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Abstract

Traditionally, the routing problem is addressed at the
network layer, an approach that has been extended to the
wireless realm. In wireless multihop networks, however,
strict layer-base protocol design leads to substantial ineffi-
ciencies. This paper addresses the routing problem for large
wireless ad hoc networks from a fundamental point of view,
not constrained by particular protocol implementations or
layered architectures, but taking into account the properties
of the wireless channel. First, an analytical channel model
is presented that is based on Rayleigh fading. It demon-
strates how noise and interference effects can be separated,
and how each interfering transmission affects the packet
reception probability. Second, the distribution of node dis-
tances in networks with uniformly randomly placed nodes is
derived. These two ingredients are used to discuss the ben-
efits of different routing strategies. In particular, short-hop
and long-hop routing schemes are compared. Further, co-
operative strategies such as multipath routing and cooper-
ative diversity are briefly discussed as techniques that are
enabled by the broadcast nature of the wireless channel.

1. Introduction

As often pointed out, routing is a critical issue for ad
hoc1 wireless networks. While it has certainly been ad-
dressed extensively by the research community (see, e.g.,
[21,27,31] and references therein), the proposed algorithms
are often derived from their wired counterparts, and the spe-
cific and peculiar properties of the wireless channel are not
considered. This is reflected in the type of models that are
prevalently chosen to evaluate the protocol performance.
In particular, the so-called disk model or protocol model
[7,9,14,20,22,23,25,26,29] is very frequently used. In this

1 In this paper, the term ad hoc implies multihop routing.

deterministic model, the radius for a successful transmis-
sion has a deterministic value, irrespective of the condition
of the wireless channel, and interference is taken into ac-
count using the same geometric disk abstraction. The three
main shortcomings of this model are:

• It ignores the accumulated interference of a large num-
ber of distant nodes. In particular, it does not capture
the problem of diverging interference when the path
loss exponent it close to two.

• It wrongly suggests that increasing the transmit power
(by the same factor) of all the nodes in the network
leads to more packet collisions. This misconception
stems from the fact that the transmit radius grows
with the transmit power and any interferer within a re-
ceiver’s disk is assumed to cause a collision.

• Stochastic variations in the channel (fading) are ne-
glected.

In networks with mobile terminals, as they are often consid-
ered in the context of ad hoc networks, the last point is as
severe as the other ones, since fading is an immediate and
fundamental consequence of node mobility.

A more suitable model is the so-called physical model
[9], where a certain signal-to-noise-and-interference ratio
(SINR) is required for successful packet reception. This
model is more accurate, in particular for systems with
strong channel coding. Yet it is still fully deterministic and
does not take into account the distribution of the (Gaus-
sian) noise or the stochastic nature of the wireless channel
(fading, shadowing). As pointed out in [4, 6], the volatil-
ity of the channel cannot be ignored in wireless networks; it
is also easily demonstrated experimentally [5, 19]. In addi-
tion, the “prevalent all-or-nothing model” [24] leads to the
assumption that a transmission over a multihop path either
fails completely or is 100% successful, ignoring the fact that
end-to-end packet loss probabilities increase with the num-
ber of hops (unless the transmit power is adapted).



Fig. 1 shows typical relationships between the (normal-
ized) transmission distance and the packet reception proba-
bility for an AWGN channel. In particular for smaller path
loss exponents (left plot), the curve does not resemble an
“all-or-nothing-model”. It can also be seen how coding af-
fects the shape of the curve. Already a rather weak code, the
(127,120) Hamming code, causes the curve to be steeper;
the reception probability at distance 1 increases from 75%
to 95%.

To overcome some of these limitations of the disk and
deterministic “physical” models, we suggest a Rayleigh
fading link model that relates transmit power, large-scale
path loss, and the success of a transmission over multipath
channels. It is a physical model that incorporates fading.
A typical distance-reception probability curve is plotted in
Fig. 2. It is much flatter than the AWGN curve, but it too
grows steeper with increasing path loss exponent α. In fact,
both the AWGN and Rayleigh curves tend to the disk model
as the path loss exponent goes to infinity.

