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geneity is needed. Important quantities of economic interest such as the average partial
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1 Introduction

This paper develops semiparametric Bayesian methods for inference of dynamic Tobit panel

data models with unobserved individual heterogeneity, and applies them to study female la-

bor supply using the National Longitudinal Survey of Youth 1979 (NLSY79). Our approach

only requires to specify the conditional mean dependence of the unobserved individual hetero-

geneity on the initial conditions and the strictly exogenous variables; no further distributional

assumption on the unobserved heterogeneity is needed.

Because of their feasibility in modeling the unobserved individual heterogeneity and the

state dependence at the same time, dynamic panel data models provide a general framework

to study more complex economic relationships. For example, Chiappori and Salanie (2000)

argue that they can be used to distinguish between moral hazard and adverse selection in auto

insurance markets. Dynamic nonlinear panel data models, however, have presented challenges

because of the difficulty arising from dealing with unobserved heterogeneity in general and

initial conditions in particular. For Tobit models, for example, while they have been used

widely in cross-section studies in labor economics and other applied microeconomics areas,

they have been rarely applied in the dynamic panel data framework.1

As is well known, for dynamic panel data models with unobserved effects, an important

issue is the treatment of the initial observations. For linear models with an additive unob-

served effect, appropriate transformations such as differencing have been used to eliminate

the unobserved effect, and GMM type estimators have been proposed to estimate the trans-

formed model. For example, see Anderson and Hsiao (1982), Arellano and Bover (1995),

Ahn and Schmidt (1995), Blundell and Bond (1998) and Hahn (1999), among others sur-

veyed in Arellano and Honoré (2001) and Hsiao (2003). For nonlinear models, however, the

treatment becomes more complicated because the unobserved effect in general cannot be

eliminated through some transformations with only a few exceptions. For instance, Honoré

(1993) derives the orthogonality conditions for the dynamic Tobit panel data models with

1To the best of our knowledge, this paper provides the Þrst empirical application of dynamic Tobit panel
data models with unobserved heterogeneity.
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unobserved individual heterogeneity, and Honoré and Hu (2001) provide a set of sufficient

conditions for the consistency and asymptotic normality of the estimator for these models.

While their methods have an advantage in that they leave the distribution of the unobserved

individual heterogeneity unspeciÞed and allow arbitrary correlation between the unobserved

heterogeneity and the explanatory variables, some restrictions on the data need to be met.

For example, in Honoré and Hu (2001), time dummies are not allowed in the strictly exoge-

nous covariates. Moreover, some quantities of economic interest such as the average partial

effects cannot be estimated using their approach.

As summarized in Hsiao (2003), there have been mainly three different ways of treating

initial observations in parametric inference of dynamic nonlinear panel data models. The Þrst

approach is to assume the initial conditions for each cross-section unit as nonrandom. The

second (and more reasonable) approach is to allow the initial condition to be random, and to

specify a joint distribution of all outcomes on the response including that in the initial period

conditional on the unobserved heterogeneity term and observed strictly exogenous covariates.

The third approach is to approximate the conditional distribution of the initial condition, as

suggested by Heckman (1981a). Wooldridge (2003) discusses the advantages and disadvan-

tages of these three approaches. He also suggests a simple alternative approach that is to

model the distribution of the unobserved effect conditional on the initial observations and

exogenous variables.2 One of the advantages of Wooldridge�s approach is that by specifying

the (auxiliary) distribution of the unobserved heterogeneity conditional on the initial condi-

tions to be normal, estimation of probit, Tobit and Poisson regression can be conducted using

standard software. Average partial effects can also be estimated in a straightforward manner.

This approach, on the other hand, can be subject to misspeciÞcation of the distribution of

the unobserved effect conditional on the initial value and other exogenous covariates.

In this paper, we adopt an approach that is in a similar spirit to Wooldridge (2003) in

modeling the relationship between the unobserved heterogeneity and the initial conditions,

2As acknowledged in Wooldridge (2003), this approach has been previously suggested for particular models
including AR(1) without covariates by Chamberlain (1980), Blundell and Smith (1991) and Blundell and Bond
(1998), and the binary response model with a lagged dependent variable by Arellano and Carrasco (2003)
who take the distribution of the unobserved effect given the initial condition to be discrete.
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but provide a more robust way of handling this relationship. Our approach is to only spec-

ify the conditional mean dependence of the unobserved effect on the initial conditions and

strictly exogenous covariates, and leave the distribution of the remaining random error term

unspeciÞed. We adopt the recently developed Bayesian nonparametric method to estimate

this unknown distribution. SpeciÞcally, we use an inÞnite mixture of normals. This is justiÞed

because Ferguson (1983) notes that any probability density function can be approximated

arbitrarily closely in the L1 norm by a countable mixture of normal densities. Also, to im-

plement this method we do not need to specify the number of components in approximating

mixture of normals. During the Bayesian updating, after recovering the unobserved indi-

vidual heterogeneity terms, we can use the Bayesian density estimation method to estimate

their densities with a Dirichlet process prior. This approach is introduced by Lo (1984)

and Ferguson (1983), with the later work by Escobar (1994), Escobar and West (1995), and

West, Müller, and Escobar (1994) discussing its computational issues. It is worth noting that

the advancement of the Markov chain Monte Carlo (MCMC) method makes the posterior

analysis using the Bayesian nonparametric method computationally feasible, and stimulates

its recent development.3 Recently, this method has been adopted by econometricians in ad-

dressing various issues. See, e.g., Hirano (2002) for estimation of (linear) autoregressive panel

data models, Chib and Hamilton (2002) for analysis of longitudinal data treatment models,

Hasegawa and Kozumi (2003) for estimation of Lorenz curves, and Griffin and Steel (2004)

for inference of stochastic frontier models.

We propose a semiparametric Bayesian method to estimate the dynamic Tobit panel data

model with lagged censored dependent variables.4 The semiparametric Bayesian approach

offers several main advantages for dynamic Tobit panel data models. First, it is robust to

misspeciÞcation of distributional assumptions about the unobserved individual heterogeneity.

3For surveys on the use of the MCMC techniques, see, e.g., Chib and Greenberg (1996) and Chib (2001).
4The model we consider here is referred to as the censored regression model with corner solution outcomes

by Wooldridge (2002), as the zero value for the dependent variable can be viewed as a corner solution
outcome from an optimization problem faced by an economic agent. This model is also considered by Honoré
(1993) and Honoré and Hu (2001). Another type of the dynamic censored regression model, as considered
in Hu (2002), is the dynamic Tobit model with lagged latent dependent variables, which is referred to as the
censored regression model with data censoring or coding by Wooldridge (2002).
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Second, some important quantities of economic interest such as the average partial effects

and average transition probabilities can be readily obtained as a by-product of the MCMC

run. Third, the Bayesian estimators are consistent and efficient. It is also worth noting

that our approach can be readily extended to other dynamic nonlinear panel data models

including binary choice models, ordered response models, censored regression models with

lagged latent dependent variables, and Poisson regression models.

