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SUMMARY

Conventionally, the money demand function is estimated using a regression of the logarithm

of money demand on either the interest rate or the logarithm of the interest rate. This equation

is presumed to be a cointegrating regression. In this paper, we aim to combine the logarithmic

specification, which models the liquidity trap better than a linear model, with the assumption that

the interest rate itself is an integrated process. The proposed technique is robust to serial correlation

in the errors. For the US, our new technique results in larger coefficient estimates than previous

research suggested, and produces superior out-of-sample prediction.
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1 INTRODUCTION

1.1 Aim of This Paper

In the literature on the estimation of the long-run money demand function, two functional forms are

typically used. Those functional forms are

mt = β0 + β1rt + ut (1)

and

mt = β0 + β1 ln(rt) + ut, (2)

where mt denotes the logarithm of real money demand and rt is the nominal interest rate. These

functional forms have been used in previous studies of the long-run money demand function estima-

tion. For example, see Lucas (1988), Hoffman and Rasche (1991), Stock and Watson (1993), Ball

(1998), and Anderson and Rasche (2002).

It is believed by many researchers that the nominal interest rate is an integrated process. This

assumption was made in e.g. Stock and Watson (1993), Ball (1998), Anderson and Rasche (2001),

and Hu and Phillips (2002). See Hu and Phillips (2002, p.5) for an argument for nonstationarity

in the nominal interest rate. In addition, this assumption might have some advantages over the

alternative assumption that the logarithm of the nominal interest rate is an integrated process. In

the latter assumption, the nominal interest rate is an exponential function of an integrated process,

which implies that its percentage change has a stationary distribution. This might be an appropriate

assumption for some macroeconomic variables, such as GDP and CPI. For the nominal interest rate,

however, if we consider the fact that the Federal Reserve Board (FRB) usually adjusts its target

interest rate by multiples of 25 basis points, not by certain percentage of the current interest rate

level, it might be more appropriate to assume that its difference has a stationary distribution, which

in turn implies that the nominal interest rate itself is an integrated process.

For the estimation and the statistical inference on the money demand function, cointegration

methods have been used. However, to use conventional linear cointegration methods, such as Phillips

and Hansen (1992)’s “Fully Modified OLS” (FMOLS) and Stock and Watson (1993)’s “Dynamic

OLS” (DOLS), we need to make different assumptions for different functional forms; that is, for

Equation (1), rt must be assumed to be an integrated process, and for Equation (2), ln(rt) must be

assumed to be an integrated process. The approach in this paper seeks to estimate the functional

form of Equation (2) under the assumption that the interest rate is an integrated process; that is,
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we aim to reconcile the assumption that interest rate is an integrated process with the logarithmic

functional form. To this end, we will develop a new nonlinear “fully modified” type estimation

technique.

1.2 Functional Forms and Money Demand

In the literature on money demand, the choice of functional form has important implications for the

presence of the liquidity trap. The liquidity trap is the phenomenon where the public’s money demand

becomes indefinite at a low interest rate; that is, the public is willing to hold any amount of money at a

low interest rate, because it is indifferent between money and other financial assets.1 In the functional

form of Equation (1), there is no liquidity trap, while the liquidity trap exists in the functional form

of Equation (2). This is because in the latter specification, the money demand increases into infinity

as the interest rate approaches to zero. Laidler (1985, p.53) argued that “[Keynes’s analysis]...

suggest that it [money demand] cannot be treated as a simple, stable, approximately linear, negative

relationship with respect to the rate of interest.” The presence of the liquidity trap has important

implications for monetary policy. As Krugman (1998) pointed out,2 the liquidity trap makes the

traditional monetary policy impotent when interest rate is close to zero. Furthermore, the possibility

of the liquidity trap makes a central bank’s optimal policy different even at the normal range of

the interest rate. Nishiyama (2003) showed that in the presence of the liquidity trap the optimal

monetary policy is to set a small but positive inflation rate as its target, to avoid the possibility of

falling into the liquidity trap. This is because a central bank cannot set a negative nominal interest

rate if there is the liquidity trap. For the Japanese economy, the presence of the liquidity trap has

been an important issue for a decade.

In addition, the specification of Equation (2) has two more advantages over the specification of

Equation (1). First, macroeconomic data show a clear nonlinear relationship between money demand

and the interest rate, as is illustrated in Figure 1. On the other hand, a graph of the relationship

between money demand and the logarithm of the interest rate appears to be linear. Second, as

argued by Anderson and Rasche (2001), the elasticity of money demand with respect to the interest

rate should not be an increasing function of the interest rate, but it should be a decreasing or at least

1 Laidler (1988, p.53) mentioned that “This is the doctrine of the liquidity trap, which argues that the interest

elasticity of the demand for money can, at low levels of the rate of interest, take the value infinity.”

2 Krugman (1998) mentioned that ”A liquidity trap may be defined as a situation in which conventional monetary

policies have become impotent, because nominal interest rates are at or near zero.”
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a non-increasing function. This is because as the public reduces its money holdings, each successive

reduction should not be less difficult. While the interest elasticity of money demand is an increasing

function of the interest rate in the specification of Equation (1), it is constant in the specification of

Equation (2). Considering all these aspects, we may conclude that the specification of Equation (2)

is more appropriate than the specification of Equation (1).

1.3 Linear Cointegration Methods

The use of standard linear cointegration methods, such as Phillips and Hansen (1992)’s “Fully Mod-

ified OLS” (FMOLS) and Stock and Watson (1993)’s “Dynamic OLS” (DOLS), for the estimation

of the functional form of Equation (2) implies the assumption that ln(rt) is an integrated process.

