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Abstract

In this paper we consider the nonparametric estimation of average treatment effects when there
exist mixed categorical and continuous covariates. One distinguishing feature of the approach pre-
sented herein is the use of kernel smoothing for both the continuous and the discrete covariates.
This approach, together with the cross-validation method to select the smoothing parameters, has
the amazing ability of automatically removing irrelevant covariates. We establish the asymptotic
distribution of the proposed average treatment effects estimator with data-driven smoothing pa-
rameters. Simulation results show that the proposed method is capable of performing much better
than existing kernel approaches whereby one splits the sample into subsamples corresponding to
‘discrete cells.’ An empirical application to a controversial study that examines the efficacy of right
heart catheterization on medical outcomes reveals that our proposed nonparametric estimator over-
turns the controversial findings of Connors et al. (1996), suggesting that their findings may be an
artifact of an incorrectly specified parametric model.

Key words and phrases: Average Treatment, Discrete Covariates, Kernel Smoothing, Bootstrap,
Asymptotic normality.

∗Li’s research is partially supported by the Private Enterprise Research Center, Texas A&M University. Racine’s
research is supported by NSF grant BCS 0320284.



1 Introduction

The measurement of average treatment effects, initially confined to the assessment of dose-response
relationships in medical settings, is today widely used across a range of disciplines. Assessing human-
capital losses arising from war (Ichino and Winter-Ebmer (1998)) and the effectiveness of job training
programs (Lechner (1999)) are but two examples of the wide range of potential applications.

Perhaps the most widespread approach towards the measurement of treatment effects involves
estimation of a ‘propensity score’. Estimation of the propensity score (conditional probability of
receiving treatment) was originally undertaken with parametric index models such as the Logit or
Probit, though there is an expanding literature on the semiparametric and nonparametric estimation
thereof (see Hahn (1998) and Hirano et al. (2002)). The advantage of nonparametric approaches in
this setting is rather obvious, as misspecification of the propensity score may impact significantly upon
the magnitude and even the sign of the estimated treatment effect. In many settings mismeasurement
induced by misspecification can be extremely costly – envision for a moment the societal cost of
incorrectly concluding that a novel and beneficial cancer treatment in fact causes harm. Though the
appeal of robust nonparametric methods is obvious in this setting, existing nonparametric approaches
split the sample into ‘cells’ in the presence of categorical covariates, resulting in a loss of efficiency.
Given that datasets used to assess treatment effects frequently contain a preponderance of categorical
data,1 it is not uncommon that the number of discrete cells are larger than the sample sizes. In such
cases the sample splitting frequency method become infeasible. On the other hand, the kernel-based
smoothing cross-validation method can (asymptotically) automatically detect and remove irrelevant
covariates,2 leading to a feasible and accurate nonparametric estimation of the average treatment
effects. Another obvious symptom of the sample-splitting frequency method would be a loss in power
of tests of whether a treatment effect differs from that of no effect.

In this paper we propose a kernel-based nonparametric method for measuring and testing for
the presence of treatment effects that is ideally suited to datasets containing a mix of categorical
(nominal and ordinal) and continuous datatypes. One distinguishing feature of the proposed approach
is the use of kernel smoothing for both the continuous and the discrete covariates. We elect to use
the least-squares conditional cross-validation method to select smoothing parameters for both the
categorical and continuous variables proposed by Hall et al. (2004a), who demonstrate that cross-
validation produces asymptotically optimal smoothing for relevant components, while it eliminates
irrelevant components by oversmoothing. Indeed, in the problem of nonparametric estimation of a
conditional density with mixed categorical and continuous data, cross-validation comes into its own
as a method with no obvious peers.

The rest of the paper proceeds as follows. In Section 2 we outline the nonparametric model and
derive the distribution of the resultant average treatment effect. In Section 3 we undertake some
simulation experiments, which demonstrate that the proposed method is capable of outperforming
existing kernel approaches that require splitting the sample into subsamples (‘discrete cells’). An
empirical application presented in Section 4 involving a study that examines the efficacy of right heart
catheterization on medical outcomes reveals that our approach negates the controversial findings of
Connors et al. (1996) suggesting that their result may be an artifact of an incorrectly specified
parametric model. Main proofs appear in the appendices.

1In the typical medical study, it is common to encounter exclusively categorical data types.
2It is not clear to us how to extend this property of kernel smoothing, which automatically removes irrelevant

covariates, to nonparametric series methods.
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2 The Model

For what follows, we use a dummy variable, ti ∈ {0, 1}, to indicate whether or not an individual
has received treatment. We let ti = 1 for the treated, 0 for the untreated. Letting yi(ti) denote the
outcome, then, for i = 1, . . . , n, we write

yi = tiyi(1) + (1− ti)yi(0).

Interest lies in the average treatment effect defined as follows:

τ = E[yi(1)− yi(0)].

Let xi denote a vector of pre-treatment variables. One issue that instantly surfaces in this setting
is that, for each individual i, we either observe yi(0) or yi(1), but not both. Therefore, in the absence
of additional assumptions, the treatment effect is not consistently estimable. One popular assumption
is the ‘unconfoundedness condition’ (Rosenbaum and Rubin (1983)):

Assumption (A1) (Unfoundedness):
Conditional on xi, the treatment indicator ti is independent of the potential outcome.
Define the conditional treatment effect by τ(x) = E[yi(1) − yi(0)|X = x]. Under Assumption 1

one can easily show that

τ(x) = E[yi|ti = 1, xi = x]− E[yi|ti = 0, xi = x]. (2.3)

The two terms on the right-hand side of (2.3) can be estimated consistently by any nonparametric
estimation technique. Therefore, under A1, the average treatment effects can be obtained via simple
averaging over τ(x).

τ = E[τ(xi)]. (2.4)

Letting E(yi|xi, ti) be denoted by g(xi, ti), we then have

yi = g(xi, ti) + ui, (2.5)

with E(ui|xi, ti) = 0.
Defining g0(xi) = g(xi, ti = 0) and g1(xi) = g(xi, ti = 1), we can re-write (2.5) as

yi = g0(xi) + [g1(xi)− g0(xi)]ti + ui

= g0(xi) + τ(xi)ti + ui,
(2.6)

where τ(xi) = g1(xi)− g0(xi).
From (2.6) it is easy to show that τ(xi) = cov(yi, ti|xi)/var(ti|xi). Letting µ(xi) = Pr(t1 = 1|xi) ≡

E(ti|xi) (because ti = {0, 1}), we may write

τ = E[τ(xi)] = E

{
(ti − µi)yi

var(ti|xi)

}
. (2.7)

We now turn to the discussion of the nonparametric estimation of τ based on (2.7).
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2.1 Nonparametric Estimation of the Propensity Score

We use xc
i and xd

i to denote the continuous and discrete components of xi, with xc
i ∈ Rq and xd

i being
of dimension r. Let w(·) denote a univariate kernel function for the continuous variables, and define
the product kernel function by Wh(xc

i , x
c
j) =

∏q
s=1 h−1

s w
(

xc
is−xc

js

hs

)
, where xc

is is the sth component of
xc

i .
We assume that some of the discrete variables have a natural ordering, examples of which would

include preference orderings (like, indifference, dislike), health conditions (excellent, good, poor), and
so forth. Let x̃d

i denote a r1-vector (say, the first r1 components of xd
i , 0 ≤ r1 ≤ r) of discrete

covariates that have a natural ordering (0 ≤ r1 ≤ r), and let x̄d
i denote the remaining r2 = r − r1

discrete covariates that do not have a natural ordering. We use xd
it to denote the tth component of xd

i

(t = 1, . . . , r).
For an ordered variable, we use the Habbema kernel:

l̃(x̃d
it, x̃

d
jt, λt) =

{
1, if x̃d

it = x̃d
jt,

λ
|x̃d

it−x̃d
jt|

t , if x̃d
it 6= x̃d

jt.
(2.8)

When λt = 0 (λt ∈ [0, 1]), l(x̃d
it, x̃

d
jt, λt = 0) becomes an indicator function, and when λt = 1,

l(x̃d
it, x̃

d
jt, λt = 1) = 1 becomes a uniform weight function.

For an unordered variable, we use a variation on Aitchison and Aitken’s (1976) kernel function
defined by

l̄(x̄d
it, x̄

d
jt) =

{
1, if x̄d

it = x̄d
jt,

λt, otherwise.
(2.9)

Again λt = 0 leads to an indicator function, λt = 1 to a uniform weight function.
Let 1(A) denote an indicator function that assumes the value 1 if A occurs and 0 otherwise.

Combining (2.8) and (2.9), we obtain the product kernel function given by

L(xd
i , x

d
j , λ) =

[
r1∏

t=1

λ
|x̃d

it−x̃d
jt|

t

][
r∏

t=r1+1

λ
1(x̄d

it 6=x̄d
jt)

t

]
. (2.10)

We note that there does not exist a plug-in or even an ad-hoc formula for selecting λt in this
setting. Hence we recommend using least squares cross-validation for selecting λt (t = 1, . . . , r). Our
recommendation is based not only on the mean square error optimality of least squares cross-validation,
but also due to its automatic ability to (asymptotically) remove irrelevant discrete covariates (see Hall
et al. (2004a,b)). This property bears highlighting as we have observed that irrelevant variables tend
to occur surprisingly often in practice. Thus, cross-validation provides an efficient way of guarding
against overspecification of nonparametric models, and thereby mitigates the ‘curse of dimensionality’
often associated with kernel methods.