As an application of our approach, we study female labor supply using NLSY79. We

estimate a (reduced-form) labor supply model that is of the Tobit form because a signiÞcant

proportion of women in the data did not work from time to time. We also control for

the state dependence and unobserved heterogeneity, and estimate the average partial effects

of the key explanatory variables, and the average transition probabilities between working

and not working. It is worth noting that while panel data provide a unique opportunity

for empirical researchers to address important economic questions that cannot be addressed

using cross-sectional or time series data sets, dynamic Tobit panel data models have been

rarely used in applications due to the complications mentioned previously. The application

in this paper, while demonstrating the usefulness of our approach, also has some Þndings

that can be of interest to labor economists.

This paper is organized as follows. Section 2 lays out the model of interest. Section 3

is devoted to the estimation method, which is computationally efficient and utilizes modern

MCMC techniques. In Section 4, we show how the average partial effects of the covariates

on the dependent variable and the average transition probabilities of different states are

calculated. Section 5 presents Monte Carlo results that demonstrate the usefulness and

feasibility of our approach. In Section 6 we apply our approach to study the intertemporal

labor supply of a panel of young women. Section 7 concludes.
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2 The Model

Let yit be the censored response variable of interest, where the indices i and t (i = 1,...,n,

t = 1,...,T ) refer to individual i and time period t, respectively.5 We consider a dynamic

Tobit panel data model where yit depends parametrically on the covariate vector zit, the

vector of lags of the dependent variable yit−1 and the unobserved individual heterogeneity ci

in the form

yit = max{0, zitγ + g(yit−1)ρ+ ci + uit}, (1)

where γ is a vector of coefficients for the explanatory variables and ρ is a vector of lag

coefficients, and uit is a sequence of i.i.d. random variables distributed as Normal (0, σ2u ).

As in Wooldridge (2003), the function g(·) allows the lagged censored dependent variable to
appear in various ways. In this model, zit is strictly exogenous in the sense that conditional

on the current zit, yit−1, and ci, the past and future zi�s do not affect the distribution of yit.

This rules out the dynamic feedback from past and future realizations of z to the current

realizations of the dependent variable. Therefore, the model is dynamic only because of the

lagged dependent variable, not through the serial correlation of the error terms uit.6 The

assumption that uit is normal produces the dynamic Tobit panel data model with unobserved

individual heterogeneity. Our approach can also be readily extended to the case where the

distribution of uit is a t distribution (Albert and Chib (1993)) or some mixture of normals

(Geweke and Keane (2001)).

To complete the speciÞcation of the model, we need to make some assumptions regarding

the relationship between the unobserved individual heterogeneity and the initial conditions.

We make the following conditional mean dependence assumption of the unobserved hetero-

5The model can be easily extended to the unbalanced panel model. For ease of exposition, we focus on
the balanced panel data model.

6Again, the approach in this paper can be easily extended to accommodate the case where uit is serially
correlated as in Chib and Jeliazkov (2003) for the analysis of dynamic binary choice panel data models. To
focus on the main issue, we choose the i.i.d. speciÞcation of uit.
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geneity ci on the initial conditions and observed strictly exogenous variables

E[ci|yi0, zi] = c+ g0(yi0)δ1 + h(zi)δ2, (2)

where c is a constant, yi0 is the vector of initial values of the dependent variable yi, g0(·)
is a function that allows yi0 to appear in a variety of ways, and h(zi) is a function of a set

of explanatory variables that only vary over different individuals but are time-invariant. It

can be the row vector of all (nonredundant) explanatory variables in all time periods. That

is, h(zi) = (zi1, zi2, ...ziT ) and each zit can be multidimensional as in Wooldridge (2003).

Alternatively it can be h(zi) = zi, where zi is the average of zit over all the time periods as

in Chib and Jeliazkov (2003).7

From (2), we have

ci = g0(yi0)δ1 + h(zi)δ2 + αi, (3)

where αi is assumed to be independent of yi0 and zi, and contains c in (2). This speciÞcation

of the unobserved individual heterogeneity captures its correlation with the initial observa-

tions of the dependent variable and the set of exogenous covariates. Therefore, it is in the

same spirit as in Chamberlain (1980) and Wooldridge (2003). On the other hand and more

importantly, we leave the distribution of αi unspeciÞed. Instead, we will approximate its

distribution using an inÞnite mixture of normals. This is justiÞed because Ferguson (1983)

notes that any probability density function can be approximately arbitrarily closely in the

L1 norm by a countable mixture of normal densities

f(·) =
∞X
j=1

pjφ(·|µj , σ2j), (4)

where pj ≥ 0,
∞X
j=1

pj = 1 and φ(·|µj , σ2j) denotes the probability density function for a normal

distribution with mean µj and variance σ
2
j . Note that this is a different speciÞcation from

7For the identiÞcation purpose, those time-constant variables like race and gender cannot be in both zit
and zi.
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the Þnite mixture of normals as used in Geweke and Keane (2001) since we do not have a

prior number of components in the mixture of normals. Instead, we will use the Dirichlet

process prior to carry out the Bayesian nonparametric density estimation and update the

number of components in the inÞnite mixture of normals and the mean and variance for each

component.

3 Estimation

3.1 Fully Parametric Dynamic Tobit Panel Data Models

We Þrst present the Bayesian estimation algorithm for the fully parametric dynamic Tobit

panel data model used in Wooldridge (2003). This provides a benchmark for comparison

with the semiparametric estimation method. The estimation algorithm is computationally

fast and statistically efficient. As in Wooldridge (2003), this model is a slight modiÞcation

of the above semiparametric model

yit = max{0, zitγ + g(yit−1)ρ+ ci + uit}
ci = g0(yi0)δ1 + h(zi)δ2 + αi

αi ∼ Normal (µ, σ2). (5)

As can be seen from the above model, a special feature of the fully parametric model is

that the unobserved individual heterogeneity term ci is now assumed to be from a normal

distribution.

For each individual i, we have the following conditional density for the dependent vari-

ables:

f(yi1, yi2, ..., yiT |yi0, zit, ci, γ, ρ)

=
TY
t=1

(·
1− Φ(zitγ + g(yit−1)ρ+ ci

σu
)

¸1(yit=0) · 1
σu
φ(
yit − zitγ − g(yit−1)ρ− ci

σu
)

¸1(yit>0))
. (6)
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To implement a Gibbs sampler, we introduce the latent variable y∗it for the dependent variable,

and rewrite model (5) in the following form

y∗it = zitγ + g(yit−1)ρ+ ci + uit

yit = 1I(y∗it > 0)y
∗
it

ci = g0(yi0)δ1 + h(zi)δ2 + αi

αi ∼ Normal (µ, σ2). (7)

As a result, likelihood (6) can be modiÞed as follows to be conditioning on the latent variables

y∗it in addition to other conditioning variables included in (6)

f(yi1, yi2, ..., yiT |y∗i1, y∗i2, ..., y∗iT ,yi0, zit, ci, γ, ρ) =QT
t=1{1(yit > 0)1(yit = y∗it) + 1(yit = 0)1(y∗it ≤ 0)}

× 1√
2πσ2u

exp(− 1
2σ2u
(y∗it − zitγ − g(yit−1)ρ− ci)2)

(8)

Again, since we do not observe the latent variables y∗it and ci and integration over these vari-

ables will produce an analytically intractable likelihood, direct implementation of maximum

likelihood estimation method or Bayesian MCMC would be difficult. Instead, we adopt the

data augmentation approach suggested by Albert and Chib (1993), where the latent variables

y∗it and ci are explicitly included in the MCMC iterations and are updated at each step. An-

other advantage of the data augmentation technique is that with the presence of y∗it and ci,

updating the main parameters of interest, γ and ρ, becomes similar to the standard posterior

updating for simple linear panel data models and therefore straightforward to implement.