This model captures the relevant effects of the wireless
channel: large-scale path loss, the broadcast nature of om-
nidirectional antennas, interference, and fading. It will be
described in detail in the next section. We use it to offer a
comprehensive perspective at the routing problem, uncon-
strained of the traditional OSI layer architecture and partic-
ular routing protocols.

2. The Rayleigh Fading Link Model

We consider networks with Rayleigh block fading chan-
nel, which is justified not only in the case of TDMA or slow
frequency hopping, but also when the packet transmission
time approximately equals the coherence time of the chan-
nel (which is often the case for ad hoc networks) or when a
random channel access scheme prevents a node from trans-
mitting in multiple subsequent timeslots.

A transmission from node i to node j is successful if the
SINR γij is above a certain threshold Θ that is determined
by the communication hardware, and the modulation and
coding scheme [4]. The SINR γ is a discrete random pro-
cess given by

γ =
R

N + I
. (1)

R is the received power, which, in the case of Rayleigh fad-
ing, is exponentially distributed with mean R̄. Over a trans-
mission of distance d = ‖xi −xj‖2 with an attenuation dα,
we have R̄ = P0d

−α, where P0 is proportional to the trans-
mit power2. N denotes the noise power, and I is the inter-

2 This equation does not hold for very small distances. So, a more accu-
rate model would be R̄ = P ′

0
· (d/d0)−α, valid for d > d0, with P ′

0

as the average value at the reference point d0, which should be in the
far field of the transmit antenna. At 916MHz, for example, the near
field may extend up to 1m (several wavelengths).
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Figure 1. Reception probabilities of a 120
bit packet as a function of distance for an
AWGN channel (BPSK modulation) for un-
coded transmission and a (127,120) Ham-
ming code. The path loss exponent is: (a)
α = 2, (b) α = 4.
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Figure 2. Reception probabilities over a
Rayleigh fading channel for path loss expo-
nents of 2 and 4.

ference power affecting the transmission, i.e., the sum of the
received power from all the undesired transmitters.

Theorem 1 In a Rayleigh fading network, the mean recep-
tion probability pr := E[P[γ > Θ]] can be factorized into
the reception probability of a zero-noise network and the re-
ception probability of a zero-interference network.

Proof: Let R0 denote the received power from the desired
source and Ri, i = 1, . . . , k, the received power from k
interferers. All the received powers are exponentially dis-
tributed, i.e., pRi

(ri) = 1/R̄i e−ri/R̄i , where R̄i denotes
the average received power R̄i = Pid

−α
i . The probability

of correct reception is

pr =E
[
P[R0 > Θ(I + N)]

]
(2)

=E

[

exp
(

− Θ(I + N)

R̄0

)]

(3)

=

∫
∞

0

· · ·
∫

∞

0

exp
(

− Θ(
∑k

i=1 ri + N)

R̄0

)

·
k∏

i=1

pRi
(ri) dr1 · · · drk

= exp
(

− ΘN

P0d
−α
0

)

︸ ︷︷ ︸

pN
r

·
k∏

i=1

1

1 + Θ Pi

P0

(
d0

di

)α

︸ ︷︷ ︸

pI
r

. (4)

pN
r is the probability that the SNR γN := R0/N is above

the threshold Θ, i.e., the reception probability in a zero-
interference network as it depends only on the noise. The

second factor pI
r is the reception probability in a zero-noise

network. �
This allows an independent analysis of noise and interfer-
ence. Note that (4) clearly shows that power scaling, i.e.,
scaling the transmit powers of all the nodes by the same fac-
tor, does not change the SIR (pI

r only depends on power ra-
tios), but (slightly) increases the SINR.

From an information-theoretic point of view, (4) can be
viewed as an outage probability; it therefore permits the
derivation of the outage capacity of the Rayleigh block fad-
ing/interference channel.

In a zero-interference network, the reception probability
over a link of distance d at a transmit power P0, is given by

pr := P[γN > Θ] = e
−

ΘN

P0 d−α , thus the transmit power P0

that is necessary for a packet reception probability pr is

P0 =
dαΘN

− ln pr
. (5)

Note that for high probabilities, the packet loss probabil-
ity 1− pr is tightly upper-bounded by the normalized mean
noise-to-signal ratio (NSR) ΘN/R̄0=Θ/γ̄N [12]. Since
− ln pr ≈ 1− pr, we can also say that the packet loss prob-
ability is inversely proportional to the transmit power for
high pr.