However, if rt is an integrated process, then the logarithm of rt is not an integrated process in any

meaningful sense, and vice versa. Because of this problem, linear cointegration methods do not

provide a consistent framework to estimate both Equation (1) and (2) under the assumption that

the interest rate is an integrated process. Recently there have been new developments of nonlinear

cointegration methods; notably, Park and Phillips (1999, 2001), Chang et al. (2001), and de Jong

(2002). However, currently available nonlinear cointegration methods are not suitable for the anal-

ysis of the model of Equation (2). The techniques of Park and Phillips (1999, 2001) and Chang et

al. (2001) can be used in principle, but only if we assume that the error ut is a martingale difference

sequence. Because of the presence of serial correlation and possible endogeneity, this assumption is

not acceptable for estimation of the long-run money demand function estimation. De Jong (2002)

relaxes the martingale difference sequence assumption, however, his technique cannot be used for

the specification of Equation (2) because of the unboundedness of the logarithm function near zero.

This paper develops a new nonlinear “fully modified” type cointegration method that can be

used in the functional form of Equation (2) under the assumption that rt is an integrated process.

Of course, the assumption of a logarithmic specification in combination with the presence of a unit

root in rt will give rise to the inner inconsistency that integrated processes can take on negative

values. This is not a problem only for Equation (2). In Equation (1), the interest rate cannot be an

integrated process, because it is always positive. This is true for some other macroeconomic variables

as well, such as the unemployment rate. Therefore, in the sequel of this paper it is presumed that

Equation (2) is approximated by a logarithm function of the absolute value of the interest rate.

Since asymptotic theory provides us with nothing more than approximations to true coefficient

distributions, this paper should be viewed as providing a different means of conducting inference in
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the money demand function of Equation (2), using a different approximation of the limit distributions

of coefficients.

The paper is organized as follows. In Section 2, a new nonlinear cointegration method is proposed

and its asymptotic properties are established. In Section 3, the US long-run money demand function

is estimated using both the newly proposed technique and more conventional techniques, and the

estimation results are presented. The conclusions can be found in Section 4.

2 NONLINEAR COINTEGRATING REGRESSION

2.1 Model and Assumptions

In this paper, the nonlinear cointegrating regression

yt = β0 + β1 ln |xt| + ut (3)

is considered, where xt is an integrated process and ut is a stationary process. Note that Equation

(3) is different from Equation (2); i.e. the absolute value of an integrated process |xt| goes into a

logarithm function in Equation (3), not xt. Its estimation and statistical inference are not simple

tasks. To illustrate analytical difficulties that Equation (3) poses, we investigate the properties of

the OLS estimator. The OLS estimator β1 satisfies

√
n(β1 − β1) =

1√
n

∑n
t=1(ln |xt| − ln |xt|)ut

1
n

∑n
t=1(ln |xt| − ln |xt|)2

=

1√
n

∑n
t=1(ln

∣∣∣ xt√
n

∣∣∣ − ln
∣∣∣ xt√

n

∣∣∣)ut

1
n

∑n
t=1(ln

∣∣∣ xt√
n

∣∣∣ − ln
∣∣∣ xt√

n

∣∣∣)2
,

where Xt indicates the sample average of Xt. Note that if ut is a martingale difference sequence

as in Park and Phillips (2001), it can be shown that
√

n(β1 − β1) is Op(1). However, if ut has

serial correlation, and ut and ∆xt are correlated with each other, de Jong (2002) has shown that for

continuously differentiable function T (·),

1√
n

n∑

t=1

T (
xt√
n

)ut
d−→

∫ 1

0

T (W (r))dU(r) + Λ

∫ 1

0

T ′(W (r))dr

where W (r) and U(r) are the limiting Brownian processes associated with (∆xt, ut), and Λ is

the correlation parameter. Since
∫ 1

0
1

|W (r)|dr is undefined, it can be conjectured that if Λ 6= 0,

1√
n

∑n
t=1 ln

∣∣∣ xt√
n

∣∣∣ ut has no well-defined limit, and therefore
√

n(β1 − β1) does not converge in distri-

bution.

Throughout the paper, the following assumptions are maintained.
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Assumption 1 Let ∆xt = wt with x0 = Op(1). ut and wt are linear processes

ut =

∞∑

i=0

φ1,iε1,t−i

wt =

∞∑

i=0

φ2,iε2,t−i,

where εt = (ε1,t, ε2,t) is a sequence of independent and identically distributed (i.i.d.) random variables

with mean zero. The long-run covariance matrix of ηt = (ut, wt), Ω, is given by

Ω = C0 +
∞∑

j=1

(Cj + C ′
j) =


Ω11 Ω12

Ω21 Ω22




where Cj = E(ηtη
′
t−j). Ω22 is nonsingular.

Note that ut and wt are allowed to be weakly dependent and correlated with each other.

Assumption 2
∑∞

i=0 i|φj,i| < ∞ and E|εj,t|p < ∞ for some p > 2 for j = 1, 2.

Assumption 3 The distribution of (ε1,t, ε2,t) is absolutely continuous with respect to the Lebesgue

measure and has characteristic function ψ(s) for which lim|s|→∞ |s|qψ(|s|) = 0 for some q > 1.

Under Assumption 1, 2 and 3, 1√
t

∑t
i=1 wi has a density ft(·) that is uniformly bounded over t.

Also, define

Un(r) =
1√
n

[nr]∑

t=1

ut

Wn(r) =
1√
n

[nr]∑

t=1

wt,

where [s] denotes the largest integer not exceeding s. Then we can assume without loss of generality

that by the Skorokhod representation theorem,

sup
r∈[0,1]

|Wn(r) − W (r)| = o(1)

and

sup
r∈[0,1]

|Un(r) − U(r)| = o(δn),

where δn is a deterministic sequence that is o(n− p−2
2p ); see Park and Phillips (1999, p.271).
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2.2 Estimation

In this section, a “Nonlinear Cointegration Least Squares” (NCLS) estimator β̃1 is defined and

its asymptotic properties are established. This estimator solves the problems associated with the

unboundedness of the logarithm function near zero that make the OLS estimator intractable for

analysis. Let kn be an integer-valued positive sequence such that kn → ∞ and knn− p−2
3p+η → 0 for

some η > 0, and nj =
[

nj
kn

]
for j = 0, 1, 2, . . . , kn. Let zt = ln |xnj−1+1| for nj−1 + 1 ≤ t ≤ nj for

j = 1, 2, . . . , kn. Then the NCLS estimator β̃1 is

β̃1 =

∑n
t=1 zt(yt − yt)∑n

t=1 zt(ln |xt| − ln |xt|)
=

∑kn

j=1

∑nj

t=nj−1+1 ln |xnj−1+1|(yt − yt)
∑kn

j=1

∑nj

t=nj−1+1 ln |xnj−1+1|(ln |xt| − ln |xt|)
.