Since µ(xi) = Pr(ti = 1|xi) = E(ti|xi), we can use either a conditional probability estimator, or
a conditional mean estimator to estimate µ(xi). We will use the latter in this paper. We let t̂(xi) be
the nonparametric estimator of µi ≡ µ(xi) defined by

t̂(xi) =

∑n
j=1 tjKn,ij∑n
j=1 Kn,ij

, (2.11)

where Kn,ij = Wh(xc
i , x

c
j)L(xd

i , x
d
j , λ). By noting that var(ti|xi) = µi(1 − µi), one can estimate the
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average treatment effects by

τ̂ =
1
n

n∑
i=1

(ti − t̂(xi))yiMni

t̂(xi)(1− t̂(xi))
≡ 1

n

n∑
i=1

[
tiyi

t̂(xi)
− (1− ti)yi

1− t̂(xi)

]
Mni, (2.12)

where Mni = Mn(xi) is a trimming set that trims out observations near the boundary.
With the exception of the presence of the trimming function Mni, (2.12) is exactly the same as

the propensity score based estimator considered by Hirano et al. (2002), who used series methods for
estimating µ(xi). As we mentioned earlier, it is not unclear how to use nonparametric series methods
to automatically remove irrelevant discrete covariates. Therefore, in this paper we will consider only
the kernel-based estimation method, which has the advantage of automatically removing irrelevant
covariates (be they continuous or discrete).

To derive the asymptotic distribution of τ̂ we make the following regularity assumptions. Following
Robinson (1988) we use Gα

ν (ν is a positive integer) to denote the smooth class of functions such that
if g ∈ Gα

ν , then g is ν-times differentiable, and g and its partial derivatives (up to order ν) are all
bounded by functions with finite αth moments.

Assumption (A2): (i) (yi, xi, ti) are independently and identically distributed as (yi, xi, ti). (ii) xd
i

takes finitely many different values; for each xd, the support of f(xc, xd), is a compact convex set in xc,
µ(xc, xd) ∈ G4

ν , f(xc, xd) ∈ G4
ν−1, where ν ≥ 2 and ν > q − 2 is a positive integer. (iii) infx∈S f(x) ≥ η

for some η > 0, where S is the support of xi. (iv) σ2(x, t) = var(ui|xi = x, ti = t) is bounded below
by a positive constant on the support of (xi, ti). (v) The trimming function Mn(x) converges to an
indicator function (as n → ∞) 1(x ∈ S), where 1(·) is the usual indicator function, and S is the
support of f(x).

Assumption (A3): (i) w(·) is νth order kernel; it is bounded, symmetric and differentiable up to
order ν . (ii) As n →∞, n

∑q
s=1 h2ν+4

s → 0, and nh2
1 . . . h2

q →∞.
Assumptions (A2) (i)-(iv) are standard smoothness and moment conditions. (A2) (v) implies that,

asymptotically, we only trim a negligible amount of data (near the boundary) so that τ̂ is asymp-
totically efficient (see Theorem 2.1). A trimming set is used in (2.12) for theoretical reasons. Given
that the support of x is a compact and convex set (in xc), without loss of generality, one can assume
that xc ∈ [−1, 1]q. Then one can define a set Aδn =

∏q
s=1[−δs, δs], where δs = δsn < 1 converges to

0 as n → ∞. To avoid boundary bias, one can choose δs = O (hα
s ) for some 0 < α < 1, and define

Mn(xi) = 1(xi ∈ Aδn). In this way the boundary effects disappear asymptotically. In practice, bound-
ary trimming does not appear to be necessary. In both the simulations and the empirical application
reported in Sections 3 and 4, we do not resort to trimming. In the presence of outliers, however, one
might wish to consider trimming.

In order to appreciate the restrictions imposed by (A3), let us assume that hs = h for all s’s. In
this case, (A3) (ii) requires that ν + 2 > q. Using a second order kernel (ν = 2) implies that q < 4 or
q ≤ 3 since q is a positive integer. Thus, a second order kernel can satisfy (A3) if q ≤ 3. When q ≥ 4
(A3) requires the use of a higher order kernel function.

Remark 2.1 If 1 ≤ q ≤ 3 and one uses a second order kernel (ν = 2), then (A3) allows optimal
smoothing. To see this, note that when ν = 2, the optimal smoothing is hs = O

(
n−1/(4+q)

)
. (A3) (ii)

becomes (assuming hs = h) nh8 → 0 and nh2q →∞; optimal smoothing h ∼ n−1/(4+q) satisfies these
conditions for q = 1, 2, 3. For q > 3, (A3) (ii) rules out optimal smoothing.

We will choose the smoothing parameters based on, but not the same as (if q ≥ 4), the least squares
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cross-validation method. The leave-one-out kernel estimator of E(yi|xi) = µ(xi) is given by

t̂−i(xi) =

∑n
j 6=i tjKn,ij∑n
j 6=i Kn,ij

, (2.13)

where Kn,ij = Wh(xc
i , x

c
j)L(xd

i , x
d
j , λ). We choose (h, λ) = (h1, . . . , hq, λ1, . . . , λr) by minimizing the

following least squares cross-validation function

CV (h, λ) =
1
n

n∑
i=1

[
ti − t̂−i(xi)

]2
Sn(xi), (2.14)

where Sn(·) is a weight function that trims out observations near the boundary of the support of xi

(avoiding the excessive boundary bias).
Hall et al (2004a,b) have shown that when xd

s (xc
s) is an irrelevant covariate, the cross-validation

selected smoothing parameter λs (hs) will converge to 1 (∞) in probability, hence, irrelevant covariates
(discrete or continuous) will be automatically smoothed out. Given that the cross-validation method
can automatically remove the irrelevant covariates, we will derive the asymptotic distribution of τ̂
under the condition that all the q continuous variables and the r discrete variables are relevant ones,
i.e., assuming that the irrelevant covariates have already been removed when computing τ̂ . When all
the covariates are the relevant ones, we request that hss and λss are chosen from some shrinking set,
hs ∈ (0, ηn] (s = 1, ..., q) and λs ∈ (0, ηn] (s = 1, ..., r), where ηn → 0 as n →∞ at a rate slower than
any inverse polynomial of n. This assumption can be relaxed as in Hall et al (2004a,b).

We let (h̄1, . . . , h̄q, λ̄1, . . . , λ̄q) denote the cross-validation choices of (h1, . . . , hq, λ1, . . . , λq) that
minimize (2.14). It is well known that the cross-validation method leads to optimal smoothing, but
our assumption (A2) (ii) rules out optimal smoothing when q > 3. Therefore, we suggest using
ĥs = h̄sn

1/(2ν+q)n−1/(q+ν+2) and λ̂s = λ̄sn
ν/(2ν+q)n−ν/(q+ν+2). Thus we have ĥs ∼ n−1/(q+ν+2) and

λ̂s ∼ n−ν/(q+ν+2), satisfying (A2) (ii). When 1 ≤ q ≤ 3, we know that we can choose ν = 2 (second
order kernel), which leads to ĥs ≡ h̄s and λ̂s ≡ λ̄s.

Following the proofs of Hall et al. (2004a), one can show the following:

Lemma 2.2 Under the assumptions (A1) to (A3), and the condition of (A.6) given in the Appendix
A, we have

ĥs = a0
sn

−1/(ν+q+2) + op

(
n−1/(ν+q+2)

)
, for s = 1, ..., q;

λ̂s = b0
sn

−2/(ν+q+2) + op

(
n−2/(ν+q+2)

)
, for s = 1, ..., r.

where a0
ss are finite positive constants, and b0

ss are non-negative finite constants.

The proof of Lemma 2.2, as well as consistent estimators of V1, V2 and Bh,λ, is given in Appendix A.
The empirical applications and simulation results presented in Hall et al. (2004a,b) reveal that

nonparametric estimation based on cross-validated bandwidth selection performs much better than a
conventional frequency estimator (which corresponds to λs = 0 for all s = 1, . . . , r) because the former
does not split the sample in finite-sample applications, which creates efficiency losses.

Having obtained the ĥss and λ̂ss based on the cross-validation method, we estimate τ using ex-
pression (2.12) with t̂(xi) computed using ĥss and λ̂ss. To avoid introducing too many notations, we
will still use τ̂ to denote the resulting estimator of τ .
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2.2 The Asymptotic Distribution of τ̂

The next theorem provides the asymptotic distribution of τ̂ .

Theorem 2.1 Under assumptions (A1) - (A3) we have
√

n(τ̂ − τ −Bh,λ) → N(0, V1 + V2) in distribution,

where Bh,λ =
∑q

s=1 B1s(x)ĥν
s −

∑r
s=1 B2s(x)λ̂s, B1s(x) and B2s(x) are defined in lemma B.2 of Ap-

pendix B, V1 = var(τ(xi)), V2 = E
{
σ2(xi, ti)(ti − µi)2/[µ2

i (1− µi)2]
}
, and σ2(xi, ti) = E(u2

i |xi, ti).

