EE 30344 - Signals and Systems I

Practice for Quiz 4

1. A signal $x(t)$ is periodic with period $T=8$, so it can be represented as

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j(2 \pi / 8) k t}
$$

It is known that the FS coefficients for this representation of $x(t)$ are given by

$$
a_{k}=\frac{1}{8} \int_{-4}^{0}(4+t) e^{-j(2 \pi / 8) k t} \mathrm{~d} t
$$

(a) Determine an expression for $x(t)$ that is valid over one period.
(b) Draw a plot of $x(t)$ for $-8 \leqslant t \leqslant 8$. Label carefully.
(c) Determine the DC value of $x(t)$.
2. $x[n]$ is a real, even, and periodic signal. Its Fourier series coefficients for $N=8$ are denoted by a_{k}.
(a) Let $a_{0}=1, a_{1}=1 / 2$, and $a_{k}=0$ for $1<|k|<7$. Sketch the signal and write it as a sum of cosines

$$
x[n]=\sum_{k=0}^{\infty} c_{k} \cos \left(2 \pi k n / N+\phi_{k}\right)
$$

(i.e., determine c_{k} and ϕ_{k}.)
(b) Now, assume $a_{4 i}=1$ for $i \in \mathbb{Z}$, and that all other coefficients are zero. What is the fundamental period of $x[n]$?
(c) Assume we know that $x[n]$ has fundamental period 8 . Is it possible that $a_{1}=0$? Explain.

