_1 + C_1 \]
 2. \[S_2' + S_2'' = M_2 + C_2 \]
 3. \[S_1' + S_1'' = M_3 + C_3 \]
 4. \[S_2' + S_2'' = M_4 + C_4 \]
Security Model

• Computation should take place on protected data

• A server might deviate from the computation by skipping a portion of it or returning incorrect results
 – the server computes fraction p of its task, where $0 \leq p \leq 1$
 – the server attempts to manipulate the result to pass result verification
 – the server’s work is bounded by fraction p of the assigned task
 – probability of cheating detection should be at least $1 - 1/2^\kappa$ for security parameter κ when p is below the client-chosen threshold
• The main idea behind verifying AllPairs computation is as follows:
 – when forming a computational task $\langle S_1, S_2, \text{dist} \rangle$, the client inserts fake, random elements at random positions into the sets
 – the fake items are chosen once for all tasks and their distances are precomputed
 – because the data is protected, the server is unable to distinguish fake items from other items
 – fake items are required because real items might not have enough uncertainty
 – to form S_1, the client uses n_1 fake and $n - n_1$ real items
 – similarly, S_2 contains n_2 fake and $n - n_2$ real items
• **One possibility** for the client is to verify all n_1n_2 distances in the result

 – all fake items are placed at random locations

 – the client stores all n_1n_2 distances precomputed

 – verification cost is then $O(n_1n_2)$

 – it is not possible for all n_1n_2 fake distances to be distributed uniformly at random

 – the probability of cheating detection can be determined for different ways of computing pn^2 distances

• A solution of cost $O(n_1 + n_2)$ can be devised that has a higher probability of cheating detection
• A better approach is as follows

 – let \(n_1 = n_2 \) and denote the fake items in \(S_1 \) and \(S_2 \) as \(F_1 \) and \(F_2 \)

 – for each \(i \)th element of \(F_1 \) and \(F_2 \) we choose a random distance from \([0, \sigma]\) and create two fake items with that distance

 – as before, the items are placed at random locations in \(S_1 \) and \(S_2 \)

 – we now check only \(n_1 = n_2 \) distances in the returned matrix
The probability that the server’s cheating is not detected after verifying a single cell is

- \(p + (1 - p)\frac{1}{\sigma+1} \) if the server computes entire rows (or columns)
 - \(pn \) complete rows or columns were computed
- \(prpc + (1 - prpc)\frac{1}{\sigma+1} \) if the server computes partial rows and columns
 - \(prn \) partial rows and \(pcn \) partial rows were computed with \(p = prpc \)
 - a cell is computed if both its row and column were among the computed ones
- \(p + (1 - p)\frac{1}{\sigma+1} \) if the server computes distances at random cells
 - \(pn^2 \) cells were computed
• In either case, the probability of cheating detection after checking n_1 cells is

\[
\Pr[D] = 1 - \left(\frac{p\sigma + 1}{\sigma + 1} \right)^{n_1}
\]

• If we set $n_1 \geq \frac{\kappa(\sigma+1)}{(1-p)\sigma}$, cheating is undetected with probability

\[
\Pr[\overline{D}] = \left(\frac{p\sigma + 1}{\sigma + 1} \right)^{n_1} = \left(1 - \frac{(1 - p)\sigma}{\sigma + 1} \right)^{n_1} \leq e^{- \frac{n_1(1-p)\sigma}{\sigma+1}} = e^{-\kappa}.
\]
Verification of Distribution Computation

- Recall that distribution computation produces a vector C with counts.
- Now the verification mechanism depends on the distance computation.
- For the Hamming distance we can do the following:
 - In addition to inserting fake items into the task, the client inserts a fake element into both real and fake items.
 - The fake element is used to separate the distance ranges between two real items and real and fake items.
 - Distances between two real items remain in the range $[0, \sigma]$.
 - Distances between real and fake items are in the range $[\sigma + 1, 2\sigma + 1]$.
 - The client adds the distances in each range and compares them to the expected values.
This strategy is not yet enough

- if the server knows (or can guess) n_1 and n_2, it will be able to pass the verification

We employ two ideas to mitigate the problem

- (protected) distances for computing the distribution are given to the server in a randomized order
- the client verifies a larger number of aggregate counts
- the client also inserts a number of fake elements in each item instead of only one
An improved solution is as follows:

- the client adds \(k \) fake elements to the original \(m \) elements of each real item and creates fake items with \(m + k \) elements
- the \(m + k \) elements are randomly permuted, but consistently across all items
- the client chooses a small integer \(\ell \) and \(\ell \) values larger than the maximum distance \(\sigma \)
 - let these \(\ell \) values be \(\sigma + 1, \ldots, \sigma + \ell \)
- the client forms real and fake items so that the distance between
 - two real items is in the range \([0, \sigma]\)
 - a real and fake items is in the range \([\sigma + 1, 2\sigma + \ell]\)
Improved solution (cont.)