The proof of Theorem 2.1 is given in Appendix A.
Theorem 2.1 shows that our kernel-based estimator of τ̂ is semiparametrically efficient. Let f(x, t)

and fx(x) denote the joint and marginal densities of (xi, ti) and xi, respectively, and let p(ti|xi)
be the conditional probability of ti given xi. Letting

∫
dx =

∑
xd

∫
dxc, µx = µ(x), and using

f(xi, ti) = p(ti|xi)fx(xi), and noting that p(ti = 1|xi) = µi and p(ti = 0|xi) = 1− µi, we have

V2 = E
{
σ2(xi)(ti − µi)2/

[
µ2

i (1− µi)2
]}

=
∑
t=1,0

∫
fx(x)p(t|x)

{
σ2(x, t)(ti − µx)2/

[
µ2

x(1− µx)2
]}

dx

=
∫

fx(x)µxσ2(x, 1)(1− µx)2

µ2
x(1− µx)2

dx +
∫

fx(x)(1− µx)2σ2(x, 0)
µ2

x(1− µx)2
dx

= E

{
σ2(xi, 1)

µi
+

σ2(xi, 0)
1− µi

}
.

(2.16)

Equation (2.16) matches the expression given in Hahn (1998). Thus, V1 + V2 coincides with the
semiparametric efficient bound for this model.

Hirano et al. (2002) consider the problem of estimating average treatment effects using series
estimation methods, and they observe that if one uses the true cov(ti|xi) = µi(1 − µi) to replace the
estimated covariance t̂i(1− t̂i) in (the denominator of) τ̂ , then it results in a less efficient estimator of
τ . The same result holds true for our kernel-based estimator, as the next lemma shows.

Lemma 2.3 If one replaces the denominator t̂i(1−t̂i) in τ̂ by µi(1−µi), and lets τ̃ denote the resulting
estimator of τ , i.e.,

τ̃ =
1
n

n∑
i=1

(ti − t̂i)yiMni

µi(1− µi)
, (2.17)

then √
n(τ̃ − τ −Bh,λ) → N(0, V1 + V2 + V3) in distribution,

where V1 and V2 are the same as that given in Theorem 2.1, while V3 is given by

V3 = E

{[
(ti − µi)2

µi(1− µi)
− 1
]2

τ2
i

}
.

The proof of Lemma 2.3 is given in Appendix A.
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We observe how using the true var(ti|xi) yields a less efficient estimator than τ̂ , which uses the
estimated var(ti|xi). The reason for this result is that one can express

√
n(τ̂ − τ −Bh,λ) as

√
n(τ̂ − τ −Bh,λ) =

√
n(τ̂ − τ̃) +

√
n(τ̃ − τ −Bh,λ).

In Appendix A we show that
√

n(τ̃ − τ −Bh,λ) = Zn1 + Zn2 + Zn3 + op(1) → N(0, V1 + V2 + V3) in
distribution, where Znls (l = 1, 2, 3) are three asymptotically uncorrelated terms, having asymptotic
N(0, Vl) distributions, respectively (l = 1, 2, 3, with definitions appearing in Appendix A). This yields
Lemma 2.3. In Appendix A we also show that

√
n(τ̂ − τ̃) = −Zn3 + op(1). Hence,

√
n(τ̂ − τ −Bh,λ) =

√
n(τ̂ − τ̃) +

√
n(τ̃ − τ −Bh,λ)

= {−Zn3 + op(1)}+ {Zn1 + Zn2 + Zn3 + op(1)}
= Zn1 + Zn2 + op(1) → N(0, V1 + V2) in distribution,

(2.21)

resulting in Theorem 2.1. That is, since the leading term in
√

n(τ̂− τ̃) cancels one of the leading terms
in
√

n(τ̃ − τ − Bh,λ), this gives rise to the result that using an estimated variance v̂ar(ti|xi) is more
efficient than using the true variance var(ti|xi) when estimating τ . If one uses the true propensity
score µi in both the numerator and denominator of τ̂ , then one gets τ̃ , which is more efficient than τ̂
since

√
n(τ̃ − τ) is asymptotically normal with zero mean and asymptotic variance V1. Of course, τ̃ is

not a feasible estimator. Thus, among the class of feasible (‘regular’) estimators, τ̂ is asymptotically
efficient.

An alternative estimator for τ

In order to construct consistent estimator for the aymptotic variance V1 + V2, we need to obtain,
among other things, consistent estimator of the error ui. The above proposed τ̂ is based on estimated
propensity score, it does not estimate the regression mean functional directly. In this subsection we
consider an alternative estimator for τ which is based on direction estimation of E(yi|xi, ti), which of
course also leads to a direct estimator of ui.

Note that (2.6) can also be viewed as a functional coefficient model (smooth coefficient model) as
considered by Chen and Tsay (1993), Cai, Fan and Yao (2000), Cai, Fan and Li (2000), and Li et
al. (2002), among others. Thus an alternative estimator of τ(xi) can be obtained by a local regression
of yi on (1, ti) using kernel weights. In this way we obtain a nonparametric estimator of (g0(xi), τ(xi))′

given by

(
ĝ0(xi)
τ̂n(xi)

)
=

n−1
n∑

j 6=i

(
1
tj

)
(1, tj)Wh,ijLλ̂,ij

−1 n−1
n∑

j 6=i

(
1
tj

)
yjWh,ijLλ̂,ij

 , (2.22)

where Wh,ij = Wh(xc
j , x

c
i ) and Lλ̂,ij = L(xd

i , x
d
j , λ̂). (2.22) gives consistent estimator of g0(xi) and

tan(xi). For example, the resulting estimate of τ(xi) is given by

τ̂n(xi) =
Ê(yiti|xi)− Ê(yi|xi)Ê(ti|xi)

t̂(xi)(1− t̂(xi))
, (2.23)

where Ê(yiti|xi) = n−1
∑n

j=1 tjyjKn,ij/f̂(xi), Ê(yi|xi) = n−1
∑n

j=1 yjKh,ij/f̂(xi), t̂(xi) =
n−1

∑n
j=1 tjKn,ij/f̂(xi), and f̂(xi) = n−1

∑n
j=1 Kn,ij .
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From (2.23) we readily obtain a consistent estimator of E(yi|xi) by ĝ0(xi)+ τ̂n(xi) ti. One can also
estimate τ by τ̂n = n−1

∑n
i=1 τ̂n(xi).

2.3 Testing no Effect Based on Bootstrapping

The result of Theorem 2.1 can be used to test the null hypothesis of ‘no effect’ (τ = 0) of a treatment.
We know that nonparametric estimation results can be sensitive to the choice of smoothing parameters.
Therefore, test results based on asymptotic distributions may also be sensitive to the selection of
smoothing parameters. In order to obtain a more robust test, we suggest using resampling methods
to approximate the null distribution of the test statistic.

Below we present two bootstrap procedures. The first procedure does not involve any null hypoth-
esis and is useful for the construction of error bounds, while the second procedure imposes the null
hypothesis of no treatment effect.

Let zi ≡ {yi, ti, x
c
i , x

d
i }n

i=1, the vector of realizations on the outcome, treatment, and conditioning
information. We wish to construct the sampling distribution of τ̂ , and do so with the following
resampling procedure.

1. Randomly select from {zj}n
j=1 with replacement, and call {z∗i }n

i=1 the bootstrap sample.

2. Use the bootstrap sample to compute the bootstrap statistic τ̂∗ using the same cross-validated
smoothing parameters as were used for τ̂ .

3. Repeat steps 1 and 2 a large number of times, say B times. The empirical distribution function
of {τ̂∗j}B

j=1 will be used to approximate the finite-sample distribution of τ̂ .

We now wish to construct the sampling distribution of τ̂ under the null of no treatment effect, and
do so with the following bootstrap procedure.

1. Randomly select from {yj}n
j=1 from {zj}n

j=1 with replacement and call this {y∗j }n
j=1. Next, call

{z∗i }n
i=1 ≡ {y∗j , tj , xc

j , x
d
j}n

j=1 the bootstrap sample. Note that we have broken any systematic
relationships between the outcome and covariates, thereby imposing the null of no treatment
effect on the sample {z∗i }n

i=1.

2. Use the bootstrap sample to compute the bootstrap statistic τ̂∗ using the same cross-validated
smoothing parameters as were used for τ̂ (τ̂n).

3. Repeat steps 1 and 2 a large number of times, say B times. The empirical distribution function
of {τ̂∗j}B

j=1 will be used to approximate the finite-sample distribution of τ̂ under the null.

4. A test of the null of no treatment follows directly. Let {τ̂∗j}B
j=1 be the ordered (in an ascending

order) statistic of the B bootstrap statistics, and let ˆ̂τ∗α denote the αth percentile of {τ̂∗j }B
j=1.

We reject H0 if τ̂ > τ̂∗α at the level α.

Let V̂1, V̂2 and B̂h,λ denote some consistent estimators of V1, V2 and Bh,λ, respectively (say,
as given in Appendix A), and let V̂ ∗

1 , V̂ ∗
2 and B̂∗

h,λ, denote their bootstrap counterparts, obtained
by replacing (yi, xi, ti) with (y∗i , x

∗
i , t

∗
i ) in V̂1, V̂2 and B̂h,λ, respectively. Note that the bootstrap

counterpart quantities use the same smoothing parameters (they do not require re-cross-validation).
The following theorem shows that the bootstrap method works.
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Theorem 2.2 Under the same conditions as in Theorem 2.1, define T ∗
n =

√
n(τ̂∗− B̂∗

h,λ)/
√

V̂ ∗
1 + V̂ ∗

2 .
Then

T ∗
n |{xi, ti, yi}n

i=1 → N(0, 1)

in distribution in probability.3

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1 and is thus omitted here.
Let T̂n =

√
n(τ̂ − B̂h,λ)/

√
V̂1 + V̂2. Then under H0 both T̂n and T̂ ∗

n have asymptotic standard
normal distributions. Compare the differences between the numerators of the two test statistics:√

n(τ̂ − τ̂∗) +
√

n(B∗
h,λ − Bh,λ) =

√
n(τ̂ − τ̂∗) +

√
nOp

(∑q
s=1 hν+2

s

)
=
√

n (τ̂ − τ̂∗) + op(1) because
both B̂h,λ and B̂∗

h,λ are of order O (
∑q

s=1 hν
s) and their differences are of smaller order B̂h,λ − B̂∗

h,λ =
Op

(∑q
s=1 hν+2

s

)
. Therefore, when one uses bootstrap procedures to conduct the test, one does not

need to compute Bh,λ (and B∗
h,λ). This is yet another advantage of using bootstrap procedures in this

setting.