Considering the interference part, it can be seen that for
each interferer there is a corresponding factor in the prod-
uct expression for pI

r . So, the impact of a channel access
scheme on the number and distances of interfering nodes
is directly reflected in this expression. Since pI

r only de-
pends on power ratios, it permits the calculation of the
power-independent throughput limits. For example, what is
the throughput limit in a long line network with equidistant
nodes where the leftmost node is the source and every node
transmits to its right neighbor? The optimum MAC scheme
is to have every q-th node in the chain transmit in a given
timeslot. The optimum q is, from (4), given by

gmax =

max
q∈N

(

q
∞∏

i=1

(
1 + Θ(qi − 1)−α

)

︸ ︷︷ ︸

right neighbors

(
1 + Θ(qi + 1)−α

)

︸ ︷︷ ︸

left neighbors

)−1

.

This maximization is easily carried out numerically, since
the terms (1 + iq)−α approach zero very quickly with in-
creasing i. For an SIR threshold of Θ = 10, maximum
throughput levels of 0.0758, 0.1599, 0.2174, 0.2504 are
achieved at q = 8, 5, 4, 3 for α = 2, 3, 4, 5 [18].

3. Distances in Networks with Random Node
Distribution

One of the main distinguishing features of wireless net-
works from wired ones is the fact that distances matter,



since the path loss over a wireless channel is huge com-
pared with the signal attenuation over a cable. So, in order
to evaluate the performance of ad hoc networks, we need
some information on the internode distances. Often, due to
random deployment or mobility, a uniformly random distri-
bution is a reasonable assumption. For large networks, the
uniform distribution is equivalent to a Poisson point pro-
cess for all practical purposes, so we will focus on the latter
due to its analytical simplicity.

We offer a unified treatment of m-dimensional random
networks by determining distributions, expected values, and
higher moments of the distances to n-th neighbors for any
number of dimensions m. Comparing one- and higher-
dimensional networks, it has been pointed out in [3] that
one-dimensional networks do not percolate. So, connectiv-
ity is easier to guarantee for larger m; on the other hand,
the interference problem becomes more severe, since the
large-scale path loss exponent α has to be larger than the
number of dimensions m to keep the interference finite3. A
fundamental difference between regular (equidistant) net-
works and random networks is the variance of the internode
distance, which causes imbalance in throughput and energy
consumption (in schemes with power control) or link relia-
bility (in constant-power schemes). So, as will be discussed
in Section 4, it is beneficial to have all nodes in a route trans-
mit over approximately the same distances.

3.1. The generalized Weibull distribution

If nodes are distributed according to a Poisson point pro-
cess with a density λ in an m−dimensional network, the
probability of finding k nodes in a subset of measure A is
given by the Poisson distribution

P[k nodes in A] = e−λA (λA)k

k!
, (6)

This permits the calculation of the distance to an n-th neigh-
bor in a straightforward manner:

Theorem 2 (Distance to n-th neighbor.) In an m-dimen-
sional random network with uniformly distributed nodes
and density λ, the distance Rn between a node and its n-th
neighbor is distributed according to the generalized Weibull
distribution

fRn
(r) = e−λcmrm m (λcmrm)n

r(n − 1)!
, (7)

where cmrm is the volume of the m-sphere of radius r.

Proof: Let Am(r) := cmrm be the volume of the m-sphere
of radius r, and let Sk be the k-th coefficient in the Poisson

3 This is a straightforward generalization of a result in [24].

distribution: Sk := (λAm(r))k/k!. The complementary cu-
mulative distribution function (cdf) of Rn is the probability
that there are less than n nodes closer than r:

Pn : = P[0 . . . n−1 nodes within r] (8)

=
n−1∑

k=0

Sk e−λAm(r) .