This is an IV estimator that uses zt as the instrumental variable for ln |xt|. Note that kn → ∞ at a

slower rate than n, and kn = o(n1/3) when p = ∞.

Two technical results that are needed in the sequel are stated below.

Theorem 1 Under Assumption 1, 2 and 3,

1√
n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ut
d−→

∫ 1

0

ln |W (r)|dU(r).

Theorem 2 Under Assumption 1, 2 and 3,

1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ln

∣∣∣∣
xt√
n

∣∣∣∣
d−→

∫ 1

0

[ln |W (r)|]2dr.

Based on Theorem 1 and 2, the asymptotic distribution of β̃1 is obtained in the following theorem.

Theorem 3 Under Assumption 1, 2 and 3,

√
n(β̃1 − β1)

d−→

∫ 1

0

ln |W (r)|dU(r) − U(1)

∫ 1

0

ln |W (r)|dr

∫ 1

0

[ln |W (r)|]2dr −
[∫ 1

0

ln |W (r)|dr

]2 .

The result of Theorem 3 is reminiscent of the limit theory for the least squares estimator in a linear

cointegration regression. In both cases, the result holds without exogeneity assumption of any kind,

and the limit distribution is not directly suitable for inference in some empirical settings. If W (·) and
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U(·) are orthogonal, then the usual “t- and F -statistics” are valid because they achieve the correct

significance level conditionally on W (·). However, if they are not orthogonal, which is likely in the

long-run money demand function case, this result cannot be used for the statistical inference, since

the above limit distribution depends on the correlation between U(·) and W (·).

2.3 Fully Modified Type Estimation of the NCLS Estimator

In this section, a “fully modified” type estimation procedure for the NCLS estimator is proposed. A

modification is needed to establish the asymptotic conditional normality. The regression Equation

(3) can be written as

y
†
t = β0 + β1 ln |xt| + u

†
t , (4)

where y
†
t = yt−Ω′

21Ω
−1
22 ∆xt and u

†
t = ut−Ω′

21Ω
−1
22 ∆xt. Note that now the limiting Brownian process

associated with u
†
t , U†(·), and W (·) are orthogonal.3

The proposed estimation procedure is now as follows.

1. Calculate the residual, ût, from a regression of yt on an intercept and ln |xt| by the NCLS

estimation method.

2. Get a HAC estimate Ω̂ by using (ût, ∆xt).

3. Calculate ŷ
†
t in a way analogous to FMOLS,

ŷ
†
t = yt − Ω̂′

21Ω̂
−1
22 ∆xt.

4. The “fully modified” NCLS estimator β̂1 is defined as the NCLS estimator that is calculated

using the modified dependent variable ŷ
†
t , instead of yt, i.e.

β̂1 =

∑n
t=1 zt(ŷ

†
t − ŷ

†
t )∑n

t=1 zt(ln |xt| − ln |xt|)
=

∑kn

j=1

∑nj

t=nj−1+1 ln |xnj−1+1|(ŷ†
t − ŷ

†
t )

∑kn

j=1

∑nj

t=nj−1+1 ln |xnj−1+1|(ln |xt| − ln |xt|)
.

3 This follows because

lim
n→∞

E


 1

√
n

[rn]∑

t=1

u
†
t





 1

√
n

[rn]∑

t=1

∆xt




= lim
n→∞

E


 1

√
n

[rn]∑

t=1

ut





 1

√
n

[rn]∑

t=1

∆xt


 − Ω′

21Ω−1
22 E


 1

√
n

[rn]∑

t=1

∆xt




2

= Ω′
21 − Ω′

21Ω−1
22 Ω22 = 0.
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To establish the asymptotic distribution of β̂1, the following additional assumption is needed.

Assumption 4 Let k(·) and {bn : n ≥ 1} be a kernel function and a sequence of bandwidth param-

eters that are used for the HAC estimator Ω̂ in step 2.

(i) k(0) = 1, k(·) is continuous at zero, and sup
x≥0

|k(x)| < ∞.

(ii)

∫ ∞

0

k(x)dx < ∞, where k(x) = sup
y≥x

|k(y)|.

(iii) bn ⊆ (0,∞) and lim
n→∞

(
1

bn
+

bn√
n

)
= 0.

Assumption 4 is Assumptions A3 and A4 in Jansson (2002, p.1450). Note that Assumption 4 (i)

and (ii) hold for the 15 kernels, including the Bartlett kernel, studied by Ng and Perron (1996), and

Assumption 4 (iii) holds whenever the bandwidth expansion rate coincides with the optimal rate in

Andrews (1991); see Jansson (2002, p. 1450-1451).

The following results establishes the consistency of the HAC estimator Ω̂.

Theorem 4 Let Ω̂ be the HAC estimator in Step 2. Under Assumption 1, 2, 3 and 4, Ω̂
p−→ Ω.

The asymptotic distribution of the “fully modified” NCLS estimator β̂1 is obtained in the following

theorem.

Theorem 5 Under Assumption 1, 2, 3 and 4,

√
n(β̂1 − β1)

d−→

∫ 1

0

ln |W (r)|dU †(r) − U†(1)

∫ 1

0

ln |W (r)|dr

∫ 1

0

[ln |W (r)|]2dr −
[∫ 1

0

ln |W (r)|dr

]2 .