3 Simulations

In this section we report simulations designed to examine the finite sample performance of the pro-
posed methods. We highlight performance in mixed data settings, a feature that existing methods
do not handle well, and consider testing for the null of no treatment effect using two kernel meth-
ods, a nonparametric propensity score model, and a nonparametric frequency propensity score model
(traditional cell-based estimator).

We consider the following data generating process (DGP):

yi = g(xc
i , x

d
i , ti) + εi

= g0(xc
i , x

d
i ) + [g1(xc

i , x
d
i )− g0(xc

i , x
d
i )]ti + εi

= g0(xc
i , x

d
i ) + τ(xc

i , x
d
i )ti + εi

= β0 + β1x
c
i1 + β2(xc

i1)
2 + β3x

d
i1 + β4x

d
i2 + τ(xc

i , x
d
i )ti + εi,

(3.25)

where xc
1 is U [−1, 1] and xd

1 ∈ {0, 1} with P [xd
1 = 1] = 0.2 and xd

2 ∈ {0, 1} with P [xd
1 = 1] = 0.6,

and let (β0, β1, β2, β3, β4, τ)′ = (1, 2, 2, 2, 0, τ), while σε = 1 (xd
2 is irrelevant). These parameter choices

yield an adjusted R2 of around 66%.
Our model for the propensity score (Probit) is

t∗i = γ0 + γ1x
c
i1 + γ2(xc

i1)
2 + γ3x

d
i1 + γ4x

d
i2 + ηi,

ti =
{

1 if Φ(t∗i ) > 0.5
0 otherwise.

(3.26)

where ση = 1 and Φ is the standard normal CDF. We set (γ0, γ1, γ2, γ4, γ4)′ = (−1/2, 1/4, 1/4, 1/4, 0)
(xd

2 is irrelevant). We fix the sample size at for n = 250. These parameter choices yield a correct
classification ratio of roughly 60%.

For a given value of τ , we generate each replication in the following manner:

1. Draw a sample of size n for {xc
1, x

d
1, x

d
2, η, ε}, which then determines the values of {t, y}.

3For the definition of convergence in distribution in probability, see Li et al (2003).
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2. Using {ti, yi, x
c
i1, x

d
i1, x

d
i2}n

i=1, compute τ̂ using each of the four kernel methods.

3. Compute tests for the null of no effect for each of the four kernel methods based on 199 bootstrap
replications under H0 at nominal levels α = 0.10, 0.05, 0.01.

4. Repeat steps 1 through 3 B = 1000 times for values of τ in {0.0, 0.25, 0.50, 0.75}.

All bandwidths were selected via cross-validation based upon two restarts of a multidimensional
numerical search routine allowing for different bandwidths for all variables.

The results are summarized in tables 1 and 2. Table 1 presents results for the proposed method
which employs nonparametric kernel approach appropriate for mixed data (‘smooth’), while Table 2
presents the traditional frequency approach, which involves splitting the data into subsamples (‘non-
smooth’).

Table 1: Empirical Rejection Frequencies for Smooth Propensity Score Model.
τ α = 0.10 α = 0.05 α = 0.01
0.00 0.10 0.04 0.01
0.25 0.65 0.46 0.15
0.50 0.97 0.92 0.58
0.75 1.00 0.99 0.94

Table 2: Empirical Rejection Frequencies for Non-Smooth Propensity Score Model.
τ α = 0.10 α = 0.05 α = 0.01
0.00 0.07 0.03 0.00
0.25 0.57 0.36 0.10
0.50 0.96 0.89 0.55
0.75 1.00 1.00 0.92

We observe first that the smooth approach is correctly sized and has power in the direction of
the alternative DGP. The traditional nonsmooth propensity score approach suffers from minor size
distortions, suggesting that it is more susceptible to efficiency losses arising from sample splitting than
the nonsmooth functional coefficient approach. The important comparison lies with the performance
of the proposed smooth and the traditional nonsmooth approaches. It can be seen that, as expected,
sample splitting leads to efficiency loss, which manifests itself as a loss in power.

Note that we have only considered one binary irrelevant covariate case, when there exists more
irrelevant covariates, or one irrelevant covariate that takes more than two different values, the power
loss becomes more substantial. Summarizing, the proposed smooth test is more powerful that a
traditional frequency-based (nonsmooth) test when confronted with mixed data settings, which are
often encountered in applied settings.
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4 An Empirical Application

We will be interested in models that make use of the following variables4 which were taken from the
Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT).
The data was obtained from the Department of Health Evaluation Sciences at the University of
Virginia5:

• Y : Outcome - 1 if death occurred within 180 days, zero otherwise

• T : Treatment - 1 if a Swan-Ganz catheter was received by the patient when they were hospital-
ized, zero otherwise.

• X1: Sex - 0 for female, 1 for male

• X2: Race - 0 if black, 1 if white, 2 if other

• X3: Income - 0 if under 11K, 1 if 11-25K, 2 if 25-50K, 3 if over 50K

• X4: Primary disease category - 1 if Acute Respiratory Failure, 2 if Congestive Heart Failure,
3 if Chronic Obstructive Pulmonary Disease, 4 if Cirrhosis, 5 if Colon Cancer, 6 if Coma, 7 if
Lung Cancer, 8 if Multiple Organ System Failure with Malignancy, 9 if Multiple Organ System
Failure with Sepsis

• X5: Secondary disease category - 1 if Cirrhosis, 2 if Colon Cancer, 3 if Coma, 4 if Lung Cancer,
5 if Multiple Organ System Failure with Malignancy, 6 if Multiple Organ System Failure with
Sepsis, 7 if NA

• X6: Medical insurance - 1 if Medicaid, 2 if Medicare, 3 if Medicare & Medicaid, 4 if No insurance,
5 if Private, 6 if Private & Medicare

• X7: Age - age (converted to years from Y/M/D data stored with 2 decimal accuracy)

Table 3 presents some summary statistics on the variables described above. The number of cells
in this dataset is 18,144 which exceeds the number of records, 5,735.

Note that, as was found by Connors et al (1996), those receiving right-heart catheterization are
more likely to die within 180 days than those who did not. Interestingly, Lin et al (1998) also find that
when further adjustments were made that the risk of death is lower than that reported by Connors
et al (1996) and they conclude that “results of our sensitivity analysis provide additional insights into
this important study and imply perhaps greater uncertainty about the role of RHC than those stated
in the original report”.

4The Connors et al (1996) study considered 30-day, 60-day, and 180-day survival and they also considered categories
of admission diagnosis and categories of comorbidities illness as covariates. We restrict attention to 180-day survival
by way of example, while we ignore admission diagnosis and comorbidities illness due to the prevalence of missing
observations among these covariates. As it is our intention to demonstrate the utility of the proposed methods on actual
data and not to become immersed in ad hoc adjustments that must be made to handle the prevalence of missing data for
these additional covariates, we beg the reader’s forgiveness in this matter. Nevertheless, even though we omit admission
diagnosis and comorbidities illness as covariates, we indeed detect results that are qualitatively and quantitatively similar
to those reported in Connors et al (1996) and Lin et al (1998).

5We are most grateful to Dr. B. Knaus and Dr. F. Harrell Jr. for making this data available to us, and also to Luz
Saavedra for helping with data conversion.
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Table 3: Summary Statistics
Variable Mean StdDev Minimum Maximum
Outcome 0.65 0.48 0 1
Treatment 0.38 0.49 0 1
Sex 0.56 0.50 0 1
Race 0.90 0.46 0 2
Income 0.75 0.99 0 3
Primary disease category 3.98 3.34 1 9
Secondary disease category 6.66 0.84 1 7
Medical insurance 3.81 1.79 1 6
Age 61.38 16.68 18 101.85

Lin et al (1998) note that cardiologists and intensive care physician’s belief in the efficacy of RHC
for guiding therapy for certain patients is so strong that “it has prevented the conduct of a randomized
clinical trial” (RCT) while Connors et al (1996) note that “the most recent attempt at an RCT was
stopped because most physicians refused to allow their patients to be randomized”.

The confusion matrix for the parametric propensity score model is

A/P 0 1
0 2841 710
1 1197 987
Sample Size 5735
CR(0-1) 66.7%
CR(0) 80.0%
CR(1) 45.2%

The confusion matrix for the nonparametric propensity score model is

A/P 0 1
0 2916 635
1 1092 1092
Sample Size 5735
CR(0-1) 69.9%
CR(0) 82.1%
CR(1) 50.0%

An examination of these confusion matrices demonstrates how, for this dataset, the nonparametric
approach is better able to predict who receives treatment and who does not than the Logit model.
The parametric approach correctly predicts 3,828 of the 5,735 patients while the nonparametric ap-
proach correctly predicts 3,976 patients thereby predicting an additional 148 patients correctly. The
differences between the parametric and nonparametric versions of the weighting estimator reflect this
additional number of correctly classified patients along with differences in the estimated probability of
treatment themselves. The increased risk suggested by the parametric model drops from a 7% increase
for those receiving RHC to roughly 0%.
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Based upon the parametric propensity score estimate, the treatment effect is 0.072, while the
nonparametric propensity score estimate yields a treatment effect of -0.001. We then bootstrapped
the sampling distribution of these estimates, and obtained 95% coverage error bounds of [0.044, 0.099]
for the parametric approach and [−0.038, 0.011] for the nonparametric approach. Thus, we overturn
the parametric testing result and conclude that patients receiving RHC treatment does not suffer an
increased risk.