From fRn
= −dPn

dr , we have

fRn
=λcmmrm−1

(n−1∑

k=0

Sk −
n−1∑

k=1

Sk−1

)

e−λAm(r) (9)

=λcmmrm−1Sn−1e
−λAm(r) (10)

=
nm

r
Sne−λAm(r) , (11)

which is identical to (7). �

This distribution generalizes several well-known distribu-
tions. For m = 1, this is an Erlang distribution, for n = 1,
this is a Weibull distribution, for m = 1 and n = 1, this
is an exponential distribution (a special case of Erlang and
Weibull), and for m = 2 and n = 1 (a very relevant case),
this is a Rayleigh distribution (a special case of Weibull).
If the factorial (n − 1)! is replaced by Γ(n), the distribu-
tion is valid also for non-integer n, essentially generalizing
the Γ distribution. The cdf of Rn can also be written as

FRn
(r) = 1 − Γic(n, λcmrm)

Γ(n)
, (12)

where Γic(·, ·) is the incomplete Γ function.
Note that with the Poisson assumption, a simple state-

ment can immediately be made on connectivity. Since the
probability that no node lies on a disk of area πr2 around
a transmitter is exp(−λπr2), the transmit radius r has to
grow at least with

√
ln n to keep a network with n nodes

connected. This gives the right order for the power levels [8]
and the number of neighbors [30] needed for connectivity.

Now, with the channel model and the knowledge about
internode distances, we are ready to discuss the routing
problem.

4. Routing in Rayleigh Networks

For efficient routing, progress should be made at each
hop, i.e., the next-hop neighbor should be closer to the des-
tination. So, we have to determine the distance to a neigh-
boring node that lies within an angle 0 < φ 6 π

2 of the
source-destination axis4. For the two-dimensional case, this
is illustrated in Fig. 3. In the distribution, this simply corre-

4 The angle between the source-destination vector and the vector to the
next-hop neighbor must be smaller than φ.
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Figure 3. Part of a two-dimensional network
with the source at the origin and the x-axis
pointing towards the destination node. R1

denotes the distance to the nearest neighbor
within a sector φ around x, and ψ is its ar-
gument. Hence (R1, ψ) are the polar coordi-
nates of the nearest neighbor within a sector
φ, and (X,Y ) are its Cartesian coordinates.

sponds to a change of the volume from an m-sphere to an
m-sector which has volume cφ,mrm. For m = 1, 2, 3, we
have cφ,1 = 1, cφ,2 = φ, and cφ,3 = 2π

3 (1− cosφ), respec-
tively. Replacing cm by cφ,m in (7), the probability density
function (pdf) of the distance to the n-th neighbor in a sec-
tor φ is given by

fRn
(r) = e−λcφ,mrm m (λcφ,mrm)n

r(n − 1)!
. (13)

The expected distance is

E[Rn] =
( 1

λcφ,m

) 1

m Γ
(
n + 1

m

)

Γ(n)
(14)

=
( 1

λcφ,m

) 1

m

(n)1/m ,

where (n)1/m is the Pochhammer symbol notation. Irre-
spective of the particular channel model, the energy con-
sumption is proportional to Rα. So, the expected energy
consumption is given by the higher moments5

E[Rα
n ] =

( 1

λcφ,m

) α
m Γ

(
n + α

m

)

Γ(n)
(15)

=
( 1

λcφ,m

) α
m

(n)α/m .

5 Note that α does not have to be an integer.

Remarks:
(a) m and α have complementary roles: m-dimensional net-
works with path loss exponent α require approximately the
same energy for transmission to the n-th neighbor as km-
dimensional networks with path loss exponent kα, the dif-
ference coming from the different coefficients cφ,m.
(b) As a function of n, the Pochhammer sequence (n)α/m

grows as nα/m. So, for m = 2, the expected distance grows
as

√
n.

(c) For m = 1, the variance is n/λ2, i.e., n times the vari-
ance of the exponential distribution, as expected from the
variance of the Erlang distribution with parameter n.
(d) For m = 2, the variance is tightly bounded6 for all n:
(1 − π/4)/φ 6 Var[Rn] < 1/φ for all n > 1. For m > 2,
the variance goes to 0 with increasing n.
(e) As a function of m, the variance is monotonically de-
creasing and approaches zero in the limit m → ∞.
(f) Interestingly, limm→∞ E[Rn] = 1 for any fixed λ and n.