Since W (r) and U†(r) are orthogonal in Theorem 5, it follows that conditionally on W (·),

√
n(β̂1 − β1)

d−→ N


0,

Ω†
11∫ 1

0

[ln |W (r)|]2dr −
[∫ 1

0

ln |W (r)|dr

]2


 ,

where Ω†
11 is the long-run variance of u

†
t . This implies that the usual “t- and F -statistics” are valid.

For estimation of Ω†
11, a consistent estimator Ω̂†

11 is provided by

Ω̂†
11 = Ω̂11 − Ω̂′

21Ω̂
−1
22 Ω̂21.

Note that since Ω̂
p−→ Ω by Theorem 4, Ω̂†

11 is a consistent estimator for Ω†
11.
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3 US MONEY DEMAND

In this section, the US long-run money demand functions of Equation (1) and (2) are estimated

by both linear and nonlinear cointegration methods. Specifically, we use “Static OLS” (SOLS),

DOLS, FMOLS, and NCLS estimation techniques.

3.1 Unit Root Test Results

We first conduct unit root tests for the nominal interest rate and the logarithm of the nominal

interest rate by both the Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test (Kwiatkowski et al. 1992). Test results are presented in Table 1. The ADF test

results show that the null hypotheses that rt and ln(rt) are integrated processes without drift cannot

be rejected, and the KPSS test results show that the null hypotheses that rt and ln(rt) are stationary

processes are rejected. Therefore, both tests confirm the hypotheses that rt and ln(rt) are integrated

processes.

3.2 Estimation Results

The same data set as Ball (1998), Stock and Watson (1993) and Lucas (1978) is used, however, it was

extended up to 1997.4 M1
5, Net National Products (NNP), NNP deflator, and 6-months commercial

paper rate are used as money, output, price, and interest rate, respectively.

Coefficient estimates and their asymptotic standard deviations are presented in Table 2. When

the estimation results are compared between linear cointegration methods and the NCLS method in

the functional form of Equation (3), the NCLS estimates are larger in absolute value than all other

linear cointegration estimates when the bandwidth parameter kn is small. Note that the theory for

the NCLS estimator is valid for kn = o(n
1
3 ) at best, which suggests that a small value for kn may be

appropriate. Also, note that for kn = 5, all NCLS point estimates are outside all the 95% confidence

intervals suggested by the SOLS, DOLS and FMOLS estimates.

To further address the question which functional form is most appropriate and which estima-

tion technique is to be preferred, we investigate out-of-sample prediction performance in terms of

sum of squared forecast errors. Results are presented in Table 3 and 4. Between the functional

4 The reason data extension is stopped in 1997 is that 6-months commercial paper rate was discontinued at that

point.

5 After 1995, the official M1 statistics excludes the Sweep Account. As shown by Dutkowsky and Cynamon (2003),

this might have an impact on cointegration relationship. Therefore, we added the Sweep Account to M1 from 1994.
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forms of Equation (1) and (3), Equation (3) outperforms Equation (1) in all combinations of differ-

ent estimation methods and prediction methods. Within the functional form of Equation (3), the

NCLS estimator produces superior prediction performance compared to other conventional linear

cointegration estimators. The superior out-of-sample prediction performance of the NCLS estimator

in combination with the logarithmic specification suggests that the NCLS technique produces the

most desirable estimation results, and this reinforces our belief that the conventional techniques may

underestimate the impact of the interest rate on money demand.

4 CONCLUSION

This paper investigates two different functional forms of the US long-run money demand function

by linear and nonlinear cointegration methods. Since different functional forms have different im-

plications for the presence of the liquidity trap and effectiveness of the traditional monetary policy,

the choice of functional form is a important issue. Therefore, its estimation should be conducted in

a consistent framework so that estimation results can be comparable. Since a logarithm function in-

volves a nonlinear relationship between money demand and the interest rate, nonlinear cointegration

methods are more appropriate methods. This paper proposes a new nonlinear cointegration method

that is suitable for a more general time series situation, such as the long-run money demand func-

tion estimation, where serial correlation in the errors is present. Estimation results show that the

interest rate coefficient estimates are larger in absolute value for the NCLS estimator than for other

conventional linear cointegration estimators. Also, out-of-sample prediction performances for our

NCLS technique are superior to those of the conventional linear estimation techniques. Therefore,

our conclusion is that the conventional techniques may underestimate the impact of the interest rate

on money demand.

11



5 Appendix

5.1 Estimation Results

Figure 1: Money Demand - Linear vs. Logarithm
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Table 1: Unit Root Test for Interest Rate1

rt ∆rt ln(rt) ∆ ln(rt)

ADF test2 -0.07 -1.39∗∗ -0.05 -1.04∗∗

KPSS test3 0.64∗ 0.07 0.50∗ 0.13

1) Reject the null hypothesis at 5%(*) and 1%(**).

2) H0: I(1) vs. H1: I(0). The order of the first difference terms is 4.

3) H0: I(0) vs. H1: I(1).

Table 2: Estimation1 Results of Interest Rate Coefficient β1

sample

period

SOLS DOLS2 FMOLS NCLS

(kn = 20)

NCLS

(kn = 10)

NCLS

(kn = 5)

mt = β0 + β1rt + ut

1900-1997 -0.0914 -0.1138 -0.1050 – – –

(0.0100) (0.0074) (0.0097)

1900-1945 -0.0751 -0.0824 -0.0807 – – –

(0.0114) (0.0131) (0.0114)

1946-1997 -0.0910 -0.1054 -0.1045 – – –

(0.0149) (0.0097) (0.0138)

mt = β0 + β1 ln(rt) + ut

1900-1997 -0.3326 -0.3793 -0.3557 -0.3548 -0.4165 -0.5254

(0.0400) (0.0352) (0.0383) (0.0392) (0.0414) (0.0522)

1900-1945 -0.1869 -0.1898 -0.1895 -0.1902 -0.2276 -0.2659

(0.0247) (0.0283) (0.0251) (0.0251) (0.0278) (0.0339)

1946-1997 -0.4863 -0.5140 -0.5089 -0.5196 -0.5908 -0.6212

(0.0474) (0.0397) (0.0447) (0.0463) (0.0485) (0.0514)

1) An HAC estimator with Bartlett kernel and bandwidth parameter of 4 are used.