We also conducted some sensitivity analysis. Using likelihood cross-validation rather than least-
squares cross-validation yielded 95% coverage error bounds of [−0.034, 0.013]. Out of concern that the
nonparametric results might reflect ‘overfitting’, we computed the leave-one-out kernel predictions, and
again bootstrapped their error bounds. For the least-squares cross-validated estimates we obtained
95% coverage error bounds of [−0.015, 0.037], while for the likelihood cross-validated estimates we
obtained 95% coverage error bounds of [−0.007, 0.039].

These error bounds indicate that the parametric model suggests a statistically significant increased
risk of death for those receiving RHC, while the nonparametric model yields no significant difference.
This does not appear to be a result of a loss of efficiency due to using the nonparametric propensity
score rather than the parametric one as can be seen by a comparison of the out of sample prediction
results of the confusion matrices, because if the parametric model is correctly specified, one should
expect that the parametric model predicts better than a nonparametric model.

A Appendix A

Definition of V̂1, V̂2 and B̂h,λ

V̂1 = n−1
∑n

i=1[τ̂ni − m̂τ ]2, where τ̂ni is defined in (2.23), m̂τ = n−1
∑n

j=1 τ̂nj is the sample mean
of τ̂n(xj).

V̂2 = n−1
∑n

i=1 û2
i (ti − t̂i)2/[t̂2i (1 − t̂2i )], where t̂i is the kernel estimator of E(ti|xi), ûi = ĝ0(xi) +

tiτ̂n(xi), ĝ0(xi) is defined in (2.22).
To estimate Bh,λ we need to estimate B1s (s = 1, ..., q) and B2s (s = 1, ..., r), these quantities can be

estimated by estimating f(xi), m(xi) = g0(xi)+µ(xi)τ(xi) by f̂(xi) and m̂(xi) = ĝ0(xi)+ µ̂(xi)τ̂n(xi),
respectively, and their derivatives estimators can be obtained by taking derivatives (since the kernel
function is differentiable up to order ν). Finally, replacing the population mean E(.) by sample mean
lead consistent estimators for B1s and B2s, and hence for Bh,λ.

In Appendices A and B, because Mn(x) → 1 on the support of f(x), we will omit the trimming
function Mni. Also, we will use the notation (s.o.) which is defined as follows: When Bn is the
leading term of An, we write An = Bn + (s.o.), where (s.o.) denotes terms having probability order
smaller than Bn. Also, when we write A(xi) = B(xi) + (s.o.), it means that n−1

∑n
i=1 A(xi) =

n−1
∑n

i=1 B(xi) + (s.o.).

Proof of Lemma 2.2
We use the notation g

(l)
s (x) to denote ∂lg(x)/∂(xc

s)
l, the lth order partial derivative of g(·) with

respect to xc
s. Also, when xd

s is an unordered categorical variabe, define an indicator function Is(., .)
by

Is(xd, zd) = 1
(
xd

s 6= zd
s

) r∏
t6=s

1
(
xd

t = zd
t

)
(A.1)

When xd
s is an ordered categorical variabe, for notational simplicity, we assume that xd

s takes (finitely
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many) consecutive integer values, and Is(., .) is defined by

Is(xd, zd) = 1
(
|xd

s − zd
s | = 1

) r∏
t6=s

1
(
xd

t = zd
t

)
. (A.2)

When using a second order kernel (ν = 2), Hall et al. (2004a,b) have shown that

CV (h, λ)|ν=2 =
∑
xd

∫ {
κ2

2

q∑
s=1

[
(fg)(2)s (x)− g(x)f (2)

s (x)
]
h2

s

+
∑
vd

r∑
s=1

Is(vd, xd)
[
g(xc, vd)− g(x)

]
f(xc, vd)λs

}2

S(x)f(x)−1dxc

+
κq

nh1 . . . hq

∑
xd

∫
σ2(x)S(x)dxc + (s.o.),

(A.3)

where κ2 =
∫

w(v)v2dv, κ =
∫

w(v)2dv, and Is(·) is defined in (A.1) and (A.2).
By following exactly the same derivation as in Hall et al. (2004a,b), one can show that, with a νth

order kernel,

CV (h, λ) =
∑
xd

∫ { q∑
s=1

B1s(x)hν
s +

r∑
s=1

B2s(x)λs

}2

S(x)f(x)−1dxc

+
κq

nh1 . . . hq

∑
xd

∫
σ2(x)S(x)dxc + (s.o.), (A.4)

where B1s(x) = (κq/ν!)[(fg)(ν)
s (x) − g(x)f (ν)

s (x)] (s = 1, . . . , q), κq =
∫

w(v)vqdv, and B2s(x) =∑
vd Is(vd, xd)[g(xc, vd) − g(x)]f(xc, vd), and (s.o.) denote terms having smaller probability orders,

uniformly in (h, λ) ∈ (0, ηn]p+r.
The only difference between (A.3) and (A.4) are that h2

s being replaced by hν
s and that the definition

of B1s is slightly difference. Of course, (A.4) reduces to (A.3) if ν = 2.
Define as via hs = asn

−1/(2ν+q) (s = 1, ..., q), and bs via λs = bsn
−ν/(2ν+q) (s = 1, ..., r), then (A.4)

can be written as C(h, λ) = n−2ν/(2ν+q)χ(a, b) + (s.o.) uniformly in (h, λ) ∈ (0, ηn]p+r, where

χ(a, b) =
∑
xd

∫ { q∑
s=1

B1s(x)aν
s +

r∑
s=1

B2s(x)bs

}2

S(x)f(x)−1dxc

+
κq

a1 . . . aq

∑
xd

∫
σ2(x)S(x)dxc. (A.5)

We assume that

There exist unique finite positive constants a0
s (s = 1, ..., q) and

finite non-negative constants λs (s = 1, ..., r) that minimzes χ(a, b). (A.6)

Define a (q + r) × (q + r) positive semidefinite matrix A via its tth row and sth column as At,s =∑
xd

∫
B̄t(x)B̄(xs)S(x)f(x)−1dxc, where B̄t(x) = B1t(x) for t = 1, ..., q, and B̄q+t(x) = B2t(x) for
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t = 1, ..., r, then it can be easily shown that a sufficient condition for (A.6) to hold is that A is positive
definite.

From (A.4), (A.5) and (A.6), we obtain that h̄s = a0
sn

−ν/(2ν+q) + op(n−ν/(2ν+q)) and λ̄s =
λ0

sn
−1/(2ν+q) + op(n−1/(2ν+q)), Lemma 2.1 then follows from this since ĥs = h̄sn

1/(2ν+q)n−1/(ν+q+2)

and λ̂s = λ̄sn
ν/(2ν+q)n−ν/(ν+q+2).

Proof of Theorem 2.1
In order to make the proof of Theorem 2.1 more manageable we make a number of simplifying

assumptions. (i) we replace t̂(xi) in the definition of τ̂ by the leave-one-out estimator t̂−i(xi), or one
can redefine τ̂ by replacing t̂(xi) by t̂−i(xi) in τ̂ . (ii) we replace ĥs by the non-stochastic quantity
h0

s = a0
sn

−1/(ν+q+2) (s = 1, ..., q), and λ̂s by λ0
s = b0

sn
−2/(ν+q+2) (s = 1, ..., r). (iii) when we evaluate

the probability order of a term, we sometimes assume that hs = h for all s = 1, . . . , q, to simplify
the notation. For example, we will write O(hν) for O(

∑q
s=1 hν

s) to save space. Note that the proof
carries through without making these simplifying assumptions. For example, ignoring the leave-one-
out estimator only introduces some extra smaller order terms. Lemma 2.2 shows that ĥs/hs−1 = op(1),
and λ̂s/λs − 1 = op(1), and by the stochastic equicontinuity result of Ichimura (2000), we know that
the asymptotic distribution of τ̂ remains the same whether one uses ĥs’s and λ̂s’s, or the non-stochastic
leading term of them (h0

s’s and λ0
s’s).

We will repeatedly use the U-statistic H-decomposition in the proof below. We sometimes write
n−1 for (n− 1)−1 since this approximation does not affect the order of any quantity considered.

