1.27. (a) Linear, stable.
\(&f Memoryless, linear, causal, stable.

(c) Linear
d) Linear, causal, stable.

(e) Time invariant, linear, causal, stable.
Linear, stable.

(g) Time invariant, linear, causal.

1.31. (a) Note that z(t) = z1(t) — (2 - 2). Therefore, u
y1(t — 2). This is as shown in Figure S1.31.

HW2  Solutiem

sing linearity we get ya(t) = yi(t) —

(b) Note that z3(t) = z1(t) + z1(t +1). Therefore, using linearity we get y3(t) = y1(t) +

y1(t + 1). This is as shown in Figure S1.31.
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1.34. (a) Consider

oo

n=-00 .

Z z[n] = z[0] + Z{x[n] + z[-n]}.
n=1

If z[n] is odd, z[n] + z[~n] = 0. Therefore, the given summation evaluates to zero.

(\t} Let y[n] = z[n]zo[n]. Then

y[=n] = &1[-n]zs[—n] = ~z[p]zs[n] = —y[n].

This implies that y[n] is odd.
(c) Consider

o0

5 7 - 3

0

Z {zeln] + z,[n]}?

= z z2[n] + Z zi[n] + 2 Z Ze[n)z,[n].

n=-oo n=-—oo

n=—o00

Using the result of part (b), we know that z, [n]zo[n] is an odd signal. Therefore, using

the result of part (a) we may conclude that

2 Z Ze[n]z,[n] = 0.

n=-oo

Therefore,
[ o] oC

> ==Y 24 T 23]

n=-o0o n=-oo

(d) Consider

n=—oo

/_:zz(t)dt=/_:zﬁ(t)dt+[:x3(t)1t+2/_:xe(t)$°(t)dt'

Again, since z,.(t)z,(t) is odd.

¢



HIKB Solution

Therefore, 00

/w z3(t)dt = /w T2(t)dt +/ z2(t)dt.

—00

.41, (a) y[n] = 2z[n]. Therefore, the system is time invariant.

- (b) y[n] = (2n — 1)z[n]. This is not time-invariant because y[n — Ny) # (2n — Dz[n — Ny).
(¢) y[n] = z[n[{1 + (~1)" + 1+ (=11} = 2z[n). Therefore, the system is time invariant.
142 (a) Consider two systems $; and S, connected in series. Assume that if z1(t) and ,(t) are
the inputs to S, then y, (t) and yy(t) are the outputs, respectively. Also, assume that

if y1(¢) and y5(t) are the inputs to S2, then z(t) and 22(t) are the outputs, respectively.
Since S} is linear, we may write

az1(t) + bza(t) 5 ay; () + bya(t),

where a and b are constants, Since S, is also linear, we may write

ay1(2) + bya(t) 25 azy(t) + by (1),

We may therefore conclude that

az1(8) + boa(t) 25 azy (1) + bey(t).

Therefore, the series combination of S; and Ss is linear.
Since S is time invariant, we may write

zi(t - To) 2 yi(t— Ty)
and

vilt—To) =5 2 (t - Ty).
Therefore,

ot - To) 1F (t - Tp).
Therefore, the series combination of S; and S, is time invariant.

(b) False. Let Y(t) = z(t) + 1 and 2(t) = () ~ 1. These correspond to two nonlinear
systems. If these systems are connected in series, then z(t) = z(t) which is a linear
system.

(c) Let us name the output of system 1 as w(n] and the output of system 2 as z[n]. Then,

y[n] 2[2n] = w(2n] + %w[2n -1+ al-'w[Zn -2

i

oln] + %z[n -1+ 4lz[n ~ 2]

The overall system is linear and time-invariant,.

. 1.43, (a) We have
- 2(t) <5 y(t).

Since S is time-invariant,

z(t — T) s y(t - T).
Now, if z(t) is periodic with period T, z(t) = z(t — T). Therefore, we may corfch.lde
that y(¢) = y(t — T). This implies that y(2) is also periodic with period T. A similar
argument may be made in discrete time.