2) The order of the leads and lags is 4.
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Table 3: Out-of-sample Prediction Performance Results using estimates from 1900-19891

SOLS DOLS FMOLS NCLS (kn = 5)

mt = β0 + β1rt + ut

1997∑

t=1990

[mt − m̂t]
2 1.0439 0.9529 1.0191 –

mt = β0 + β1 ln(rt) + ut

1997∑

t=1990

[mt − m̂t]
2 0.7411 0.6486 0.7056 0.5400

1) The same kernel, bandwidth and order of leads and lags as in Table 2 are used.

Table 4: Out-of-sample One-step-ahead Prediction Performance Results1

SOLS DOLS FMOLS NCLS (kn = 5)

mt = β0 + β1rt + ut

1997∑

t=1994

[mt − m̂t]
2 0.3021 0.2774 0.2790 –

1997∑

t=1993

[mt − m̂t]
2 0.5319 0.5345 0.5246 –

1997∑

t=1992

[mt − m̂t]
2 0.7799 0.7963 0.7825 –

1997∑

t=1991

[mt − m̂t]
2 0.9242 0.9202 0.9165 –

1997∑

t=1990

[mt − m̂t]
2 0.9758 0.9423 0.9517 –

mt = β0 + β1 ln(rt) + ut

1997∑

t=1994

[mt − m̂t]
2 0.1864 0.1567 0.1693 0.0834

1997∑

t=1993

[mt − m̂t]
2 0.3377 0.3096 0.3213 0.2452

1997∑

t=1992

[mt − m̂t]
2 0.5017 0.4689 0.4838 0.4025

1997∑

t=1991

[mt − m̂t]
2 0.6121 0.5632 0.5871 0.4689

1997∑

t=1990

[mt − m̂t]
2 0.6846 0.6165 0.6506 0.4906

1) The same kernel, bandwidth and order of leads and lags as in Table 2 are used.
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5.2 Proofs

Proof of Theorem 1: Let kn and nj be same as in Section 2.2. For notational simplicity, let vt+1 =

ut for t = 0, 1, 2, . . . , n, and define Vn(r) = 1√
n

∑[nr]
t=0 vt+1. Let rj =

nj+1
n for j = 0, 1, 2, . . . , kn.

Consider

Gn =
1√
n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ut =
1√
n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ vt+1

=

kn∑

j=1

ln |Wn(rj−1)| (Vn(rj) − Vn(rj−1)) .

Then Gn can be written as

Gn = (Gn − Pn) + (Pn − I) + I

where

Pn =

kn∑

j=1

ln |W (rj−1)|(V (rj) − V (rj−1)) =

kn∑

j=1

∫ rj

rj−1

ln |W (rj−1)|dV (r)

and

I =

∫ 1

0

ln |W (r)|dV (r) =

∫ 1

0

ln |W (r)|dU(r).

Then the theorem can be proved by showing that

|Gn − Pn| p−→ 0

and

|Pn − I| p−→ 0.

First, by summation by parts as in Davidson (1994, p. 512), Gn − Pn can be written as

Gn − Pn =

kn∑

j=1

(ln |Wn(rj−1)| − ln |W (rj−1)|)(Vn(rj) − Vn(rj−1)) (1)

+ ln |W (rkn
)|(Vn(rkn

) − V (rkn
)) (2)

−
kn∑

j=1

(Vn(rj) − V (rj))(ln |W (rj)| − ln |W (rj−1)|). (3)

It will be shown that all three terms converge to 0 in probability. For (1),




kn∑

j=1

(ln |Wn(rj−1)| − ln |W (rj−1)|)(Vn(rj) − Vn(rj−1))




2

≤
kn∑

j=1

[ln |Wn(rj−1)| − ln |W (rj−1)|]2
kn∑

j=1

[Vn(rj) − Vn(rj−1)]
2
.
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Now note that

E

kn∑

j=1

[Vn(rj) − Vn(rj−1)]
2 = O(1)

because Assumption 1, 2 and 3 imply that E[Vn(rj) − Vn(rj−1)]
2 ≤ C · (rj − rj−1). Therefore it

suffices to show that

kn∑

j=1

[ln |Wn(rj−1)| − ln |W (rj−1)|]2 = op(1).

Let Tε(x) = ln |x|I(|x| > ε) + ln(ε)I(|x| ≤ ε), Qε(x) = (ln(ε) − ln |x|)I(|x| < ε), and εn = n− p−2
3p .

First note that since (a + b)2 ≤ 2a2 + 2b2, it follows that

(a + b + c)2 ≤ 2a2 + 2(b + c)2 ≤ 2a2 + 4b2 + 4c2.

Then by letting a = Tεn
(Wn) − Tεn

(W ), b = Qεn
(Wn), and c = Qεn

(W ), we have the following,

kn∑

j=1

[ln |Wn(rj−1)| − ln |W (rj−1)|]2

≤ 2

kn∑

j=1

[Tεn
(Wn(rj−1)) − Tεn

(W (rj−1))]
2 + 4

kn∑

j=1

Qεn
(Wn(rj−1))

2 + 4

kn∑

j=1

Qεn
(W (rj−1))

2.

Since Tεn
(·) is Lipschitz-continuous with Lipschitz-coefficient 1

εn
, it follows that

kn∑

j=1

[Tεn
(Wn(rj−1)) − Tεn

(W (rj−1))]
2 ≤ kn

(
δn

εn

)2

= op(n
p−2
3p+η · n− p−2

p · n
2(p−2)

3p )

= op(n
p−2
3p+η

− p−2
3p ) = op(1).

Recall that ft(·) denotes the density of xt√
t

and that under Assumption 1, 2 and 3, sup
t

sup
y∈R

ft(y) < ∞.