Denote wit = (zit, g(yit−1)), β = (γ0, ρ0)0, xi = (g0(yi0), h(zi), 1) and δ = (δ01, δ
0
2, µ)

0, we

have the following algorithm.

Algorithm 1 MCMC for fully parametric dynamic Tobit panel data models

1. Conditional on yit, wit, xi, β, δ, σ2 and σ2u but marginalized over ci, y
∗
it is updated from

a normal distribution with mean witβ + xiδ and variance σ2 + σ2u with truncation at 0

8



from the left if the corresponding yit = 0. If yit > 0, y∗it = yit.

2. Conditional on y∗it, ci and wit, update σ
2
u and β in one block. We use the improper

ßat prior for β and the independent gamma (N1
2
, R1
2
) prior for 1/σ2u, that is: 1/σ

2
u ∝

(1/σ2u)
N1
2
−1
e−R1(1/σ

2
u). Therefore, the joint posterior distribution of 1/σ2u and β condi-

tional on data and other parameters is

posterior(1/σ2u, β|y∗it, ci, wit)

∝ ¡
1/σ2u

¢N1
2
−1
e−

R1
2 (1/σ2u)

nY
i=1

TY
t=1

1p
σ2u
exp(− 1

2σ2u
(y∗it − witβ − ci)2). (9)

a To draw from this posterior, we draw 1/σ2u marginalized over β Þrst and then draw

β|σ2u. DeÞne

bβ = invÃ nX
i=1

TX
t=1

w0itwit

!
×
Ã

nX
i=1

TX
t=1

w0it (y
∗
it − ci)

!
, (10)

the posterior density of 1/σ2u marginalized over β is

posterior(1/σ2u|y∗it, ci, wit)

∝ ¡
1/σ2u

¢N1+nT
2

−1
exp

−
1

σ2u
×

·
R1 +

Pn
i=1

PT
t=1

³
y∗it − witbβ − ci´2¸
2

 . (11)

That is, we draw 1/σ2u from gamma(N1+nT
2
,
R1+

Pn
i=1

PT
t=1(y∗it−witbβ−ci)2
2

).

b Second, we update β from posterior(β|1/σ2u, y∗it, ci, wit), which is

Normal

Ãbβ, invÃ 1

σ2u

nX
i=1

TX
t=1

w0itwit

!!
. (12)
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3. Conditional on y∗it, wit, xi, β, δ, σ
2, σ2u, update ci. The posterior is

TY
t=1

exp(− 1

2σ2u
(y∗it − witβ − ci)2) exp(−

1

2σ2
(ci − xiδ)2). (13)

Therefore, we update ci by drawing fromNormal
³
c∗i , inv

³
T
σ2u
+ 1

σ2

´´
where c∗i = inv

³
T
σ2u
+ 1

σ2

´
×³

1
σ2u

PT
t=1 (y

∗
it − witβ) + 1

σ2
xiδ
´
.

4. Conditional on ci and xi, update σ2 and δ in one block. We use the improper ßat prior

for δ and independent gamma (N2
2
, R2
2
) prior for 1/σ2, that is: 1/σ2 ∝ (1/σ2)

N2
2
−1
e−R2(1/σ

2).

Therefore, the joint posterior distribution of 1/σ2 and δ is

posterior(1/σ2, δ|xi, ci)

∝ ¡
1/σ2

¢N2
2
−1
e−

R2
2 (1/σ2)

nY
i=1

1√
σ2
exp(− 1

2σ2
(ci − xiδ)2). (14)

a To draw from this posterior, we draw posterior(1/σ2|ci, xi) Þrst and then draw
posterior(δ|1/σ2, ci, xi). DeÞne

bδ = invÃ nX
i=1

x0ixi

!
×
Ã

nX
i=1

x0ici

!
, (15)

the posterior density of 1/σ2 marginalized over δ is

posterior(1/σ2|ci, xi) (16)

∝ ¡
1/σ2

¢N2+n
2

−1
exp

− 1
σ2
×
R2 +

Pn
i=1

³
ci − xibδ´2

2

 .

That is, we draw 1/σ2 from gamma(N2+n
2
,
R2+

Pn
i=1(ci−xibδ)2
2

).
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b Second, we update δ from

posterior(δ|1/σ2, ci, xi) = Normal
Ãbδ, invÃ 1

σ2

nX
i=1

x0ixi

!!
. (17)

3.2 Semiparametric Dynamic Tobit Panel Data Models

This subsection considers the case where the normal distribution assumption for the error

term αi and hence for the unobserved individual heterogeneity term ci is relaxed. Instead of

imposing any distributional assumptions for αi, we approximate it using an inÞnite mixture

of normals. As stated in Section 2, with this approach, each αi is assumed to be distributed

as Normal (µi, σ
2
i ). Our semiparametric Bayesian estimation consists of two main parts. At

each iteration, in the Þrst part, using the augmented latent variables ci and the current value

of parameters, we can recover the error term αi in the unobserved individual heterogeneity

through the relationship αi = ci − �xi�δ, where �xi = (g0(yi0), h(zi)) and �δ = (δ01, δ02)0. After
recovering the error terms, we can use a Bayesian approach to estimate their densities with

a Dirichlet process prior for the unknown densities. We update the number of components

(denoted by mc, say) in approximating mixture of normals and the mean and variance of the

normal denoted by µi and σ
2
i for each i. In the second part of each iteration, we update the

model parameters and values for the latent variables.

3.2.1 Bayesian Nonparametric Estimation

Our objective here for the nonparametric Bayesian estimation is to update the number of

components in approximating mixture of normals and the mean and variance for each com-

ponent given a set of observations αi. Following Escobar and West (1995), Hirano (2002)

and Hasegawa and Kozumi (2003), we denote

q(αi|θi) = q(αi|µi, σ2i ) = φ(αi|µi, σ2i ) (18)
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where θi = (µi, σ
2
i ) is a sample from some unknown distribution P . Conditional on P , the

density for αi is

s(αi|P ) =
Z
q(αi|θi)dP. (19)

This gives us a nonparametric class of distributions.

In order to carry out a Bayesian analysis, we assume that the distribution P has the

Dirichlet process prior introduced by Ferguson (1973, 1974). The Dirichlet process is a

probability measure on the space of all distributions and can be used as a prior distribution on

the space of probability distributions. LetΘ be a space and Γ a σ-Þeld of subsets of Θ, and let

τP0 be a Þnite non-null measure on (Θ,Γ) where P0 is a proper base probability distribution

and τ is a precision parameter. Then, a stochastic process P is a Dirichlet process if, for any

given partition, A1, ...Aq of the parameter space Θ, the random vector (P (A1), ..., P (Aq)) has

a Dirichlet distribution with a parameter vector (τP0(A1), ..., τP0(Aq)). We denote DP(τP0)

for a Dirichlet process with base measure τP0 for the rest of the paper.