4.1. Maximum energy consumption in a route

The lifetime of a k-hop route is determined by the node
that consumes the most energy. The expected maximum of
the per-hop energy consumptions E1, . . . , Ek is

Ēmax = E[max{E1, . . . , Ek}] (16)

=

∫
∞

0

(1 − FE(r)k)dr ,

where Ei = (Rα
n)i and FE(·) is the cdf of Rα. For nearest-

neighbor routing (n = 1) and α = 2, the node distances are
exponentially distributed. The maximum of k i.i.d. expo-
nential random variables with mean 1 is known to be given
by the harmonic sum

∑k
i=1 1/i, which is tightly lower-

bounded by ln k + γem, where γem ≈ 0.577 is the Euler-
Mascheroni constant. Now, from Jensen’s inequality we can
conclude that

Ēmax '
(
E[R2

1](ln k + γem)
)α/2

, (17)

thus the maximum energy consumption over a k-hop con-
nection grows with at least ln k. For α = 3 and different
n, this (normalized) maximum energy consumption is dis-
played in Fig. 4.

Clearly, the main problem is the large variance in the ex-
pected energy consumption. To decrease this variance, the
principle of nearest-neighbor routing has to be abandoned,
and all nodes should transmit approximately over the same
distance, thereby emulating a network with regular topol-
ogy. With the framework we have developed, the perfor-
mance of routing algorithms can be compared analytically.

6 The lower bound is the variance of the Rayleigh distribution, the upper
bound can be derived from Stirling’s approximation, letting n → ∞.
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Figure 4. Maximum per-node energy con-
sumption over a k-hop route in a two-
dimensional network for different n with φ =
π/4, λ = 1, and α = 3.

In [13], different strategies are studied, and one of the con-
clusions is that routing over many short hops is not as ad-
vantageous as it seems to be, in particular if the delay is
taken into account: a routing scheme with long hops can
benefit from time diversity in the form of retransmissions.
In the following section, we will give a number of reasons
why longer hops may be preferred.

4.2. Short-hop vs. long-hop routing

The question whether routing over many short hops or
fewer but longer hops is more efficient is certainly very rel-
evant. Intuitively, with path loss exponents ranging from 2
to 4, short-hop routing seems to be more energy-efficient
while long-hop routing has the edge in terms of delay.
But what if both schemes have the same delay constraints?
Which one is more energy-efficient?

Short-hop routing has a lot of support, and its proponents
mainly produce the following two arguments:

1. Energy consumption. If a long hop of distance d is di-
vided into k hops of distance d/k, the energy benefit is of-
ten assumed to be kα−1.

2. Capacity. The shorter the hops, the higher the transport
capacity in an interference-limited network [9]. This is not
due to less interference but due to higher received power
levels.
The first argument stems from an oversimplified analysis of
the energy consumption and neglects important issues such
as delay, end-to-end reliability, and bias power consump-

tion. The second argument is only valid as long as the con-
nectivity of the network is guaranteed, was derived for an
increasingly dense network that takes advantage of the sin-
gularity of the attenuation d−α at d = 0,7 and also neglects
delay.

Interference. According to [4], “It is unclear whether more
interference is caused by a single transmission at higher
power or multiple transmissions at lower power”. Indeed,
a shorter transmission at higher power may permit a more
efficient reuse of the communication channel. If the total ra-
diated energy (product of power and duration) is a good in-
dicator for interference, this boils down to an energy con-
sumption problem. However, it must not be forgotten that
the SIR does not depend on absolute power levels. If all
nodes scale their power by the same factor q > 1, all the
SIR levels remain constant, but the SINR levels will in-
crease. So, increasing all transmit power levels does not
have a negative impact on any packet reception probabil-
ity in the network, in stark contrast to what is predicted
by the disk model. On the contrary, the SINR levels will
slightly increase. This indicates that long-hop transmission
does not inherently cause more interference.

End-to-end Reliability. Under the disk model, reception
probabilities are either 100% or 0%. If every receiver lies
in its desired transmitter’s disk, the end-to-end reliability is
always 100%, which is clearly not realistic, since packet er-
rors or bit errors accumulate. So, to achieve a desired end-
to-end reliability with short-hop routing, the relay nodes
need to transmit at a higher power. This compensates, at
least partially, for the loss in SNR. In the case of Rayleigh
fading, this effect completely offsets the multihop benefit
for α = 2 [13]. If the same end-to-end delay is permitted,
a number of transmissions (at lower power) are possible in
the long-hop case, and the benefit vanishes even for higher
path loss exponents, in particular for high end-to-end relia-
bilities or when channel state information is available at the
transmitter.