We will use the short-hand notation t̂i = t̂−i(xi) and f̂i = f̂−i(xi), i.e.,

t̂i =
n−1

∑n
j 6=i tjKn(xj , xi)

f̂i

, (A.7)

with f̂i = n−1
∑n

j 6=i Kn(xj , xi).
Define vi = ti−E(ti|xi) ≡ ti−µi, so that ti = µi +vi, replacing tj by µj +vj in the right-hand-side

of (A.7) we have
t̂i = µ̂i + v̂i, (A.8)

where

µ̂i =
n−1

∑n
j 6=i µjKh(xj−xi

h )

f̂i

, (A.9)

and

v̂i =
n−1

∑n
j 6=i vjKh(xj−xi

h )

f̂i

. (A.10)

We use the short-hand notation wi and w̃i defined by

wi = µi(1− µi) and w̃i = t̂i(1− t̂i). (A.11)

We use the following identities to handle the random denominator of τ̂ :

1
w̃i

=
1
wi

+
wi − w̃i

w2
i

+
(wi − w̃)2

w2
i w̃i

. (A.12)

Proof of Theorem 2.1
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We have defined τ̃ in (2.17). We now define another intermediate quantity τ̄ (vi = ti − µi and we
omit Mni for notational simplicity):

τ̄ =
1
n

n∑
i=1

(ti − µi)yi

wi
≡ 1

n

n∑
i=1

viyi

wi
. (A.13)

By adding and subtracting terms in
√

n(τ̂ − τ), we get
√

n(τ̂ − τ) =
√

n[(τ̂ − τ̃) + (τ̃ − τ̄) + (τ̄ − τ)]
= J1n + J2n + J3n, (A.14)

where J1n =
√

n(τ̂ − τ̃), J2n =
√

n(τ̃ − τ̄), and J3n =
√

n(τ̄ − τ).
Recall that wi = µi(1− µi), w̃i = t̂i(1− t̂i). Using (A.12), we get from (2.12)

τ̂ =
1
n

n∑
i=1

[
ti − t̂i

]
yi

[
1
wi

+
wi − w̃i

w2
i

+
(wi − w̃i)2

w2
i w̃i

]
≡ L1n + L2n + L3n, (A.15)

where

L1n = n−1
n∑

i=1

[(ti − t̂i)yi]/wi ≡ τ̃ ,

L2n = n−1
n∑

i=1

[(ti − t̂i)(wi − w̃i)yi]/[w2
i ],

L3n = n−1
n∑

i=1

[(ti − t̂i)(wi − w̃i)2yi]/[w2
i w̃i].

(A.16)

Note that L1n = τ̃ , therefore, by (A.15) we have

J1n =
√

n(τ̂ − τ̃) =
√

nL2n +
√

nL3n. (A.17)

Lemmas A.3 and A.4 (see below) give the leading terms of J1n and J2n.
Using (2.6) and adding and subtracting terms, we write J3n =

√
n(τ̄ − τ) as

J3n = n−1/2
n∑

i=1

(viyi/wi − τ)

= n−1/2
n∑

i=1

(viyi/wi − τi) + n−1/2
n∑

i=1

(τi − τ)

= n−1/2
n∑

i=1

[vi(g0i + τiti + ui)/wi − τi] + n−1/2
n∑

i=1

(τi − τ). (A.18)
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By Eq. (A.18), Lemma A.3 and Lemma A.4, we obtain from Eq. (A.14) that
√

n(τ̂ − τ −Bh,λ) = J1n + J2n − n1/2Bh,λ + J3n

= n−1/2
n∑

i=1

vi[2µi − 1]τi/wi − n−1/2
n∑

i=1

vi(g0i + τiµi)/wi]

+n−1/2
n∑

i=1

{vi(g0i + τiti + ui)/wi − τi}+ n−1/2
n∑

i=1

(τi − τ) + op(1)

= n−1/2
n∑

i=1

viui

wi
+ n−1/2

n∑
i=1

(τi − τ) + op(1)

≡ Zn2 + Zn3 + op(1), (A.19)

where the definitions of Zn2 = n−1/2
∑n

i=1 viui/wi and Zn3 = n−1/2
∑n

i=1(τi − τ), also, in the above
we have used the following cancellation result (wi = µi(1− µi)):

n−1/2
n∑

i=1

[
vi(ti − µi)

wi
− 1
]

τi + n−1/2
∑

i

vi

[
2µi − 1

wi

]
τi

= n−1/2
n∑

i=1

[
v2
i − µi(1− µi) + 2viµi − vi

wi

]
τi

= n−1/2
n∑

i=1

[
v2
i − µi + µ2

i + 2viµi − vi

wi

]
τi

= n−1/2
n∑

i=1

[
(µi + vi)2 − (µi + vi)

wi

]
τi

= 0, (A.20)

since (µi + vi)2 − (µi + vi) ≡ t2i − ti = 0 (because t2i = ti).
Theorem 2.1 follows from (A.19) and the Lindeberg central limit theorem.

Proof of Lemma 2.3
From

√
n(τ̃ − τ −Bh,λ) =

√
n(τ̃ − τ̄ −Bh,λ) +

√
n(τ̄ − τ) = J2n−n1/2Bh,λ + J3n, and using (A.18)

and Lemma A.4, we have (vi = ti − µi)
√

n(τ̃ − τ −Bh,λ) = J2n − n1/2Bh,λ + J3n

= −n−1/2
n∑

i=1

vi(g0i + τiµi)/wi

+ n−1/2
n∑

i=1

[vi(g0i + τiti + ui)/wi − τi] + n−1/2
n∑

i=1

(τi − τ) + op(1)

= n−1/2
n∑

i=1

[
v2
i

wi
− 1]τi + n−1/2

n∑
i=1

viui

wi
+ n−1/2

n∑
i=1

(τi − τ) + op(1)

≡ Zn1 + Zn2 + Zn3 + op(1)
d→ N(0, V1 + V2 + V3) by the Lindeberg central limit theorem, (A.21)
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where Zn1 and Zn2 are defined in (A.19), Zn3 = n−1/2
∑n

i=1

[
v2

i
wi
− 1
]
. Note that by Lemma A.3 and

(A.20) we know that J1n = −Zn3 + op(1).

Below we present some lemmas that are used in proving Theorem 2.1. We will use the following
identity to handle the random denominator in the kernel estimator. For any positive integer p we have

1

f̂i

=
1
fi

+
fi − f̂i

fif̂i

=
1
fi

+
p∑

l=1

(fi − f̂i)l

f l+1
i

+
(fi − f̂i)p+1

fp
i f̂i

. (A.22)

For example, in Lemma A.1 below we need to evaluate a term like n−1
∑n

i=1 viyiv̂i/w2
i . v̂i =

n−1
∑

j 6=i vjKn,ij/f̂i has a random denominator f̂i. By computing the second moment of the term
associated with (fi− f̂i)l/f l+1

i , one can easily show that this term has an smaller order than the main
term that is associated with 1/fi. Also, using the uniform convergence rate of supx∈S |f̂(x)− f(x)| =
Op(

∑q
s=1 hν

s + ln n(nh1...hq)−1), together with infx∈Sf(x) ≥ δ > 0, one can easily show the last
remainder term associated with (fi − f̂i)p+1/(fp

i f̂i) is of smaller order than the first leading term (by
choosing p to be sufficiently large). Therefore, using (A.22) we have

n−1
n∑

i=1

viyiv̂i/w2
i = n−1

n∑
i=1

viyiv̂if̂i/(fiw
2
i ) + (s.o.),

Now the leading term n−1
∑n

i=1 viyiv̂if̂i/(fiw
2
i ) does not contain the random denominator f̂i and its

probability order can be easily evaluated by using H-decomposition of U-statistics.

Lemma A.1 L2n = n−1
∑

i vi(2µi − 1)τi/wi + op

(
n−1/2

)
.

Proof: Recall that wi = µi(1− µi), w̃i = t̂i(1− t̂i), ti = µi + vi, and t̂i = µ̂i + v̂i, we have

L2n = n−1
n∑

i=1

yi(ti − t̂i)[µi − t̂i − (µ2
i − t̂2i )]/w2

i

= n−1
n∑

i=1

yi(ti − t̂i)(µi − t̂i)[1− (µi + t̂i)]/w2
i

= n−1
n∑

i=1

yi(µi − µ̂i + vi − v̂i)(µi − µ̂i − v̂i)[1− (µi + µ̂i + v̂i)]/w2
i

= −n−1
n∑

i=1

yiviv̂i[1− 2µi]/w2
i + op

(
n−1/2

)
(using µ̂i = µi + (µ̂i − µi) and Lemma B.3)

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i

yivivj(2µi − 1)Kn,ij/w2
i + op

(
n−1/2

)
(by Lemma B.2 and E(vi|xi) = 0)

=
2

n(n− 1)

∑
i

∑
j>i

Hn,a(zi, zj) + (s.o.),

(A.24)
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where Hn,a(zi, zj) = (1/2)vivj{yi(1− 2µi)/[fiw
2
i ] + yj(2µj − 1)/[fjw

2
j ]}Kn,ij and zi = (xi, ti, ui).

Define H1n,a(zi) = E[Hn,a(zi, zj)|zi] = (1/2)viτi(2µi − 1)/w2
i + (s.o.) by Lemma B.4) (i).

Hence, by the U-statistic H-decomposition we have

L2n =
2

n(n− 1)

∑
i

∑
j>i

Hn,a(zi, zj) + (s.o.)

= 0 + (2/n)
∑

i

H1n,a(zi) +
2

n(n− 1)

∑
i

∑
j>i

{Hn,a(zi, zj)−H1n,a(zi)−H1n,a(zj) + 0}+ (s.o.),

= n−1
∑

i

viτi(2µi − 1)/wi + Op

(
(nhq/2)−1

)
+ (s.o.) = n−1

∑
i

viτi(2µi − 1)/wi + op

(
n−1/2

)
(A.25)

by Lemma B.4 and assumption (A3), where we also used the fact that the degenerate U-statistic

Un,a
def
= [2/n(n− 1)]

∑
i

∑
j>i{Hn,a(zi, zj)−H1n,a(zi)−H1n,a(zj)} has a second moment of E[U2

n,a] =
O
(
(n2hq)−1

)
, so Un,a = Op

(
(nhq/2)−1

)
.