- for any given fake item, its distance to a real item is in the range
 \[[d, d + \sigma] \] for fixed \(d \in [\sigma + 1, \sigma + \ell] \)
- for each \(d \in [\sigma + 1, 2\sigma + \ell] \), the client compiles statistics and records the expected counts
- at the time of computation verification
 - the client compares the computed counts for distances in
 \([\sigma + 1, 2\sigma + \ell]\) to their expected values
 - the client also compares the aggregate count for distances in \([0, \sigma]\) to
 \((n - n_1)(n - n_2)\)
Hamming Distance Distribution Verification

- This solution is realized for the Hamming distance as follows
 - for \(m\) original elements, \(\sigma = m\) and original distances between real items are in \([0, m]\)
 - the extra \(k\) elements are all set to 0 in real items
 - the original \(m\) are set to 0 in fake items
 - to create the extra \(k\) elements in a fake item, the client
 - selects \(d\) at random from \([m + 1, \ldots, m + \ell]\)
 - selects \(k\) random values \(d_i\) such that \(\sum_i^k d_i = d\) and sets each fake element to \(d_i\)
 - this deviates from data representation, but is hidden from the server
The Hamming distance solution (cont.):

- the expected counts for each distance in \([m + 1, 2m + \ell]\) can be determined by knowing
 - the Hamming weight of each original item
 - and the number of fake items that used each \(d\) from \([m + 1, m + \ell]\) for its fake elements

- distances between two fake items could
 - be forced to lie outside the range \([0, 2m + \ell]\)
 - overlap with the range, but be compensated for
Hamming Distance Distribution Verification

- The above solution can be shown to meet the necessary security requirements.

- We can treat two options:
 - the server computes all distances between real and fake vectors correctly (by guessing the locations of fake vectors) and increases the count(s) for distances between real and real items
 - the server doesn’t compute all distances between real and fake vectors and correctly increases the counts for distances between real and real and between real and fake items

- The probability of successful cheating should be negligible for any server’s strategy.
Hamming Distance Distribution Verification

• In the first case, it can be shown that

\[\Pr[D] \geq 1 - \frac{m + 1}{2m + 1 + \ell} \left(1 - \sqrt{1 - p}\right)^{2n_1} \]

or

\[\Pr[D] \geq 1 - \prod_{i=0}^{\beta m + k - 1} \frac{p(m + k) - i}{m + k - i} \]

where at least \(\beta m \) elements are set to 1 in each original biometric

– the first equation lets us set \(n_1 \) and the second equation lets us set \(k \)

• Analysis of the second case also places bounds on \(n_1, k, \) and \(\ell \)

• The highest of the computed values for each of \(n_1, k, \) and \(\ell \) should be used
A similar approach can be used for other distance metrics

- Euclidean distance
- set intersection cardinality

Experimental Results

- We evaluate performance of these techniques

 - task computation and communication time with and without data protection:

<table>
<thead>
<tr>
<th>Data set size</th>
<th>Share receiving</th>
<th>Computation (private)</th>
<th>Computation (non-private)</th>
<th>Result sending</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- securely computing the Hamming distance requires only a single interaction using secret sharing techniques
Experimental Results

• Sample parameters for distance verification

 – for \(\Pr[D] \geq 0.99 \) with \(p \leq 0.95 \), \(n_1 = 90 \)
 – for \(\Pr[D] \geq 0.95 \) with \(p \leq 0.9 \), \(n_1 = 29 \)
 – server’s task computation time for medium \(n_1 = 50 \):
Experimental Results

- Parameters for Hamming distance distribution verification with $m = 1000$ and varying task size n

<table>
<thead>
<tr>
<th>Security setting</th>
<th>Computed parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>any n</td>
</tr>
<tr>
<td>$p \leq 0.9$, $\Pr[D] \geq 0.95$, $\gamma \leq 0.05$</td>
<td>28</td>
</tr>
<tr>
<td>$p \leq 0.95$, $\Pr[D] \geq 0.95$, $\gamma \leq 0.05$</td>
<td>57</td>
</tr>
<tr>
<td>$p \leq 0.95$, $\Pr[D] \geq 0.99$, $\gamma \leq 0.01$</td>
<td>87</td>
</tr>
</tbody>
</table>

- γ is another security parameter that affects probability of cheating detection
Experimental Results

- Client’s performance
 - for tasks of size up to 8000, one-time precomputation is 14–22ms, expected distribution computation is 10–50ms, and task preparation and verification is 0–8s