Then note that by using the substitution y =
√

n√
nj−1+1

Wn(rj−1),

E

kn∑

j=1

Qεn
(Wn(rj−1))

2 =

kn∑

j=1

∫ ∞

−∞
Qεn

(

√
nj−1 + 1√

n
y)2fnj−1+1(y)dy

≤
[
sup

t
sup
y∈R

ft(y)

] kn∑

j=1

∫ ∞

−∞
Qεn

(x)2
√

n√
nj−1 + 1

dx

=

[
sup

t
sup
y∈R

ft(y)

] 


kn∑

j=1

√
n√

nj−1 + 1




[∫ ∞

−∞
Qεn

(x)2dx

]

= O(knεn) = O(n
p−2
3p+η

− p−2
3p ) = o(1).

A similar argument holds for
∑kn

j=1 Qεn
(W (rj−1))

2. For (2), note that

ln |W (rkn
)|(Vn(rkn

) − V (rkn
)) = Op(δn) = op(1)
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where δn is a deterministic sequence that is o(n− p−2
2p ). A similar argument holds for (3). Therefore

we have established that |Gn − Pn| p−→ 0. Next, Pn − I can be written as

Pn − I = (Pn − Pnε) + (Pnε − Inε) + (Inε − I)

where

Pnε =

kn∑

j=1

Tε(W (rj−1))(V (rj) − V (rj−1)) =

kn∑

j=1

∫ rj

rj−1

Tε(W (rj−1))dV (r)

and

Inε =

∫ 1

0

Tε(W (r))dV (r).

Then it will be shown that

lim
ε→0

lim sup
n→∞

E|Pn − Pnε|2 = 0, (I)

lim
ε→0

lim sup
n→∞

E|Pnε − Inε|2 = 0, (II)

and

lim
ε→0

lim sup
n→∞

E|Inε − I|2 = 0. (III)

For (I),

lim sup
n→∞

E|Pn − Pnε|2 = lim sup
n→∞

E

∣∣∣∣∣∣

kn∑

j=1

∫ rj

rj−1

[ln |W (rj−1)| − Tε(W (rj−1))]dV (r)

∣∣∣∣∣∣

2

= lim sup
n→∞

kn∑

j=1

∫ rj

rj−1

E[Tε(W (rj−1)) − ln |W (rj−1)|]2dr

= lim sup
n→∞

kn∑

j=1

∫ rj

rj−1

E[ln |ε| − ln |W (rj−1)|]2I(|W (rj−1)| ≤ ε)dr

= lim sup
n→∞

1

kn

kn∑

j=1

E[ln |ε| − ln |W (rj−1)|]2I(|W (rj−1)| ≤ ε)

= lim sup
n→∞

1

kn

kn∑

j=1

∫ ∞

−∞
[ln |ε| − ln |√rj−1z|]2I(|√rj−1z| ≤ ε)φ(z)dz,
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and by using the substitution y =
√

rj−1z, it follows that

lim sup
n→∞

E|Pn − Pnε|2 = lim sup
n→∞

1

kn

kn∑

j=1

∫ ε

−ε

[ln |ε| − ln |y|]2 1
√

rj−1
φ(y)dy

≤ lim sup
n→∞

1

kn

1√
2π

kn∑

j=1

∫ ε

−ε

[ln |ε| − ln |y|]2 1
√

rj−1
dy

=
1√
2π


lim sup

n→∞

1

kn

kn∑

j=1

1
√

rj−1




∫ ε

−ε

[ln |ε| − ln |y|]2dy

→ 0 as ε → 0.

Note that lim sup
n→∞

1
kn

∑kn

j=1
1√

rj−1
= 2. For (II),

lim sup
n→∞

E|Pnε − Inε|2 = lim sup
n→∞

E

∣∣∣∣∣∣

kn∑

j=1

∫ rj

rj−1

Tε(W (rj−1))dV (r) −
∫ 1

0

Tε(W (r))dV (r)

∣∣∣∣∣∣

2

≤ lim sup
n→∞

kn∑

j=1

∫ rj

rj−1

E|Tε(W (rj−1)) − Tε(W (r))|2dr = 0

for any ε > 0, because Tε(·) is uniformly continuous. Finally, for (III),

lim sup
n→∞

E|Inε − I|2 = E

∣∣∣∣
∫ 1

0

Tε(W (r))dV (r) −
∫ 1

0

ln |W (r)|dV (r)

∣∣∣∣
2

= E

∣∣∣∣
∫ ε

0

ln |W (r)|dV (r)

∣∣∣∣
2

=

∫ ε

0

E[ln |W (r)|]2dr

=

∫ ε

0

[∫ ∞

−∞
[ln |√rz|]2φ(z)dz

]
dr

=

[∫ ε

0

1√
r
dr

] [∫ ∞

−∞
[ln |x|]2φ(x)dx

]
→ 0 as ε → 0.

This is because

∫ ∞

−∞
[ln |x|]2φ(x)dx =

∫ 1

−1

[ln |x|]2φ(x)dx +

∫

R\[−1,1]

[ln |x|]2φ(x)dx

≤ 1√
2π

∫ 1

−1

[ln |x|]2dx +

∫

R\[−1,1]

|x|2φ(x)dx < ∞.

Note that [ln |x|]2 < |x|2 if |x| > 1, and that the logarithm function and its square are locally

integrable. Also note that

∫

R\[−1,1]

|x|2φ(x)dx <

∫ ∞

−∞
|x|2φ(x)dx = 1,
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because φ(·) is the pdf of the standard normal. We have established that |Pn − I| p−→ 0, which

complete the proof of the theorem. ¥

To prove Theorem 2, we begin with the following lemma.

Lemma 1 As n → ∞,

1

n

n∑

j=1

ln

∣∣∣∣
xt√
n

∣∣∣∣
d−→

∫ 1

0

ln |W (r)|dr,

1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
d−→

∫ 1

0

ln |W (r)|dr,

1

n

n∑

j=1

[
ln

∣∣∣∣
xt√
n

∣∣∣∣
]2

d−→
∫ 1

0

[ln |W (r)|]2dr,

and

1

n

kn∑

j=1

nj∑

t=nj−1+1

[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
]2

d−→
∫ 1

0

[ln |W (r)|]2dr.