Lemma A.2 L3n = O
(
h2ν + h2(nhq)−1

)
= op

(
n−1/2

)
.

Proof: Using the identity of

1
w̃i

=
1
wi

+
p∑

l=1

(wi − w̃i)l

wl+1
i

+
(wi − w̃i)p+1

wp
i w̃i

, (A.26)

one can show that the leading term of L3n is L3n,1 = n−1
∑

i yi(ti− t̂i)(wi− w̃i)2/w3
i . This is because,

(i) it is easy show that (by computing the second moment of them) the term associated with (wi −
w̃i)l/wl+1

i has an smaller order than the main term that is associated with 1/wi. Also, using the
uniform convergence rate of supx∈S |µ̂(x) − µ(x)| = Op(

∑q
s=1 hν

s + ln n(nh1...hq)−1), together with
infx∈Sµ(x) ≥ c > 0, and supx∈Sµ(x) ≤ c−1 < 1 (0 < c < 1), one can easily show the last remainder
term associated with (wi − w̃i)p+1/(wp

i w̃i) is of smaller order than the first leading term (by choosing
p to be sufficiently large if needed).

By noting that ti = µi + vi and wi − w̃i = (µi − t̂i)[1− (µi + t̂i)], we have

L3n,1 = n−1
∑

i

yi(ti − t̂i)(wi − w̃i)2/w3
i

= n−1
∑

i

[g0i + τiti + ui][(µi − t̂i) + vi](µi − t̂i)2[1− (µi + t̂i)]2/w3
i

∼ n−1
n∑

i=1

[vi(µi − t̂i)2 + (µi − t̂i)3] = O
(
h2ν + h2(nhq)−1

) (A.27)

by Lemma B.3, where in the above A ∼ B means that A = B + (s.o.).

Lemma A.3 J1n = n−1/2
∑

i vi(2µi − 1)τi/wi + op(1).

Proof: It follows from lemmas A.1 and A.2.

Lemma A.4 J2n = Bh,λ − 1√
n

∑n
i=1 v1i(g0i + τiµi)/wi + op(1).
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Proof: Using t̂i = µ̂i + v̂i, we have J2n = n−1/2
∑n

i=1(µi − t̂i)yi/wi = n−1/2
∑n

i=1(µi − µ̂i)yi/wi −
n−1/2

∑n
i=1 v̂iyi/wi ≡ J2n,1 − J2n,2.

We consider Jn2,1 first.

J2n,1 ≡ n−1/2
n∑

i=1

(µi − µ̂i)yi/wi = Bh,λ + Op

(
n1/2hν+2 + h(nhq)−1/2

)
by Lemma B.2, where Bh,λ is defined in lemma B.2.

Next,

J2n,2 = n−1/2
n∑

i=1

v̂if̂iyi/(fiwi) + op(1) (by using Eq. (A.22))

= n−1/2(n− 1)−1
n∑

i=1

n∑
j 6=i

vjyiKn,ij/(fiwi)

=
2

n1/2(n− 1)

n∑
i=1

∑
j>i

(1/2){vjyi/(fiwi) + viyj/(fjwj)}Kn,ij

= n1/2 2
n(n− 1)

n∑
i=1

∑
j>i

Hn,b(zi, zj),

(A.29)

where Hn,b(zi, zj) = (1/2){vjyi/(fiwi) + viyj/(fjwj)}Kn,ij , and zi = (xi, ti, ui).
By noting that E(vi|xi) = 0 we have (using yj = g0j + τj(µj + vj) + uj)

H1n,b(zi)
def
= E[Hn,b(zi, zj)|zi] = (1/2)vi(g0i + τiµi)/wi + (s.o.)

by Lemma B.4 (iii).
Hence, by the U-statistic H-decomposition we have

J2n,2 = −n1/2{0 + (2/n)
n∑

i=1

H1n,b(zi) +
2

n(n− 1)

n∑
i=1

∑
j>i

[Hn,b(zi, zj)−H1n,b(zi)−H1n,b(zj) + 0]

= n−1/2
n∑

i=1

vi(g0i + τiµi)/wi + Op

(
(nhq)−1/2

)
(A.31)

because the last term in the H-decomposition is a degenerate U-statistic which has an order
n1/2Op

(
(nhq/2)−1

)
= Op

(
(nhq)−1/2

)
.

B Appendix B

Lemma B.1 Let D denote the support of xd, for all xd ∈ D, let g(xd, xc) ∈ Gν and f(xd, xc) ∈ Gν−1,
ν ≥ 2 is an integer. Define η2 =

∑q
s=1 hν

s +
∑r

s=1 λs. Suppose the kernel function W satisfies (A2).
Then, uniformly in x,

(i) E {[g(X)− g(x)]Kn(X, x)} =
∑q

s=1 C1s(x)hν
s +

∑r
s=1 C2s(x)λs + O

(
η2(
∑q

s=1 h2
s +

∑r
s=1 λs)

)
;
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(ii) E [Kn(X, x)]− f(x)] =
∑q

s=1 D1s(x)hν
s +

∑r
s=1 D2s(x)λs + O (η2(

∑q
s=1 hν

s +
∑r

s=1 λs)),
where Cls(.) and Dls(.) are defined in the proof below.

Proof of (i):

E {[g(X)− g(x)]Kn(X, x)} =
∑
zd

∫
f(zc, zd)

[
g(zc, zd)− g(xc, xd)

]
×Wh(zc, xc)L(zd, xd, λ)dzc

=
∫

f(xc + hv, xd)
[
g(xc + hv, xd)− g(xc, xd)

]
W (v)dv

−
∑

zd 6=xd

∫
f(xc, xd)

[
g(xc, xd)− g(xc, zd)

]
Wh(zc, xc)L(zd, xd, λj)dzc

=
∫ {

(fg)(xc + hv, xd)− (fg)(x)− g(x)[f(xc + hv, xd)− f(x)]
}

W (v)dv

+
r∑

s=1

Is(zc, xd)f(xc, xd)
[
g(xc, zd)− g(xc, xd)

]
λs

+ O(η2(
∑
s=1

h2
s +

r∑
s=1

λs))

=
q∑

s=1

C1sh
ν
s +

r∑
s=1

C2s(x)λs + O(η2(
q∑

s=1

h2
s +

r∑
s=1

λs))

(B.1)

by Taylor series expansion and the fact that W (.) is a νth order kernel function, where

C1s(x) = (1/ν!)κν [(gf)(ν)
s (x)− f(x)g(ν)

s (x)], (B.2)

κν =
∫

w(v)vνdv, and

C2s(x) = Is(zd, xd)f(xc, xd)[g(xc, zd)− g(xc, xd)]. (B.3)

Proof of (ii):

E{[Kn(X, x)− f(x)]} =
∑
zd

∫
f(zc, zd)Wh(zc, zd)L(zd, xd, λ)dzd − f(xc, xd)

=
∫

f(xc + hv, xd)W (v)dv − f(xc, xd) +
r∑

s=1

Is(zd, xd)f(xc, zd)λs

+ O

(
hν(h2 +

r∑
s=1

λs)

)

=
q∑

s=1

D1s(x)hν
s +

r∑
s=1

D2s(x)λs + O

(
η2(

q∑
s=1

h2
s +

r∑
s=1

λs)

)
,

(B.4)

where D1s(x) = (κν/ν!)fν
s (x) and D2s = Is(zd, xd)f(xc, zd).
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Lemma B.2 (i) A1n
def
= n−1

∑
i(µi − µ̂i)yi/wi = Bh,λ + Op(n−1/2hν + h(n2hq)−1/2),

(ii) A2n
def
= n−1

∑
i(µi − µ̂i)τi(1− 2µi)/wi = B̄h,λ + Op(n−1/2hν + h(n2hq)−1/2),

where the definitions of Bh,λ and B̄h,λ are given in the proof below.

Proof of (i): Using (A.22), we know that A1n = A1n,1+(s.o.), where A1n,1 = n−1
∑

i(µi−µ̂i)f̂iyi/(wifi).
By noting that E(ui|xi) = 0 and E(vi|xi) = 0, and denoting by m(x) = E(y|x) = g01(x) + τ(x)µ(x),
we first compute E(A1n).

E(A1n,1) = E[(µ1 − µ2)Kn,1,2y1/(f1w1)]

=
∑
xd
1

∑
xd
2

∫ ∫
f(x2)m(x1)w(xi)−1(µ1 − µ2)Wh,1,2Lλ,1,2,dxc

1dxc
2

=
∑
xd

∫ ∫
m(x)w(x)−1{f(x2 + hv, xd)[µ(x)− µ(xc + hv, xd)]}W (v)dvdxc

+
∑
xd
1

∑
xd
2 6=xd

∫ ∫
m(x)w(x)−1

{
[ f(xc + hv, xd)− f(x) ]− [(fµ)(xc + hv, xd)− (fµ)(x) ]

}
W (v)Lλ,1,2dxcdv

=
q∑

s=1

B1sh
ν
s +

r∑
s=1

B2sλs + O(hν+2) ≡ Bh,λ + O(hν+2)

(B.5)

by the same proof of Lemma B.1 (i), where Bh,λ =
∑q

s=1 B1sh
ν
s +

∑r
s=1 B2sλs with

B1s = −(κν/ν!)E
{

f(xi)m(xi)w(xi)−1
[
µ(ν)

s (xi)− (µf)(ν)
s (xi)

]}
, (B.6)

and
B2s =

∑
xd

E
{

Is(xd, xd
i )f(xi)m(xi)w(xi)−1f(xc

i , x
d)(µ(xi)− µ(xc

i , x
d))
}

. (B.7)

Next, we compute V ar(A1n) = E[A2
2n]− [E(A1n)]2.