The Dirichlet process is a probability distribution on the space of probability distributions

on (Θ,Γ) and selects a discrete distribution with probability one. The discreteness of the

probability distribution selected by the Dirichlet process seems to be unsuitable for modelling

smooth densities. However, it can be related to the inÞnite normal mixture model as noted

by Ferguson (1983), Lo (1984) and further explained by Ghosal, Ghosh and Ramamoorthi

(1999).

To get the posterior distributions, we need to integrate over the parameter space. Escobar

(1994) shows that with the θi�s as the latent variables, integrating P over its prior distribution

gives the sequence of θi, i = 1, ..., n as follows

θi|θ1, θ2, ..., θi−1 = {
= θj with probability 1

α+i−1

∼ P0 with probability α
α+i−1

(20)

where θ1 ∼ P0. As a result, αi�s are partitioned into mc groups such that all αi in the same

group have the same θi while those in different groups differ. These mc distinct values θi are

a sample from P0.
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To complete the model speciÞcation, we choose the base prior distribution P0 to be the

conjugate normal/inverse-gamma distribution

dP0(µi, σ
2
i ) ∝ Normal(µ0, τ0σ2i )IG(

N0
2
,
R0
2
) (21)

where IG(a, b) denotes the inverse-gamma distribution with parameters a and b. Finally, as

in Escobar and West (1995), τ is assumed to follow a gamma distribution

τ ∼ gamma(d1, d2). (22)

Let ξj, j = 1, 2, ...,mc denote the mc distinct values of θi and

θ(i) = (θ1, ..., θi−1, θi+1, ..., θn) (23)

be the set of values of θ for units other than i. Furthermore, let superscript (i) refer to

variables deÞned on all units other than i and hence ξ(i) = (ξ
(i)
1 , ..., ξ

(i)

m
(i)
c

) are the distinct

values among (θ1, ..., θi−1, θi+1, ..., θn). Escobar (1994) shows that using the Dirichlet process

prior leads to a useful set of conditional distributions. SpeciÞcally,

P |θ(i) ∼ DP (τP0 +
m
(i)
cX

j=1

n
(i)
j δ(ξ

(i)
j )) (24)

where n(i)j is the number of θi taking the value of ξ
(i)
j and δ(ξ(i)j ) represents unit point mass

at θi = ξ
(i)
j . Therefore,

θi|θ(i) ∼ E(P |θ(i)) ∼ α

α + n− 1P0 +
1

α + n− 1
m
(i)
cX

j=1

n
(i)
j δ(ξ

(i)
j ). (25)

One way of sampling θi and determines the number of components in approximating

mixture of normals mc is to use the density given in equation (25). But sampling θi in this

model can be eased by introducing the conÞguration vector S = {S1, ..., Sn}. That is, Si = j
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if and only if θi = ξj. With this setting sampling θi is equivalent to sampling S and ξj,

j = 1, 2, ...,mc. West, Müller and Escobar (1994) propose an efficient algorithm as follows:

1. Sampling Si, i = 1, 2..., n from the conditional distribution

q(Si = j|ξ(i), P0) ∝ {
τqt(αi|µ0, (1 + τ0)R0/n0, n0) if j = 0

n
(i)
j φ(αi|ξ(i)j ) if j > 0

(26)

where qt(α|µ, σ2, ν) is the density of the t-distribution with mean µ, scale factor σ2 and
ν degrees of freedom and φ(α|ξ(i)j ) denotes the normal probability density characterized
by ξ(i)j .

2. Sampling ξj , j = 1, 2, ...,mc from the conditional distribution

q(ξj|ξ(j), S, P0) ∝
Y

{αi: Si=j}
φ(αi|ξj)dP0

∝ Normal(µ1, τ1σ
2
j)IG(

N3
2
,
R3
2
) (27)

where

µ1 =

τ 0
X

{αi: Si=j}
αi + µ0

τ0nj + 1
, τ 1 =

τ 0
τ 0nj + 1

, N3 = N0 + nj ,

R3 = R0 +

nj

 1
nj

X
{αi: Si=j}

αi − µ0

2

τ0nj + 1
+

X
{αi: Si=j}

αi − 1

nj

X
{αi: Si=j}

αi

2

and nj is the number of observations such that Si = j.

Finally, Escobar and West (1995) show that with a beta distributed variable η ∼ Beta(τ+
1, n), the full conditional distribution of τ is given by

τ ∼ z × gamma(d1 +mc, d2 − log η) + (1− z)× gamma(d1 +mc − 1, d2 − log η) (28)
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where z
1−z =

d1+mc−1
n(d2−log η) .

Thus, with a set of αi, we updated θi for each i, the number of components in the

countable inÞnite mixture of normals mc and τ , the precision parameter in the base measure.

3.2.2 The Algorithm

Incorporating other parts of the model, we have the following algorithm for the semipara-

metric dynamic Tobit data models.

Algorithm 2 MCMC for semiparametric dynamic Tobit panel data models

1. Conditional on yit, wit, �xi, β, �δ, µi, σ
2
i and σ

2
u but marginalized over ci, y

∗
it is updated

from a normal distribution with mean witβ + �xi�δ + µi and variance σ
2
i + σ

2
u with

truncation at 0 from the left if the corresponding yit = 0. If yit > 0, y∗it = yit.

2. Conditional on y∗it, ci and wit, update σ
2
u and β in one block. We use the improper

ßat prior for β and the independent gamma (N1
2
, R1
2
) prior for 1/σ2u, that is: 1/σ

2
u ∝

(1/σ2u)
N1
2
−1
e−R1(1/σ

2
u). Therefore, the joint posterior distribution of 1/σ2u and β condi-

tional on data and other parameters is

posterior(1/σ2u, β|y∗it, ci, wit)

∝ ¡
1/σ2u

¢N1
2
−1
e−

R1
2 (1/σ2u)

nY
i=1

TY
t=1

1p
σ2u
exp(− 1

2σ2u
(y∗it − witβ − ci)2). (29)

a To draw from this posterior, we draw 1/σ2u marginalized over β Þrst and then draw

β|σ2u. DeÞne

bβ = invÃ nX
i=1

TX
t=1

w0itwit

!
×
Ã

nX
i=1

TX
t=1

w0it (y
∗
it − ci)

!
, (30)
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the posterior density of 1/σ2u marginalized over β is

posterior(1/σ2u|y∗it, ci, wit)

∝ ¡
1/σ2u

¢N1+nT
2

−1
exp

−
1

σ2u
×

·
R1 +

Pn
i=1

PT
t=1

³
y∗it − witbβ − ci´2¸
2

 . (31)

That is, we draw 1/σ2u from gamma(N1+nT
2
,
R1+

Pn
i=1

PT
t=1(y∗it−witbβ−ci)2
2

).

b Second, we update β from posterior(β|1/σ2u, y∗it, ci, wit), which is

Normal

Ãbβ, invÃ 1

σ2u

nX
i=1

TX
t=1

w0itwit

!!
. (32)

3. Conditional on y∗it, wit, �xi, β, �δ, µi, σ
2
i , σ

2
u, update ci. The posterior is

TY
t=1

exp(− 1

2σ2u
(y∗it − witβ − ci)2) exp(−

1

2σ2i

³
ci − �xi�δ − µi

´2
). (33)

Therefore, we update ci by drawing fromNormal
³
c∗i , inv

³
T
σ2u
+ 1

σ2i

´´
where c∗i = inv

³
T
σ2u
+ 1

σ2i

´
×³

1
σ2u

PT
t=1 (y

∗
it − witβ) + 1

σ2i
(xiδ + µi)

´
.