Channel Coding. For long-hop routing, longer (stronger)
channel codes can be used to satisfy the same delay con-
straint. Indeed, for optimum coding in channels with addi-
tive white Gaussian noise (AWGN), we find that a change
from a nominal capacity C0 := log2(1 + P0/N)/2 to C0/q
results in an energy consumption of E(q) = qP (q) =
qN(22C0/q − 1), which is strictly monotonically decreas-
ing in q.8 Note that C0/q =: R is the information theo-
retic rate (bits/symbol), and that the gain from using longer
codes is higher for higher rates.

7 This is unrealistic since the received power can exceed the transmitted
power if d is small enough.

8 The increase in transmission length is only linear in q, while the power
can be reduced exponentially.



Total Energy Consumption. It is often assumed that a re-
duction of the transmit energy yields a proportional reduc-
tion of the total energy consumption. Even without taking
into account receive energy, this is not true for any practi-
cal power amplifier. In particular in low-power transceivers,
the local oscillators and bias circuitry will dominate, so that
short-hop routing does not yield any energy benefit if a more
distant relay node can be reached with sufficient reliabil-
ity [11]. For random networks, relatively high peak power
levels are necessary to keep the network connected [30], and
short-hop routing would require a substantial backoff on the
average, resulting in poor power efficiency.

Path Efficiency in Random Networks. Routes in random
networks cannot follow straight lines. The path efficiency,
defined as the ratio of Euclidean distance of the end nodes
and the traveled distance, is higher if longer hops are used.

Sleep Modi or Cooperation. If neighboring nodes are not
used as relays, they can either be put to sleep, or they can
assist the transmission by cooperation [15] or retransmis-
sion (e.g., if an ACK packet is lost).

Routing Overhead and Route Maintenance. In [4], it is
pointed out that (when we replace a larger number of short
hops by a smaller number of long hops) “It is far from
clear what happens to the overall transmission energy, since
to implement a nearest-neighbor policy, significantly aug-
mented overhead control traffic will be required to coordi-
nate the establishment of the routing paths and access con-
trol protocols across the entire network.”

In a first order approximation, the control traffic for rout-
ing and route maintenance is proportional to the number of
nodes in the route. Also, the probability of a route break due
to energy depletion and node failure clearly increases with
the number of nodes involved, as well as the memory re-
quirements for the routing tables.

Route Longevity in Mobile Environments. The SNR of
short-hop routes is more quickly affected by moving nodes.
Example: If a node at distance 1 moves by 1 unit, the SNR
change is 2α, which causes the link to break (unless an un-
reasonably high SNR margin is applied). On the other
hand, if the next-hop neighbor is 3 units away and moves
by 1 unit, the SNR change is only (4/3)α, which can prob-
ably be tolerated.

Traffic Accumulation and Energy Balancing. For certain
multihop networks, traffic accumulation around a base sta-
tion or access point is a big problem. With strict short-hop
routing, the relaying burden cannot be distributed among
a sufficiently large number of nodes. The more nodes can
reach the BS directly, the better distributed the load can
be [10].

Further, in random networks, due to the variance in hop
length, the variance in energy consumption is large when

nearest-neighbor schemes are used, causing substantial im-
balance in the energy consumption.

Bounded Attenuation. A path loss model with a singularity
at distance d = 0 is not realistic for networks with high den-
sity [2]. Clearly, the received power cannot exceed the trans-
mit power, so there is a bound on the received power. If we
assume that this bound is achieved for distances 0 < d < R,
then there is no benefit in using shorter hops than R.

Multicast Advantage. So far, we have only discussed the
unicast case. For multicast routing, more neighbors can be
reached with a single transmission.

5. Node Cooperation and Diversity.

Thanks to the broadcast nature of wireless transmis-
sions, ad hoc networks lend themselves to node coopera-
tion. Nearby nodes that overhear a transmission may assist
in relaying a packet if the direct path is obstructed or suf-
fers from fading. The foundations to this cooperative diver-
sity, a form of spatial diversity, are laid in [15–17]. Since
then, node cooperation has been paid increased attention by
the information theory and communications communities.

