Hw& < DULTrong

4.19. We know that _ Y (jw)

09 = XGa

Since it is given that y(t) = e 3tu(t) — e **u(t), we can compute Y (jw) to be

1 1 1
3+jw 4+jw  (B+jw)(d+jw)

Since, H(jw) = 1/(3 + jw), we have

Y(jw) =

X@»=§&$=VM+W)

Taking the inverse Fourier transform of X (jw), we have

z(t) = e~ Yu(t).

4.23. For the given signal To(t), we use the Fourier transform analysis eq. (4.8) to evaluate the
corresponding Fourier transform

1 — e_(l+jw)

Xo(jw) = Ty

(i) We know that .
zl(t) = .’I,'Q(t) + .'E()(—t).

Using the linearity and time reversal properties of the Fourier transform we have

. ) , 2—2etcosw ~ 2we!sinw
X1(jw) = Xo(jw) + Xo(~jw) = T :

(ii) We know that
2a(t) = zo(t) — z0(~t).

Using the linearity and time reversal properties of the Fourier transform we have

—2w + 2e~ ! sinw + 2we™! cosw
1+ w?

Xz(jw) = Xo(jw) - Xo(—jw) = j
(iii) We know that
z3(t) = zo(t) + zo(t + 1).
Using the linearity and time shifting properties of the Fourier transform we have

14+ e —e (14 e )
1+ jw )

X3(jw) = Xo(jw) + €7 Xo(—jw) =

4.25. (a) Note that y(t) = z(t + 1) is a real and even signal. Therefore, Y (jw) is also real and
even. This implies that <Y (jw) = 0. Also, since Y(jw) = ¢/ X(jw), we know that

X (jw) = ~w.
(b) We have -
X(j0) = / s(t)dt =1,
(c) We have

/OOX(jw)dw = 27z (0) = 4n.

[o 0]



4.26. (a) (iii) We have

Y (jw) X (jw)H (jw)

3 [ 1 1
l+jwj|l—-jw

1/2

Az 12

I+jw  1-jw

Taking the inverse Fourier transform, we obtain
1

t) = —e'm.
y(t) = 5

4.33. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain

. Y(jw 2
Hjw) = 2U) _ ———
X(jw) —~w +\‘Jw +8
Using partial fraction expansion, we obtain G
. 1 1
H(jw) =

jw+2 jw+d
Taking the inverse Fourier transform,
h(t) = e~ 2u(t) — e~ *u(t).
(c) Taking the Fourier transform of both sides of the given differential equation, we obtain

_Y(w) _ 2(=w?-1)
T X(jw) w4+ V2w+l

H(jw)

Using partial fraction expansion, we obtain

-v2-2V?2j N V2 +2/2j

H(jw) =2+ - 5
jw _ —'\/5:;1\/5 jw _ —\/52—2\/5

Taking the inverse Fourier transform,

hit) = 26(2) — V3(1 + 24)e” V2 (1) - V2(1 - 9)e= L=V 1),
4.34. (a) We have
Y(jw = jw+4d
X(jw) 6 —w?+5jw’

Cross-multiplying and taking the inverse Fourier transform, we obtain

dzy(t) + 5d_y(_tl + 6y(t) = d;:l:_(_ﬂ + 4$(t).

dt? dt dt
(b) We have
Hjw) = g = 55
W)= 9w 3tgw

Taking the inverse Fourier transform we obtain,

h(t) = 2e~Hu(t) - e Stu(t).



4.36. (a) The frequency response is

) Y(jw) 3(3 + jw)
Hiw) = %i0) = G jo)e+0)

(b) Finding the partial fraction expansion of answer in part (a) and taking its inverse
Fourier transform, we obtain

TR TR

(c) We have Y(w) 9+ 34w)

X(jw) - 8+ 6jw — w?’

Cross-multiplying and taking the inverse Fourier transform, we obtain

dy(t)  dy(t) _3%=® o).
12 +67 +8y(t)_3 dt ()

Matlab homework: The program is the following. The two filters are both low pass
filters. The advantages of logarithmic plots include

(a) The magnitude plot of H (jw) is approximately as piecewise linear plots, and the slope
changes according to the locations of the Roles and zeros(which will be discussed later
in this course).

(b) Lin/lin plot has trouble to cover both lower and higher frequency values when jw has
higher degrees. The log/log plot allows the frequency and the magnitude to be over a
wider range. )

(c) The log/log changes the multiplication operation into the addition operation, and it
make the computation simpler.

%homework 8 4.33(a) and 4.34

clear all;

b=2;

a=[1 6 8];

figure(1)

freqs(b,a);

title("the frequency response of Problem 4.33(a));
% low pass filter

print -dpsc hw8_3_33.ps

b=[1 4];

a=[1 5 6];

figure(2)

freqs(b,a);

title(’The frequency response of Problem 4.34°);
% low pass filter

print -dpsc hw8_3_34.ps
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Figure 1: Homework 8:3.33(a)
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Figure 2: Homework 8:3.34