4. Conditional on ci, �xi, µi and σ
2
i update �δ. We use the improper ßat prior for �δ.

Therefore, the posterior distribution of �δ is

posterior(�δ|�xi, ci, µi, σ2i )

∝
nY
i=1

exp(− 1

2σ2i

³
ci − �xi�δ − µi

´2
). (34)

DeÞne bδ = invÃ nX
i=1

1

σ2i
�x0i�xi

!
×
Ã

nX
i=1

1

σ2i
�x0i (ci − µi)

!
(35)

we update �δ by drawing from Normal
³bδ, inv ³Pn

i=1
�x0i�xi
σ2i

´´
.
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5. Finally, recover αi = ci− �xi�δ and update the number of components mc in approximat-

ing mixture of normals and the mean and variance of the normal denoted by µi and

σ2i for each i using the Bayesian nonparametric density estimation method described

in the previous subsection.

3.2.3 Predictive Densities

In the Bayesian framework, a useful and informative way to draw implications from the

unknown densities of the error term αi is to study its predictive distribution. Parallel to

equation (25), conditional on (θ1, ..., θn), for the new unit i = n+ 1, we have

θi+1|(θ1, ..., θn) ∼ α

α+ n
P0 +

1

α + n

mcX
j=1

njδ(ξj), (36)

where nj is the number of θi�s taking the value ξj. Thus, the distribution of αi+1 conditional

on the data can be rewritten as

q(αi+1|θ1, ..., θn) =
α

α + n
qt(αi+1|µ0, (1 + τ 0)R0/n0, n0) (37)

+
1

α + n

mcX
j=1

njφ(αi+1|ξj).

As a result, the predictive distribution for the error term αi can be obtained as

q(αi+1|data) =
Z
q(αi+1|θ1, ..., θn)π(θ1, ..., θn|data)d(θ1, ..., θn). (38)

Since the Gibbs sampler provides draws for θi�s, we can use the Monte Carlo method to

integrate out θi�s to estimate q(αi+1|data) as

bq(αi+1|data) = 1

M

MX
i=1

q(αi+1|θ(i)1 , ..., θ(i)n ), (39)

where (θ(i)1 , ..., θ
(i)
n ) is a simulated sample of (θ1, ..., θn).
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4 Average Partial Effects and Transition Probabilities

4.1 Average Partial Effects

For nonlinear models, besides the estimation of parameters, obtaining the average partial

effects is necessary to assess the effects of any change in the covariates on the dependent

variable. This is important since it can be used to evaluate policies. Easy calculation of the

average partial effect is also one main advantage of the semiparametric Bayesian method we

propose in this paper. In the classical framework, though the methods adopted by Honoré

(1993) do not require any distributional assumption for the unobserved heterogeneity, the

partial effects are not identiÞed using his approach. On the other hand, the method proposed

by Wooldridge (2003) depends on the assumption of some special distributions for the un-

observed individual heterogeneity. If the distribution is assumed to be something other than

the normal, parameter estimation and calculation of the average partial effects will also need

the implementation of simulation-based methods because of the integration involved. The

semiparametric Bayesian method proposed in this paper relaxes the distributional assump-

tion for the unobserved individual heterogeneity term, but at the same time, the calculation

of the average partial effects becomes a by-product of the MCMC estimation procedure and

hence does not add in any additional computation burden.

Let mj
it denote some partial effects of the jth covariate w

j
it. For the dynamic Tobit panel

data model, if wjit is continuous and there is no interaction terms involved, then the partial

effect of the covariate on the expected value of the dependent variable is:

mj
it =

∂E(yit|wit, ci, β, σu)
∂wjit

= Φ(
witβ + ci
σu

)βj . (40)

where Φ(·) denotes the cumulative standard normal density and φ(·) denotes the standard
normal density. Ifwjit is discrete,m

j
it equals the difference between the valuesE(yit|wit, ci, β, σu)
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takes when wjit = 1 and when w
j
it = 1, respectively, where

E(yit|wit, ci, β, σu) = Φ(witβ + ci
σu

)(witβ + ci) + σuφ(
witβ + ci
σu

). (41)

If the covariate wjit involves in some interaction terms, then the partial effects become more

complex. However, they share a similar feature to these partial effects shown above in that

they also depend on the unobserved heterogeneity.

The presence of the unobserved individual heterogeneity makes the calculation of the par-

tial effects difficult since it usually does not have a clear measurement unit and is usually not

observed. Therefore, it is usually more meaningful and useful to obtain the so-called average

partial effect, which is the partial effect averaged across the population distribution of the

unobserved heterogeneity. In other words, the unobserved heterogeneity needs to be inte-

grated out. In the classical framework, if the integration does not have a closed-form, then

we need to use simulation-based methods to calculate these effects. In the Bayesian frame-

work, this calculation comes as a by-product during the estimation of the model parameters.

More speciÞcally, we can obtain summaries of the average partial effects conditional on the

observed data, but marginalized over all unknowns including the model parameters and the

unobserved individual heterogeneity.8 To Þx the ideas, by deÞnition, the posterior density of

mj
it conditional on the observed data, but marginalized over all the unknowns, is

π(mj
it|data) =

Z
π(mj

it|data,ci, β, σu)dπ(ci, β, σu|data). (42)

A sample of mj
it can be produced by the method of composition using the draws of ci, β, σu

from steps 2 and 3 in the algorithm described in Section 3.2.2. Given a posterior sample of

mj
it from π(m

j
it|data), which we denote by {mj(g)

it }, the unit (ith observation in t period) mean
partial effect, when wjit is continuous and there is no interaction terms for this covariate, can

8Chib and Hamilton (2002) use this approach to obtain the average treatment effects.

19



be estimated as

mj
it ≈ G−1

GX
g=1

m
j(g)
it where mj(g)

it = Φ(
witβ

(g) + c
(g)
i

σ
(g)
u

)βj(g) (43)

At a more aggregate level, the average partial effect for a randomly selected observation from

the population may be deÞned as

mj =

Pn
i=1

PT
t=1m

j
it

nT
(44)

whose posterior distribution is again available from the posterior sample on mj
it.