Since cooperative schemes are difficult to analyze, in
particular when multiple nodes are involved, we suggest a
simple formalism that is based on the Rayleigh fading link
model and provides a simple but powerful framework for
the analysis and design of diversity-based communication
strategies [12].

5.1. The erristor framework

Multihop connections From (4), the end-to-end reception
probability over a chain of n nodes is

pEE = e
−Θ

∑n
i=1

1

γ̄i , (18)

where γ̄i denotes the mean SNR at receiver i. Let pD denote
the desired end-to-end reception probability, and R the nor-
malized average noise-to-signal ratio (NSR) at the receiver,
i.e., R := Θ/γ̄. So we have − ln pEE =

∑n
i=1 Ri = Rtot,

hence the condition pEE > pD translates into the condi-
tion that the sum (or the series connection) of the NSR val-
ues Ri is at most RD := − ln pD. So, the individual Ri’s
can be replaced by an equivalent Rtot. For a single link, we
have

R = − ln pr ⇐⇒ pr = e−R . (19)

For probabilities close to 1 (or R � 1), the following first-
order approximations are accurate:

R̂ := 1 − pr / R ⇐⇒ p̂r := 1 − R / pr (20)

As pointed out before, for small values, the NSR can be con-
sidered equivalent to the packet error probability. To empha-
size this fact and the resistor-like series connection property
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Figure 5. Example for erristor framework. (a)
There is one transmission over the first link
with reception probability p01, and there are
two transmissions over the second link with
probabilities p12,1 and p12,2. (b) shows the
corresponding erristor diagram.

of the NSR, we denote R as an “erristor” and its value as its
“erristance”. The transmit power is inversely proportional
to R.

Retransmissions For n transmissions over one link at NSR
levels Ri, we have

pn = 1 −
n∏

i=1

(1 − e−Ri) . (21)

To derive a general rule for the simplification of these ex-
pressions, we apply the following theorem.

Theorem 3 For (x1, x2, . . . , xn) ∈ (R+
0 )n,

1 −
n∏

i=1

(1 − e−xi) > e−
∏

n
i=1

xi . (22)

The identity holds if and only if
∏n

i=1 xi = 0.

The elementary proof is based on induction. So, multiple
transmissions over a single link result in (at least) a multi-
plication of the packet loss probabilities.

Example Consider a simple two-hop scheme with two
transmission over the second hop and its erristor repre-
sentation, as shown in Fig. 5. The precise analysis yields
pEE = p01 ·

(
1 − (1 − p12,1)(1 − p12,2)

)
. This is equiv-

alent to p12 = 1 −
(
1 − e−R12,1

)(
1 − e−R12,2

)
. Apply-

ing Theorem 3, we find that e−R12,1R12,2 is a lower bound
for p12. For R1 � 1 and R2 � 1 (high reception probabil-
ities), the bound is tight. This greatly simplifies the design
and analysis for large networks.

5.2. Multipath routing

Multipath routing is another form of spatial diversity
[1, 28, 29]. The main problem is to identify suitable dis-
joint routes. It needs to be emphasized that while node-
disjoint routes are sufficient for wired multipath routing,
interference-disjoint routes are needed in the wireless case
for a full diversity benefit. Interference-disjointness is much
harder to achieve, since the routes need to be spatially sepa-
rated and may vary substantially in length. The area around
the destination is critical as all routes need to converge. The
contention in this area has to be traded off against the gain
in reliability.

6. Concluding Remarks

For the design of routing protocols for wireless ad hoc
networks, the characteristics of the wireless channel cannot
be ignored. Most current routing protocols are derived from
wired versions and may perform suboptimally, in particular
in mobile scenarios where fading needs to be considered.
This problem is also reflected in the models that are fre-
quently used for the analysis and design of protocols, since
these models do not capture essential properties of the wire-
less channel such as interference, fading, and noise. Further,
in contrast to wired links, distances matter greatly, so we
need to know the internode distances, or at least their dis-
tribution. Having only statistical or estimated information
on distances adds another layer of uncertainty to the net-
work that the protocols need to be able to deal with. Strate-
gies based on cooperation and diversity are promising ap-
proaches to achieve good performance in such uncertain en-
vironments.
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