Proof of Lemma 1: See de Jong (2004) or Pötscher (2004). ¥

Proof of Theorem 2: Consider

Hn =
1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xt√
n

∣∣∣∣ ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ .

The theorem can be proved by showing that

Hnε
d−→ Hε as n → ∞ for all ε > 0, (I)

Hε
d−→ I as ε → 0, (II)

and

lim
ε→0

lim sup
n→∞

E|Hn − Hnε| = 0 (III)

where

Hnε =
1

n

kn∑

j=1

nj∑

t=nj−1+1

Tε

(
xt√
n

)
Tε

(
xnj−1+1√

n

)
,

Hε =

∫ 1

0

[Tε(W (r))]2dr,
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and

I =

∫ 1

0

[ln |W (r)|]2dr.

Note that (I) holds by the continuous mapping theorem, and (II) holds by the occupation times

formula; see de Jong (2004, p.633-635). For (III), it follows that

lim sup
n→∞

E|Hn − Hnε|

≤ lim sup
n→∞

E

∣∣∣∣∣∣
1

n

kn∑

j=1

nj∑

t=nj−1+1

[
ln

∣∣∣∣
xt√
n

∣∣∣∣ − Tε

(
xt√
n

)]
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣

∣∣∣∣∣∣
(4)

+ lim sup
n→∞

E

∣∣∣∣∣∣
1

n

kn∑

j=1

nj∑

t=nj−1+1

Tε

(
xt√
n

)[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ − Tε

(
xnj−1+1√

n

)]∣∣∣∣∣∣
. (5)

For (4), we have by the Cauchy-Schwartz inequality,

lim sup
n→∞

E

∣∣∣∣∣∣
1

n

kn∑

j=1

nj∑

t=nj−1+1

[
ln

∣∣∣∣
xt√
n

∣∣∣∣ − Tε

(
xt√
n

)]
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣

∣∣∣∣∣∣

2

≤


lim sup

n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

E

[
ln

∣∣∣∣
xt√
n

∣∣∣∣ − Tε

(
xt√
n

)]2



·


lim sup

n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

E

[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
]2


 .

It will be shown that the first term converges to zero as ε → 0, and the second term is bounded. For

the first term, let Qε(x) = (ln(ε) − ln |x|)I(|x| < ε) and ft(·) be the density of xt√
t
. Then by using

the substitution y = xt√
t
, we have

lim sup
n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

E

[
ln

∣∣∣∣
xt√
n

∣∣∣∣ − Tε

(
xt√
n

)]2

= lim sup
n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

∫ ∞

−∞
[Qε(

√
t√
n

y)]2ft(y)dy

≤
[
sup

t
sup
y∈R

ft(y)

]
lim sup

n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

∫ ∞

−∞
[Qε(

√
t√
n

y)]2dy

≤
[
sup

t
sup
y∈R

ft(y)

] 
lim sup

n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

√
n√
t




[∫ ∞

−∞
[Qε(x)]2dx

]
→ 0 as ε → 0.

Note that ft(y) is uniformly bounded over t, and that lim sup
n→∞

1
n

∑n
t=1

√
n√
t

= 2. Also note that

lim
ε→0

∫ ∞

−∞
[Qε(x)]2dx = lim

ε→0

∫ ε

−ε

[ln |x| − ln(ε)]2dx = 0
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since the logarithm function and its square are locally integrable. For the second term, again by

using the substitution y =
xnj−1+1√

nj−1+1
, we have

lim sup
n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

E

[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
]2

= lim sup
n→∞

1

kn

kn∑

j=1

E

[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
]2

= lim sup
n→∞

1

kn

kn∑

j=1

∫ ∞

−∞

[
ln

∣∣∣∣∣

√
nj−1 + 1√

n
y

∣∣∣∣∣

]2

fnj−1+1(y)dy

= lim sup
n→∞

1

kn

kn∑

j=1

√
n√

nj−1 + 1

∫ ∞

−∞
[ln |x|]2fnj−1+1(x)dx

= lim sup
n→∞

1

kn

kn∑

j=1

√
n√

nj−1 + 1

[∫ 1

−1

[ln |x|]2fnj−1+1(x)dx +

∫

R\[−1,1]

[ln |x|]2fnj−1+1(x)dx

]

≤


lim sup

n→∞

1

kn

kn∑

j=1

√
n√

nj−1 + 1




[
sup

t
sup

x∈[−1,1]

ft(x)

] [∫ 1

−1

[ln |x|]2dx

]

+


lim sup

n→∞

1

kn

kn∑

j=1

√
n√

nj−1 + 1




[
sup

t

∫

R\[−1,1]

|x|2ft(x)dx

]

< ∞.

Note that the first inequality holds because [ln |x|]2 < |x|2 if |x| > 1. Also note that

[
sup

t
sup

x∈[−1,1]

ft(x)

] [∫ 1

−1

[ln |x|]2dx

]
< ∞

because ft(x) is uniformly bounded over t and the logarithm function and its square are locally

integrable, and that

sup
t

∫

R\[−1,1]

|x|2ft(x)dx < sup
t

∫ ∞

−∞
|x|2ft(x)dx = sup

t
E

∣∣∣∣
xt√

t

∣∣∣∣
2

< ∞

by Assumption 1, 2 and 3. For (5), we have again by the Cauchy-Schwartz inequality,

lim sup
n→∞

E

∣∣∣∣∣∣
1

n

kn∑

j=1

nj∑

t=nj−1+1

Tε

(
xt√
n

)[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ − Tε

(
xnj−1+1√

n

)]∣∣∣∣∣∣

2

≤


lim sup

n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

E

[
Tε

(
xt√
n

)]2



·


lim sup

n→∞

1

n

kn∑

j=1

nj∑

t=nj−1+1

E

[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ − Tε

(
xnj−1+1√

n

)]2

 .