4.2 Average Transition Probabilities

Another quantity of economic interest is the transition probability to and from different

states. For example, to study the female labor supply, policy makers may want to know

what is the probability of working in the next period conditional on not working in this

period, or what is the probability of not working in the next period conditional on working

in this period, as well as the effects of various covariates on these probabilities. It is worth

noting that a panel data set can provide a researcher with a unique opportunity to assess

the transition probabilities, as it contains sequential observations over time for the same

individual.

Suppose we have a dynamic Tobit model with only one lag and denote the state of working

as state 1 and not working as state 0. Then the probability for individual i to transfer from

state 0 to state 1 in period t is

p01it = pr(yit > 0|yit−1 = 0, zit, ci) (45)

= Φ(
zitγ + ci
σu

)

and the probability for individual i to stay at state 0 is p00it = 1 − p01it . The probability for
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individual i to quit working in period t conditional on working yit−1 hours in period t− 1 is

p10it = pr(yit = 0|yit−1 = yit−1, zit, ci) = 1− Φ(
yit−1ρ+ zitγ + ci

σu
). (46)

Again, these probabilities depend on the unobserved heterogeneity. Thus, the average tran-

sition probabilities can be computed in the same way as for the average partial effects during

the MCMC model estimations.

5 Simulation Studies

We perform two simulation studies. The Þrst one is the case where the error term in the

unobserved individual heterogeneity is normal. In this case, we Þnd that the fully parametric

and the semiparametric algorithms perform equally well. In the second experiment, we use

an extremely non-normal distribution for the unobserved effect term. In this case, the fully

parametric algorithm, which assumes normality of this term, becomes inconsistent, but the

semiparametric algorithm is robust to this speciÞcation and still performs well.

We also demonstrate the good performance of our MCMC chains by plotting the autocor-

relation functions and histograms for the sampled parameters. All the chains are of length

of 5,000 draws following burn-ins of 1,000 draws.

The Þrst experiment is designed as the following

y∗it = zitγ + ρyit−1 + ci + uit

ci = yi0δ1 + ziδ2 + αi (47)

Set N = 1000, T = 5 (this is roughly the sample size in our data). zit (single dimension) and

uit are from independent standard normals. zi is the simple average of zit across the time

periods. αi is from normal with mean 0 and variance 1. yi0 is also from standard normal

but censored from left at 0. Parameters are set as the following: γ = 1, ρ = 0.6, δ1 = 0.3,

δ2 = 0.2.

21



Table 1 summarizes the results using the fully parametric approach. Figures 1(a) and 1(b)

present the time series of the draws, histogram of the draws and the autocorrelation functions.

Table 2 reports the results using the semiparametric Bayesian estimation method and Figures

2(a) and 2(b) present the MCMC convergence diagnostics. Overall, from these tables and

graphs, we can see when the error term in the unobserved individual heterogeneity is normal,

both the fully parametric Bayesian algorithm which assumes normality for the error term

and the semiparametric Bayesian algorithm perform well. Also, the MCMC chains converge

quickly and mix well.

The second experiment is designed in the same way as the Þrst experiment except that now

we generate αi according to a two-component mixture of gamma distributions. 30% of the

error term comes from the gamma (1, 1/10) and the other 70% of the error term comes from

-5+gamma(1,1/2). This mixture makes the error term αi highly nonnormal. In this case, as

we see from the results of Monte Carlo simulations in Table 3, the fully parametric Bayesian

updating algorithm which assumes normality signiÞcantly biases the parameters of interest

downwards by 10 to 15 percent. On the other hand, as seen from Table 4, the semiparametric

Bayesian algorithm is robust to the speciÞcation of the distribution of the error terms. Again,

from the output of Figures 4(a) and 4(b), we can see that this semiparametric Bayesian

MCMC algorithm converges to the true value quickly and the chain mixes well. Using a

Pentium@ 4 2.4 GB processor, the computational time for the fully parametric algorithm is

1.05 seconds per 10 draws and 5.18 seconds per 10 draws for the semiparametric algorithm.

Therefore, the semiparametric Bayesian method is computationally efficient.

6 Application: Intertemporal Female Labor Supply

In this section, we illustrate the proposed method by estimating a reduced-form intertemporal

female labor supply model. The data set consists of a panel of 1,115 young women over 7

years (1987-1993). This data set is from the National Logitudinal Survey of Youth 1979

(NLSY79), which can be obtained from the U.S. Department of Labor. The NLSY79 is a
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nationally representative sample of 12,686 young men and women who were 14 to 22 years

of age when Þrst surveyed in 1979. The survey runs every year from 1979 to 1994 and

every two years thereafter and collects information on subjects� labor market performance,

environmental variables, human capital and other socioeconomic variables. It has been widely

used by social scientists, especially labor economists, during the past decade. Examples

include Farber (1994) for worker mobility, Kane and Rouse (1996) for returns of schooling,

Olsen (1994) for fertility, among others. We use the number of average working hours per

week, which is deÞned as the total number of working hours in a given year divided by

52, as the measure of labor supply and the dependent variable, together with a set of 15

covariates, which are presented and explained in Table 5. Among these variables, only the

race variables, Black and Hispanic, are time-invariant. Covariates similar to those used

in Table 5 are common in the empirical labor supply literature. Examples include Chib

and Jeliazkov (2003) for study of married women labor force participation, Shaw (1994)

for research on the persistence of female labor supply, Nakamura and Nakamura (1994) for

examination of the effects of children and recent work experience on female labor supply.

A simple (reduced-form) dynamic model of female labor supply is

yit = max{0, zitγ + yit−1ρ+ ci + uit}
ci = yi0δ1 + ziδ2 + αi

uit ∼ Normal (0, σ2u), (48)

where t = 0 corresponds to the initial year 1987, yit =Hoursit, zit =(Ageit, Educit, Incomeit,

Marriedit, Northcentralit, Northeastit, Southit, Oldit, Youngit, Schoolit, SMSAit, Unempit,

Urbanit, (Ageit)2, Ageit*Educit, (Ageit)2*Educit, Hoursit−1) and zi is the average of zit over

these years. Note that a Tobit model is appropriate because over seven years in our data,

the proportions of non-working women are 15.5%, 15.1%, 14.3%, 15.8%, 15.8%, 17.1%, and

16.1%, respectively. Here we leave the distribution of αi unspeciÞed, and will use the semi-

parametric Bayesian estimation procedure we propose to estimate model (48). The resulting
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parameter estimates are reported in Table 6, Table 7 and the estimats for the average partial

effects are reported in Table 8. The chain is of length of 5,000 draws following burn-ins of

1,000 draws.

6.1 Evidence of Nonnormality

Figure 5 shows the estimated predictive density for the error term αi, together with the

kernel estimate for the density of the dependent variable yit. As we can see, the predictive

density under the semiparametric model has multiple modes and hence highly non-normal.

Interestingly, the estimated density of the dependent variable also demonstrates two modes,

which correspond to the two biggest modes of the estimated predictive density for the error

term αi. This indicates that the modes of density of the dependent variable are mainly driven

by the modes of the density of the error term in the unobserved heterogeneity term; the role

of unobserved heterogeneity is signiÞcant. Therefore, correctly modeling the distribution of

the unobserved heterogeneity is crucial to get accurate results.