1.42. (a) Consider two systems S; and S, connected in series. Assume that if z, (t) and z,(t) are
the inputs to S, then y1(t) and yy(t) are the outputs, respectively. Also, assume that
if y1(t) and yo(t) are the inputs to Sy, then z)(t) and 25(t) are the outputs, respectively.
Since S is linear, we may write

az(t) + bzo(t) 5, ay (t) + bya(2),

where a and b are constants. Since $; is also linear, we may write

agn (t) + bya(t) = az(2) + bzo(1),

We may therefore conclude that

az1(2) + bza(t) “2F az (8) + baa(t).

Therefore, the series combination of Sy and S, is linear.
Since S; is time invariant, we may write

21t - To) 25 y(t - To)
and

n(t=To) = z(t - Ty).
Therefore,

ni(t-To) 2 21t - To).
Therefore, the series combination of S; and S, is time invariant.

(b) False. Let y(t) = z(t) + 1 and z(t) = y(t) — 1. These correspond to two nonlinear
systems. If these systems are connected in series, then 2(t) = () which is a linear
system. ’

() Let us name the output of system 1 as w[n] and the output of system 2 as z[n]. Then,

y[n) z[2n]) = wl2n] + %w[2n -1+ %w[Zn -2

1 1
z[n] + -2-:c[n. -1)+ Z:z:[n -2}
The overall system is linear and time-invariant.
Problem from exercise book:

1.4 2. y[n] = sin((7/2)z[n]). You can obtain the output signals y;[n] and ys[n] with re-
spect to the input signals z,[n] = d[n] and z[n] = 26[n]. Notice that yn] = sin((r/2)(z1[n] +
2[n])) is not equal to y1[n] + ys[n]. Therefore, the system is not linear.

clear all;

clf;

n=[-5:5]
delta=zeros(1,length(n))
delta((length(n)+1)/2)=1;



x1=delta;
x2=2*delta;
y1=HW3_1_4a_fun(x1) 15

y2=HW3_1_4a_fun(x2)
y3=HW3_1_4a_fun(x1+x2) :
y4=yl+y2;

subplot(221)
stem(n,y1,’g’) o R

(i)

00—o-
xlabel(’n’); = 0 s 5 0
ylabel(’y_1[n]’);

[ ]

axis([-5 5 0 1.5]) B—e—o—6—¢ e 15

subplot (222)
stem(n,y2,’r’)
axis([-5 5 0 1.5])
xlabel('n’);
ylabel(’y_2[n]’); -15 o
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bplot(223)
::eﬁ(g 3(,3) Figure 1. Homework 3:1.4(a)
xlabel(’n’);
ylabel (’sin(\pi/2(x_1+x_2))’);
axis([-5 5 -1.5 0])

subplot(224)

stem(n, y4)

axis([-5 5 0 1.5])
xlabel(’n’);
ylabel(’y_1[nl+y_2[n]’);

hhhhfunction in a different file name as HW3_1_4a_fun.m

function y=HW3_1i_4a_fun(x)
y=sin(pi/2*x);

1.4Db. y[n] = z[n] + z[n + 1]. After you obtain the plots for y[n], you may find out it is
nonzero when z[n) is zero. Hence it is not causal.

clear all;

clf;

n=[-6:9];

for i=1:length(n)
if n(i)>=0
u_n(i)=1;
end
if n(i)>=-1
u_ni(il)=1;




end ! :
end

y=u_n+u_nl;

subplot(311) . . :
stem(n,u_n)
xlabel(’n’);
ylabel(’x[n]’);
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subplot (312)
stem(n,u_n1)
xlabel(’n’);
ylabel(’x[n+1]?);
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yinl=x[n}+x{n+1)

subplot (313)
stem(n,y) "
xlabel(’n’);

ylabel(’y[n]l=x[n]l+x[n+1]’);
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Figure 2: Homework 3:1.4(b)