- Server’s performance

\[
\begin{array}{c|c|c}
\text{Data set size} & \text{Secure-only computation} & \text{Secure and verifiable computation} \\
200 & \text{Time (s)} & \text{Time (s)} \\
400 & 5 & 10 \\
600 & 10 & 15 \\
800 & 15 & \times 10^4 \\
\end{array}
\]
• Application 2: Matrix multiplication
 – multiplication of two matrices $C = A \times B$ is outsourced
 – security objectives include
 • computation verifiability
 • data privacy protection
 • public verifiability
Two types of adversaries are considered

- a malicious adversary (server) who can arbitrary deviate from the prescribed computation

- a rational adversary
 - it is neither honest nor malicious
 - it is economically motivated with the goal of maximizing its monetary rewards
 - it returns correct results if it performed the corresponding computation
• A **verifiable computation scheme** is defined by four polynomial-time algorithms

 - KeyGen(1^k, f) \rightarrow params
 - ProbGen(x, params) \rightarrow (SK_x, EK_x, σ_x)
 - Compute(EK_x, σ_x) \rightarrow σ_y
 - Verify(SK_x, σ_y) \rightarrow $y \cup \bot$

• **Security** requires that verification of an output other than $f(x^*)$ for the challenge input x^* cannot succeed with a non-negligible probability
Verifiable Matrix Multiplications

- In the malicious security setting
 - input preparation ProbGen is linear in the input size
 - outsourced computation has the same $O(n^3)$ complexity as the regular (non-secure) matrix multiplication
 - output verification involves only a single modulo exponentiation
 - the overall work is linear in the output size
- Verification is regarded as more frequent than other operations
The setting relies on a bilinear map \(e : G_1 \times G_2 \rightarrow G_T \) with respective generators \(g_1, g_2, \) and \(g_T \).

At input preparation time, the delegator
- sends matrices \(A, B, X, \) and \(Y \) to the server
- \(X \) is of the form \(X_{ij} = g_1^{r_i A_{ij}} \) and \(Y \) is of the form \(Y_{ij} = g_2^{c_j B_{ij} + w_j d_i} \)

The server computes \(C = A \times B \) and \(D = X \times Y \) (using pairing operations) and returns \(C \) and \(\sum_i \sum_j D_{ij} \).

Verification is of the form \(g_T^{f(C)} = \sum_i \sum_j D_{ij} \).

Security relies on M-DDH and XDH assumptions.
• In the rational security setting
 – the verification computation itself is outsourced to the server
 – verification now involves a simple comparison
 – complexities of all other algorithms remain unchanged

• In addition to forming X and Y, the delegator now also releases a new matrix Z of the form $g_{T}^{r_{i}c_{j}}$
 – the matrix allows the server to produce a proof of correct computation
 – now additional randomness needs to be incorporated into X and Y
Verifiable Matrix Multiplications

• Now at input preparation time, the delegator
 - prepares $X_{ij} = g_1^{r_i/m_jA_{ij}}$, $Y_{ij} = g_2^{c_jm_iB_{ij}+w_jd_i}$, and $Z_{ij} = g_T^{c_jr_i}$
 - computes expected keys for each cell and hashes all keys together

• The server now computes
 - $C = A \times B$, $D = X \times Y$
 - the expected keys using Z, C', and D
 - the hash of all computed keys

• Verification simply consists of comparing the expected key to the key produced by the server

• Security relies on the fact that if the server computed C, it won’t corrupt it
We enhance the basic solution with a number of features

We put forward a new feature in the form of chained computation

- the overall computation is divided into stages and there is a key associated with each stage
- only if the computation in the current stage is performed correctly, the server can recover the correct key and proceed with next stage

Advantages of chaining

- allows for more efficient task verification
- allows for efficient identification of the first incorrectly computed stage
- allows honest servers to detect computation corruptions
Verifiable Matrix Multiplications

- **Chaining** can be naturally added to the rational adversary scheme
 - stage \(i \) computes the \(i \)th column of the product matrix \(C' \)
 - only when the \(i \)th key is produced, the inputs to the \((i + 1) \)th sub-computation can be recovered
 - \((i + 1) \)th stage inputs are masked (XORed) with a pseudo-random sequence computed using the \(i \)th key
 - extra (fixed) bits are added to the inputs to indicate successful decoding
 - Detection of the first faulty stage now involves \(\log n \) steps (server queries)
 - The constructions can also be modified to add data privacy and/or public verifiability
Conclusions

• Achieving verifiable computation is often non-trivial for different functions

• A variety of different techniques can be found in the literature

• Using rational adversaries is one way of improving performance of verifiable computation schemes