6.2 Empirical Findings

The semiparametric Bayesian estimation of our empirical model yields some interesting Þnd-

ings. First, even after controlling for the unobserved effect using the equation for ci semipara-

metrically, the lagged number of working hours is very important. The point estimate for

this variable is 0.6988 with a standard deviation of 0.0183. This indicates that the number of

average working hours per week a woman supplies this year will be highly inßuenced by the

number she supplied in the previous year. SpeciÞcally, Table 8 tells us that on average, if the

average working hours per week in the previous year increases by 1 hour, the average number

of working hours in this year will increase for about 0.64 hours. This Þnding is reasonable

since there are a lot of potential sources of state dependence from the theoretical point of

view. Examples include human capital accumulation as in Heckman (1981b), job search cost

as in Hyslop (1999), child care needs as in Nakamura and Nakamura (1994) and intertemporal

nonseparability of preference for leisure as in Hotz, Kydland and Sedlacek (1988). Empir-
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ically, the persistence estimate is higher than that found in the previous literature. Using

the Panel Study of Income Dynamics (PSID) from 1967 to 1987, Shaw (1994) found that the

persistence estimate for the group of people aged between 25 and 34 (our data has roughly

the same age composition) is 0.216 using the Þxed effects approach and 0.427 using the OLS.

The difference may come from several reasons. First, Shaw (1994) concentrates on a sample

of women who all work, while our Tobit speciÞcation allows the possibility of non-working.

Second, Shaw�s data is from 1967 to 1987, while our data starts from 1987. As documented

by Blau (1998), over the past 25 years, woman�s labor supply not only has increased on the

extensive (participation) margin, but also on the intensive (hours of work) margin. Third,

Shaw�s sample only consists of white women, while our data has white, black and Hispanic

women.

Nakamura and Nakamura (1994) state that �According to the dominant economic model,

the labor supply of individuals is determined by the intersections of their reservation and

offered wage functions: an individual�s reservation wage being the compensation required for

the individual to be willing to work one more unit time period, such as an hour, and the

offered wage being what an employer would be willing to pay for this labor input. With this

theoretical context, factors that act to raise the reservation wage or lower the offered wage

of an individual will tend to decrease his or her labor supply. Economists have argued that

family responsibilities, and especially children, can affect both the reservation and offered

wage rates of women and that the impacts on their labor supply will be predominantly

negative.� See Nakamura and Nakamura (1992) and Browning (1992) for a literature survey.

Consistent with previous Þndings on this issue as in Chib and Jeliazkov (2003), Shaw (1994),

Nakamura and Nakamura (1994) and Gronau (1973), we Þnd that on average, an additional

pre-school child (who is no more than 6 years old) will reduce the woman�s labor supply

by 3.28 hours per week and an additional school-age child (who is at least 6 years old) will

reduce the woman�s labor supply by 1.79 hours per week. These results are intuitive since

younger children require more attention from the mother and hence reduces the woman�s

labor supply more than that from a woman with older children.
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Gronau (1973) Þnds that education has a considerable effect on the woman�s value of time:

the shadow price of time of college graduates exceeds that of elementary school graduates,

other things being equal, by over 20 percent. Formal education is considered the prime source

of changes in productivity in the market sector and hence is likely to have a positive effect on

the woman�s labor supply, which is conÞrmed by our Þndings that on average, an additional

year of education will increase the woman�s weekly labor supply for about 2.76 hours. Another

important exogenous variable that affects the woman�s labor supply decision is the woman�s

age, which is documented in detail in Chib and Jeliazkov (2003). Chib and Jeliazkov (2003)

study the effect of age on female labor participation decision nonparametrically and Þnd that

there is a declining labor force participation rate for women who are aged between late 20�s

and early 30�s (which is roughly the age composition for our data). We Þnd similar results

here. Marginally, on average, as the woman becomes one year older, she is going to reduce

the weekly labor supply for about 4.86 hours. This is because for the group of young women

who aged between late 20�s and early 30�s, this is the period that they get married and have

young children. In other words, their family responsibilities increase a lot over this period

and hence they choose to supply less labor. More interestingly, from Table 6, we Þnd that the

estimate on the interactive variable for age and years of education is negative with a small

standard deviation, which means that other things being equal, age has a larger negative

effect on female labor supply when they have more years of education. This phenomenon

may be due to the special age composition of the data. Since we are concentrating on a

sample of women who are aged between late 20�s and early 30�s, for women in this age group,

if they have high years of education, they may get married and have children in recent years

and the reduction in labor supply is substantial compared with those with fewer years of

education and may get married early and have older children.

For other exogenous variables, as predicted by the theory, being married has a negative

effect on the woman�s labor supply. Women living in the northcentral and northeast areas

work more than women living in the west. Enrolling in a school will on average reduce the

woman�s labor supply by 0.20 hours per week. Living in the urban area will also increase
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a woman�s labor supply, which may be attributed to the fact that there are more working

opportunities in the urban area compared with that of the rural area. Other variables like

other family member�s income, living in a metropolitan area and the local unemployment do

not have much effects on the woman�s labor supply.

The parameter estimates for the auxiliary equation for the unobserved heterogeneity,

which are reported in Table 7, also reveal several interesting aspects of the data. First,

the initial status on the number of working hours is very important and implies that there

is a substantial positive correlation between the unobserved heterogeneity and the initial

condition. Second, age, other family members� income, marital status, geographical areas,

number of pre-school children and whether the woman lives in the urban area turn out to be

correlated with the unobserved heterogeneity.

One interesting empirical question is whether the labor supply stability, as reßected by

the coefficient estimate for the lag dependent variable, differs by race. To investigate this

question, we divide the sample into two groups, one for the white and the other for the

non-white, and calculate the average partial effects for the two groups separately according

to equation (44). The results are reported in Table 9. For a white woman, on average, the

effect of an additional weekly working hours in the past year on the current year is 0.61 hour,

while for a non-white woman, this effect is only 0.55. This reßects that white women enjoy

a more stable labor supply than those non-white women. Also, the negative effect coming

from greater family responsibilities like the marriage and the number of children has greater

impact on the labor supply of white women than that of non-white women. This may be

explained by that the living standard for non-white women is lower and they cannot afford

much reduction in labor supply even facing high demand of their non-market activities from

the family responsibilities. On the other hand, age and year of education have roughly the

same effects on both white and non-white women.

To assess the strength of the state dependence, we estimate the average transition prob-

ability from non-working in the last period to working in the current period and the average

transition probability from working at the average number of hours during the last period but
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stop working during the current period. Calculations are done according to equations (45)

and (46) and the results are reported in Table 10. For a young woman who does not work

in the previous period, the estimated probability of working in the current period, averaged

across the unobserved heterogeneity, is 0.8681. At the same time, the estimated average

probability for her to remain out of the labor force is 0.1319. On the other hand, if the

woman supplies the average number of hours in the previous period, the average probability

of quitting the job this period is close to zero.