1.4. ¢ y[n] = log(z[n]). You may pick the signal like z[n] = e or 1/n. Here we pick
z[n] = 1/nfor n > 1 and z{n] is 1 for n < 0. This is because z[n] need to be greater than 0
for the natural logarithm. You may find that lz[n]| < 1 but |y[n]] is unbounded.
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Figure 3: Homework 3:1.4(c)



clear all;
clf,;
n=[1:20];
x=zeros(1,length(n));
for n=1:20
if n<=5;
x(n)=1;
else
x()=1./(n-5+1);
end
end
n=[-4:15];

subplot (221)
stem(m,x)
xlabel(’n’);
ylabel(’x=1/n’);

subplot (222)
stem(m,abs(x))
xlabel(’n’);

ylabel(’ |x|=1/n");
subplot (223)

stem(m, log(x),’r’)
xlabel(’n’);
ylabel(’y=10g(1/n)’);

subplot(224)

stem(m,abs (log(x)),’r’);
xlabel(’n’);

ylabel(’ lyl=1og(n)’);

1.4. e. y[n] = 2%[n]. The system is time-invariant, causal, stable and invertible, but it is
not linear. We can choose z;, and z, as the same signals in problem 1.4 a. It can be shown
that y1 + y is not equal to y = (z; + T2)®, therefore, it is not linear.

clear all;

clf;

n=[-5:5]
delta=zeros(1,length(n))
delta((length(n)+1)/2)=1;

x1=delta;
x2=2*delta;
y1=x1."3+x2.°3;
y2=(x1+x2) .3



subplot (221)
stem(n,x1,’r?)

2 2
xlabel(’n’);
ylabel(’x_1[n]’); 15 15
axis([-5 5 0 2]) §_1 31
subplot (222) 05 05
stem(n,x2,’r’)

e—6—6——0—0-0 6660 o—o

xlabel(’n’); % 0 B 0
ylabel(’x_2[n]’);

30 30
subplot (223) 2 2
stem(n,y1,’r’) Lo zo
xlabel(’n’); L £is
ylabel (’y=(x_1[n]+x_2[n])~2’); 1o %10
axis([-6 5 0 30]) | ]’ .
subplot (224) - o T - S
stem(n,y2,’g’)
xlabel(’n’); Figure 4: Homework 3:1.4(e)

ylabel("y=x_1"3[n]+x_2"3[n]’);

1.4. £ y[n] = nz[n]. The system is causal, linear, invertible, but it is not time-invariant
and not stable. First, we pick the input signal z,[n] = §(n) and z, = § (n—1). If the system
is time-invariant, then the output y2[n] can be obtained by shifting the y;[n] to the right.
The plots shows that it is not the case, so the system is not time invariant.

clear all;
clf;

% it is causal, linear, invertible.
% it is not time-invariant, not stable.

%1. Time varying
n=[-5:5]
x1=zeros(1,length(n))
x1((length(n)+1)/2)=1;
yi=n.*x1;

n=[-5:5]
x2=zeros(1,length(m))
x2((length(m)+1)/2+1)=1;
y2=n.*x2;

figure(1)
subplot (221)
stem(n,x1, 'r?)




xlabel(’n’);
ylabel(’x_i[n]=\de1ta[n]’); ! k
0.8 0.8

%n.a To_s
subplot(222) £, il
stem(n,x2,’r’) < 2
xlabel(’n’); o2 02
ylabel(’x_2[n]=\delta[n-1}")  g—o—e—o—o—— o7 oo o——6—o |

0 b MR S !

subplot (223) .
sten(n,yl,’r’) 1
xlabel(’n’); ° o8
ylabel(’y_1[n]=nx_1[n]’); §55 Sos
axis([-5 5 0 11); L <

= P4
subplot(224) " o
stem(n,y2,’r’) groeee g ee ©—6—0—6—0—8——0—6—06~
xlabel(’n’); " ) "
ylabel(’y_2[n]=nx_1[n-1]"); :

Figure 5: Homework 3:1.4(f)-time varying

as the step function, which is bounded.

Continue with the program, we can pick z(n}
stable.

The output signal is unbounded, so the system is not

%2:instability S

ul=ones(1,length(n)); 1 ;

for i=1:length(n) I '
if n(i)<0

ul(i)=0;

end

end 0zf

y=n.*ul;
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figure(2)

subplot(211)
stem(n,ul)
xlabel(’n’);

ylabel (’x[n]=ulnl’);

yin)=nu[n}
o« &
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subplot (212) % T L1 |
stem(n,y) n J
xlabel(’n’); Figure 6 Homework 3 .

' : :1.4(f)- il
ylabel("y[n]=nu{n]’); (f)-instability