E(A2
1n) = n−4

∑
i1

∑
j1 6=i1

∑
i2

∑
j2 6=i2

E [(µi1 − µj1)Kn,i1,j1yi1(µi2 − µj2)Kn,i2,j2yi2/(wi1wi2)] .

We consider three cases: (i) the four indices i1, j1, i2, and j2 are all different, (ii) the four indices
assume three distinct values, and (iii) the four indices assume two different values.

First for case (i), it is easy to see that in this case E(A2
1n,(i)) − [E(A1n)]2 = n−1O

(
[E(A1n)]2

)
=

O
(
n−1h2ν

)
.

For case (ii), using Lemma B.1 (i) with hs = h and λs = O (hν), we have

E(A2
1n)(ii) ≤ Cn−4n3h2ν{E[y2

1] + E[|y1y3|]} = O(n−1h2ν).

Finally, for case (iii) we have

E(A2
1n)(iii) ≤ Cn−4n2

{
E[y2

1(µ1 − µ2)2K2
n,12] + E[y1y3(µ1 − µ3)2K2

n,13]
}

= n−2O(h−qh2) = O((n2hq−2)−1).
(B.9)
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Summarizing the above results we have shown that

V ar(A1n) = O(n−1h2ν + (n2hq−2)−1). (B.10)

Hence, A1n =
∑q

s=1 B1sh
ν
s +

∑r
s=1 B2sλs + Op(n−1/2hν + h(n2hq)−1/2).

Proof of (ii): It follows exactly the same proof as in (i) above with m(x) replaced by m̄(x)
def
=

τ(x)(1− 2µ(x)). Therefore, (ii) follows with B̄h,λ =
∑q

s=1 B̄1sh
ν
s +

∑r
s=1 B̄2sλs,

B̄1s = (κν/ν!)E
{

f(x)m̄(x)w(x)−1
[
µ(x)f (ν)

s (x)− (µf)(ν)
s (x)

]}
, (B.11)

and
B̄2s =

∑
xd
1

∑
xd
2

∫
Is(xd

2, x
d
1)f(x1)m̄(x1)w(x1)−1f(xc

1, x
d
2)(µ(x1)− µ(xc

1, x
d
2))dxc

1. (B.12)

Lemma B.3 Let ξi = µi, or µ2i or µ3i, εi = vi, or v2i or v3i, then we have
(i) A3n

def
= n−1

∑
i(ξ̂i − ξi)2 = Op(h2ν + h2(nhq)−1).

(ii) A4n
def
= n−1

∑
i ε̂

2
i = Op((nhq)−1).

(iii) A5n
def
= n−1

∑
i(ξ̂i − ξi)ε̂i = Op(h2ν + (nhq)−1).

(iv) A6n
def
= n−1

∑
i(t̂i − µi)2 = Op(h2ν + (nhq)−1).

Since the proof for ξi = µi, µ2i or µ3i are identical. We only prove the case of ξi = µi, εi = vi.
Proof of (i). Using (A.22), we have A3n ≡ n−1

∑
i(ξ̂i − ξi)2f̂2

i /f̂2
i = n−1

∑
i(ξ̂i − ξi)2f̂2

i /f2
i + (s.o.).

Also, since f(x) is bounded below by a positive constant, we only need to prove (i) for A3n,1
def
=

n−1
∑

i(ξ̂i − ξi)2f̂2
i .

E[|A3n,1|] = E[(µ̂1 − µ1)2f̂2
1 ]

=
1

(n− 1)2

n∑
i6=1

n∑
j 6=1

E [(µi − µ1)Kn,i,1(µj − µ1)Kn,j,1]

=
1

(n− 1)2
{
(n− 1)E

[
(µi − µ1)2K2

n,i,1

]
+ (n− 1)(n− 2)E [(µ2 − µ1)Kn,2,1]E [(µ3 − µ1)Kn,3,1]

}
= O(h2(nhq)−1) + O(h2ν)

(B.13)

by Lemma B.1, where we used E
[
(µi − µ1)2K2

n,i,1

]
= O

(
(h2 +

∑r
s=1 λs)h−q

)
= O

(
(h2 + hν)h−q

)
=

O
(
h2h−q

)
because λj = O (hν) and ν ≥ 2. Thus, A3n,1 = Op(h2(nhq)−1) + O(h2ν).

Proof of (ii). Similarly, by (A.22), we have A4n ≡ n−1
∑n

i=1 v̂2
i f̂

2
i /f̂2

i = n−1
∑n

i=1 v̂2
i f̂

2
i /f2

i +(s.o.). We
only (since f−1

i is bounded) need to prove (ii) for A4n,1 = n−1
∑

i ε̂
2
i f̂

2
i .

E [|A4n,1|] = E
[
v̂2
1 f̂

2
1

]
=

1
(n− 1)2

∑
i6=1

E
[
v2
i K

2
n,i,1

]
=

1
n− 1

E
[
v2
2K

2
n,2,1

]
= O((nhq)−1).

(iii) follows from (i) and (ii) and the Cauchy inequality.
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Finally, (vi) follow from (i) - (iii) because (t̂i − µi)2 = (µ̂i − µi)2 + v̂2
i + 2(µ̂i − µi)v̂i (t̂i = µ̂i + v̂i).

Lemma B.4 Let Hn,a(zi, zj) and Hn,b(zi, zj) be defined as in lemmas A.1 and A.4, respectively, recall
that Ai = Bi + (s.o.) means that n−1/2

∑n
i=1 Ai = n−1/2

∑n
i=1 Bi + (s.o.), then we have

(i) H1n,a(zi) = E[Hn,a(zi, zj)|zi] = τi{2µi − 1}/wi + (s.o.),
(ii) H1n,b(zi) = E[Hn,b(zi, zj)|zi] = (g0i + τiµi)/wi + (s.o.).

Proof of (i)
Hn,a(zi, zj) = (1/2){yivivj(2µi − 1)/(fiw

2
i ) + yjvivj(2µj − 1)/(fjw

2
j )}Kn,ij , where zi = (xi, ti, ui).

By noting that µi, wi, fi g0i and τi are all functions of xi and that E(vi|xi) = 0, we have
E[yivivj(2µi − 1)Kn,ij/(fiw

2
i )|zi] = yivi(2µi − 1)(fiw

2
i )
−1E{E[vjKn,ij |xj , zi]|zi} = 0. Also, using

yj = g0j + τjtj + uj = g0j + τj(µj + vj) + uj , and E(vj |xj) = 0, we have

H1n,a(zi) = E[Hn,a(zi, zj)|zi]

= (1/2)
{
0 + 2viE[vjyjµjKn,ij/(fjw

2
j )|zi]− viE[vjyjKn,ij/(fjw

2
j )|zi]

}
= (1/2)

{
2viE[v2

j τjµjKn,ij/(fjw
2
j )|zi]− viE[v2

j τjKn,ij/(fjw
2
j )|zi]

}
= (1/2)vi {2E[τjµjKn,ij/(fjwj)|zi]− E[τjKn,ij/(fjwj)|zi]} (because E(v2

j |xj) = var(tj |xj) = wj)

= (1/2)viτi{2µi − 1}/wi + (s.o.),
(B.14)

where we have used the change-of-variable argument: E [τjKn((xi − xj)/h)/(fjwj)] |zi] = τi +
O (hν +

∑r
s=1 λs) and E [τjµjKn((xi − xj)/h)/(fjwj)] |zi] = τiµi + O (hν +

∑r
s=1 λs).

Proof of (ii)
Note that Hn,b(zi, zj) = (1/2){vjyi/(fiwi)+viyj/(fjwj)}Kn,ij , and zi = (xi, ti, ui). By noting that

E(vi|xi) = 0, we have

H1n,b(zi) = E[Hn,b(zi, zj)|zi]
= (1/2) {0 + viE[yjKn,ij/(fjwj)|zi]}
= (1/2)viE {[g0j + τj(µj + vj) + uj ]Kn,ij/(fjwj)|zi]}
= (1/2)viE {[(g0j + τjµj)Kn,ij/(fjwj)|zi]}
= (1/2)vi(g0i + τiµi)/wi + (s.o.)

(B.15)

by the change-of-variable argument.

Lemma B.5 Let εi be either vi, v2i or v3i, then n−1
∑n

i=1 v̂im(xi) = n−1
∑n

i=1 vim(xi) + op(n−1/2),
where m(.) is a continuous function and E[m(xi)4] is finite.

Proof: We will only prove the case that εi = vi for other two cases follow the identical proof.
n−1

∑n
i=1 v̂imi = [n(n − 1)]−1

∑n
i=1 vjmiKn,ij = [n(n − 1)]−1

∑n
i=1

∑
j>i Hn,v(zi, zj), where

Hn,v(zi, zj) = (vjmi + vimj)Kn,ij and zi = (xi, ti).
E[Hn,v(zi, zj)|zi] = 0+viE[mjKn,ij |xi] = vim(xi)+(s.o.). Hence, by the H-decomposition we have
n−1

∑n
i=1 v̂imi = 0 + { 2

n

∑n
i=1 vim(xi) + op(n−1/2)} + Op((n2h1...hq)−1/2) = n−1

∑n
i=1 vimi +

op(n−1/2), where the Op((n2h1...hq)−1/2) comes from the last term of H-decomposition which is second
order the degenerate U-statistic
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