7 Conclusion

In this paper, we propose a semiparametric Bayesian method to estimate dynamic Tobit panel

data models with unobserved heterogeneity. This method allows us to model the relationship

between the unobserved heterogeneity and initial conditions in a more robust way in that only

the conditional mean dependence of the unobserved heterogeneity on the initial conditions is

needed. Moreover, this method offers considerable computational advantages thanks to the

modern MCMC and data augmentation techniques. With this method, the average partial

effect and average transition probabilities can be estimated readily along with the parameter

estimates. Simulation studies demonstrate the good Þnite sample properties of our method

and its robustness.

We apply our method to study female labor supply using a panel data set from NLSY79.

With our method, we are able to assess the effects of the key regressors on female labor supply.

Moreover, we are also able to evaluate the relationship between the unobserved heterogeneity

and the key regressors, and measure the strength of the state dependence, and hence offer

insight on the dynamics of female labor supply.
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Table 1 Parameter Estimates Using the Fully Parametric Bayesian Algorithm for the

Experiment where the Unobserved Heterogeneity Term is Normally Distributed

γ ρ δ1 δ2 σ2u µ σ2

true value 1 0.6 0.3 0.2 1 0 1

mean 1.0153 0.6107 0.2537 0.0592 1.0142 -0.0198 0.9763

standard deviation 0.0200 0.0170 0.0593 0.0807 0.0306 0.0471 0.0710

Table 2 Parameter Estimates Using the Semiparametric Bayesian Algorithm for the

Experiment where the Unobserved Heterogeneity Term is Normally Distributed

γ ρ δ1 δ2 σ2u

true value 1 0.6 0.3 0.2 1

mean 1.0154 0.6111 0.2495 0.0638 1.0133

standard deviation 0.0199 0.0619 0.0590 0.0836 0.0314

Table 3 Parameter Estimates Using the Fully Parametric Bayesian Algorithm for the

Experiment where the Unobserved Heterogeneity Term is Non-normal

γ ρ δ1 δ2 σ2u

true value 1 0.6 0.3 0.2 1

mean 0.9188 0.4869 0.2913 0.1958 1.0476

standard deviation 0.0231 0.0226 0.0871 0.1189 0.0389

Table 4 Parameter Estimates Using the Semiparametric Bayesian Algorithm for the

Experiment where the Unobserved Heterogeneity Term is Non-normal

γ ρ δ1 δ2 σ2u

true value 1 0.6 0.3 0.2 1

mean 0.9813 0.5891 0.2927 0.1689 0.9978

standard deviation 0.0248 0.0200 0.0337 0.0618 0.0345
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Table 5 Summary Statistics9

Variable Explanation Mean Standard Deviation

Hours Average working hours per week 28.1407 17.5463

Age Age/10 2.9590 0.2743

Educ Yeas of education 13.2749 2.2652

Income Other family member�s income/1000 27.8697 77.5495

Married 1 if Married, 0 otherwise 0.6408 0.4798

Northcentral 1 if in the Northcentral area, 0 otherwise 0.3087 0.4620

Northeast 1 if in the Northeast area, 0 otherwise 0.1254 0.3312

South 1 if in the South area, 0 otherwise 0.3859 0.4869

Old # of Children aged 6 or above 0.6842 0.9644

Young # of Children aged under 6 0.6365 0.7829

School 1 if in the School, 0 otherwise 0.0691 0.2536

SMSA 1 if in a Metropolitan area, 0 otherwise 0.3520 0.4776

Unemp Local unemployment rate greater than 6% 0.4495 0.4995

Urban Urban area 0.7484 0.4339

Black 1 if Black, 0 otherwise 0.1211 0.3264

Hispanic 1 if Hispanic, 0 otherwise 0.0610 0.2394

9The sample consists of a cross section of 1115 individuals over 6 years.
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Table 6 Results from the Main Equation Using the Semiparametric Bayesian Algorithm

Variable Mean Stan. Dev. Variable Mean Stan. Dev.

Age -13.7280 6.3795 School -3.5640 0.7775

Educ 3.0097 1.1593 SMSA 0.9588 0.7446

Income -0.0015 0.0021 Unemp -0.1399 0.3967

Married -1.8655 0.6184 Urban 1.9300 0.9003

Northcentral 3.3389 1.6993 (Age)2 2.2431 1.8486

Northeast 8.2803 2.9172 (Age)*(Educ) -2.0172 0.8799

South 2.3966 1.6434 (Age)2*(Educ) 0.3425 0.1801

Old -1.9595 0.4281 Hours−1 0.6988 0.0183

Young -3.6062 0.4131
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Table 7 Results from the Auxiliary Equation Using the Semiparametric Bayesian

Algorithm

Variable Mean Standard Deviation

Mean of Age -13.5491 8.2735

Mean of Educ 1.8529 2.5484

Mean of Income -0.0117 0.0040

Mean of Married 2.1281 0.7538

Mean of Northcentral -3.7333 1.6673

Mean of Northeast -9.3105 2.9051

Mean of South 1.8837 0.4267

Mean of Old 0.0154 0.5108

Mean of # of Young 2.8209 1.3460

Mean of School -1.5690 0.9442

Mean of SMSA -1.6270 1.6718

Mean of Unemp 0.5313 0.6431

Mean of Urban -2.0950 0.9638

Mean of (Age)2 3.5318 0.5484

Mean of (Age)*(Educ) -0.0986 0.7098

Mean of (Age)2*(Educ) -0.1096 2.5242

Black -1.0819 1.8804

Hispanic -0.1441 0.3548

Hours0 0.1130 0.0151
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Table 8 Average Partial Effects

Variable Mean Stan. Dev. Variable Mean Stan. Dev.

Age -4.8580 1.9339 Young -1.7856 0.3835

Educ 2.7642 1.3540 Old -3.2830 0.3731

Income -0.0013 0.0020 School -0.1964 0.0443

Married -0.8594 0.3009 SMSA 0.2167 0.1693

Northcentral 0.5816 0.2831 Unemp -0.0480 0.1342

Northeast 0.6705 0.2593 Urban 0.9726 0.4259

South 0.5759 0.3996 Hours−1 0.6369 0.0179

Table 9 Average Partial Effects by Race

Variable Mean Standard Deviation Mean Standard Deviation

White Non-white

Age -4.8491 1.8846 -4.3152 1.6945

Educ 2.8020 1.3429 2.5183 1.2080

Income -0.0014 0.0020 -0.0013 0.0018

Married -0.7274 0.3097 -0.4056 0.1847

Northcentral 1.0011 0.3813 0.1571 0.1129

Northeast 0.7698 0.2095 0.2762 0.1245

South 0.4835 0.4065 -0.1580 0.0475

Young -3.3378 0.3177 -2.9992 0.2883

Old -1.6215 0.3564 -1.4572 0.3220

School -0.2050 0.0430 -0.1580 0.0475

SMSA 0.2961 0.1714 0.0880 0.0760

Unemp -0.0353 0.1310 -0.0251 0.1003

Urban 0.8138 0.5708 0.6336 0.4564

Hours−1 0.6134 0.0163 0.5512 0.0168
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Table 10 Average Transition Probabilities

Variable Mean Standard Deviation

p01 0.8681 0.0076

p00 0.1319 0.0076

p10 0.0072 0.0040
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