Similarly, it can be shown that the second term converges to zero as ε → 0, and that the first term

is bounded. This finishes the proof. ¥
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Proof of Theorem 3: The NCLS estimator β̃1 satisfies

√
n(β̃1 − β1) =

1√
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ut − ut)

1
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ln |xt| − ln |xt|)
,

where Xt indicate the sample average of Xt. For the numerator, we have

1√
n

kn∑

j=1

nj∑

t=nj−1+1

[
ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ − ln

∣∣∣∣
xt√
n

∣∣∣∣

]
[ut − ut]

=
1√
n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ [ut − ut]

=


 1√

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ut


 − [

√
nut]


 1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣


 .

Note that

1√
n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ut
d−→

∫ 1

0

ln |W (r)|dU(r)

by Theorem 1, and that

√
nut

d−→ U(1)

and

1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
d−→

∫ 1

0

ln |W (r)|dr

by Lemma 1. For the denominator,

1

n

kn∑

j=1

nj∑

t=nj−1+1

[ln |xnj−1+1| − ln |xnj−1+1|][ln |xt| − ln |xt|]

=


 1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ln

∣∣∣∣
xt√
n

∣∣∣∣


 −

[
ln

∣∣∣∣
xt√
n

∣∣∣∣

] 
 1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣


 .

Note that

1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣ ln

∣∣∣∣
xt√
n

∣∣∣∣
d−→

∫ 1

0

(ln |W (r)|)2dr

by Theorem 2, and that

ln

∣∣∣∣
xt√
n

∣∣∣∣
d−→

∫ 1

0

ln |W (r)|dr
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and

1

n

kn∑

j=1

nj∑

t=nj−1+1

ln

∣∣∣∣
xnj−1+1√

n

∣∣∣∣
d−→

∫ 1

0

ln |W (r)|dr

by Lemma 1. ¥

Proof of Theorem 4: By Corollary 3 in Jansson (2002, p.1452), it suffices to show that under

Assumption 1, 2, 3 and 4, Assumption A5(ii) in Jansson (2002), which is restated below, is satisfied.

A5(ii):
√

n(θ̂ − θ) = Op(1) and

sup
t≥1

E

(
sup
θ∈N

||∂Vt(θ)

∂θ′
||2

)
< ∞ for some neighborhood N of θ.

By letting Vt(θ) = ut(β), θ = β1, and θ̂ = β̃1, we have

Vt(θ) = (yt − yt) − θ

(
ln

∣∣∣∣
xt√
n

∣∣∣∣ − ln

∣∣∣∣
xt√
n

∣∣∣∣

)
+ u.

Note that
√

n(β̃1 − β1) = Op(1) by Theorem 3, and that

sup
t≥1

E

(
sup
θ∈N

||∂Vt(θ)

∂θ
||2

)
= sup

t≥1
E

[
ln

∣∣∣∣
xt√
n

∣∣∣∣ − ln

∣∣∣∣
xt√
n

∣∣∣∣

]2

= sup
t≥1

E

[
ln

∣∣∣∣
xt√

t

∣∣∣∣ − ln

∣∣∣∣
xt√

t

∣∣∣∣ + ln

∣∣∣∣

√
t√
n

∣∣∣∣ − ln

∣∣∣∣

√
t√
n

∣∣∣∣

]2

≤ 2 sup
t≥1

E

[
ln

∣∣∣∣
xt√

t

∣∣∣∣ − ln

∣∣∣∣
xt√

t

∣∣∣∣

]2

+ 2 sup
t≥1

E

[
ln

∣∣∣∣

√
t√
n

∣∣∣∣ − ln

∣∣∣∣

√
t√
n

∣∣∣∣

]2

< ∞.

Note that the first term is finite since under Assumption 1, 2 and 3, xt√
t

has the density ft(·) that

is uniformly bounded over t, and the logarithm and its square are locally integrable functions. Also

note that the second term is finite too. ¥

Proof of Theorem 5: The fully modified NCLS estimator β̂1 satisfies

√
n(β̂1 − β1) =

1√
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(û†
t − û

†
t)

1
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ln |xt| − ln |xt|)

=

1√
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)[u†
t + (û†

t − u
†
t)]

1
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ln |xt| − ln |xt|)
.
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Since by Theorem 3,

1√
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)u†
t

1
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ln |xt| − ln |xt|)

d−→

∫ 1

0

ln |W (r)|dU †(r) − U†(1)

∫ 1

0

ln |W (r)|dr

∫ 1

0

(ln |W (r)|)2dr −
[∫ 1

0

ln |W (r)|dr

]2 ,

it suffices to show that

1√
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(û†
t − u

†
t)

1
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ln |xt| − ln |xt|)

=

1√
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)[Ω′
21Ω

−1
22 − Ω̂′

21Ω̂
−1
22 ]∆xt

1
n

∑kn

j=1

∑nj

t=nj−1+1(ln |xnj−1+1| − ln |xnj−1+1|)(ln |xt| − ln |xt|)
p−→ 0.

It is equivalent to show that the numerator converges to zero in probability because the denominator

converges in distribution to an almost surely positive random variable by Theorem 2. To show that

the numerator converges to zero in probability, note that

1√
n

kn∑

j=1

nj∑

t=nj−1+1

(ln |xnj−1+1| − ln |xnj−1+1|)[Ω′
21Ω

−1
22 − Ω̂′

21Ω̂
−1
22 ]∆xt

= [Ω′
21Ω

−1
22 − Ω̂′

21Ω̂
−1
22 ]

1√
n

kn∑

j=1

nj∑

t=nj−1+1

(ln |xnj−1+1| − ln |xnj−1+1|)∆xt

= [Ω′
21Ω

−1
22 − Ω̂′

21Ω̂
−1
22 ] · Cn

p−→ 0 as n → ∞

because Ω̂ is a consistent estimator for Ω by Theorem 4, and Cn is Op(1) by Theorem 1. ¥
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