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Abstract We study the convergence of the average consensus algorithm in wire-
less networks in the presence of interference. It is well-known that convergence of
the consensus algorithm improves with network connectivity. However, from a net-
working standpoint, highly connected wireless networks may have lower through-
put because of increased interference. This raises an interesting question: What is
the effect of increased network connectivity on the convergence of the consensus
algorithm, given that this connectivity comes at the cost of lower network through-
put? We address this issue for two types of networks: regular lattices with periodic
boundary conditions, and a hierarchical network where a backbone of nodes ar-
ranged as a regular lattice supports a collection of randomly placed nodes. We char-
acterize the properties of an optimal TDMA protocol that maximizes the speed of
convergence on these networks and provide analytical upper and lower bounds for
the achievable convergence rate. Our results show that in a interference-limited sce-
nario the fastest converging interconnection topology for the consensus algorithm
crucially depends on the geometry of node placement. In particular, we prove that
asymptotically in the number of nodes, forming long-range interconnections im-
proves the convergence rate in one-dimensional tori, while it has the opposite effect
in higher dimensions.

1 Introduction

Consensus has become an area of increasing research focus in recent years (e.g.
see [1, 9, 10, 15, 19, 20, 2, 16] and the references therein). Given n nodes each with
a scalar value and a possibly time-varying interconnection graph defined on these
nodes, a consensus algorithm specifies the updating rule that every node should fol-
low. The updated value of each node at every time step is a function of the value
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held by itself and its neighbors at the previous time step. The conditions on inter-
connectivity graphs that permit convergence to a common value have been fairly
well characterized. The focus has now shifted to analyzing the convergence prop-
erties in the face of communication constraints such as quantization [14], packet
erasures [2, 6], additive channel noise [7, 8], and delays [13].

Such works typically assume that the communication channels between each pair
of nodes are uncoupled. However, consensus algorithms are often employed over
wireless networks, where channels are inherently coupled due to their broadcast na-
ture and the presence of interference. Long range interconnections lead to a smaller
graph diameter, but also to decreased spatial re-use. The effect of long-range inter-
connections on the rate of convergence of the consensus algorithm is thus, not clear.
Moreover, in a wireless network, a communication graph cannot be considered to be
given a priori, since any two nodes can communicate by spending enough energy.
The communication topology in wireless networks thus depends on the network
protocols and is, in fact, a design parameter.

In this work, we consider the rate of convergence of the average consensus algo-
rithm while explicitly accounting for interference. We analyze the performance of
scheduling algorithms that are optimal with respect to the rate of convergence. We
also provide an analytical understanding of the impact of transmission power on the
rate of convergence.

The paper is organized as follows. We begin in Section 2 by formulating the prob-
lem and introducing our notation. We concentrate on two geographical placements
of the nodes: (i) nodes that are physically placed on a grid with periodic boundary
conditions (considered in Section 3), and (ii) hierarchical networks with randomly
placed sensor nodes and a regular communication backbone (considered in Section
4). Some avenues for future work are presented in Section 5.

2 Problem Formulation

Average Consensus Algorithm: Consider n nodes that aim to reach consensus with
the final value being the average of their initial scalar values. Denote the value held
by the i-th node at time k as xi(k). Also denote by x(k) the n-dimensional vector
obtained by stacking the values of all the nodes in a column vector. Let the nodes
be connected according to a given interconnection topology at every iteration step.
The topology can be described by a consensus graph, with an edge present between
two nodes if and only if they can exchange information. Denote the neighbor set of
node i at time k by Ni(k). An iteration consists of every node i exchanging its state
variable xi(k) with all nodes in Ni(k), that is assumed to happen in a single packet
transmission interval (also referred to as a time slot and normalized to 1). Then, the
state of the system evolves as

xi(k +1) = xi(k)−h ∑
j∈Ni(k)

(xi(k)− x j(k)), (1)
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where h is a scalar constant designed to ensure convergence of the algorithm. In this
case, from the perspective of the consensus algorithm, we say that the iteration time
is one time slot.

Denote the interconnection graph at time k by G (k). The system thus evolves
according to the discrete time equation

x(k +1) = (I−hL(k))x(k), x(0) = x0, (2)

where L(k) denotes the Laplacian matrix of the graph G (k). It can be shown (see,
e.g., [15]) that under proper connectivity assumptions, if the parameter h is small
enough, consensus is achieved with each node assuming the average value xav =
1
n ∑i xi(0). Throughout our presentation, we will assume that h is fixed and has a
value h < 1

2dmax
where dmax is the maximum degree corresponding to any node in

the consensus graph over all time. In other words, dmax = max
i,k
|Ni(k)|. To ensure

that the nodes converge to the average of x0, it is also essential that the graph at
every time step be balanced. The protocols we consider below will ensure that the
graph is symmetric, which satisfies this condition.

The rate of convergence of the value of the nodes is a function of the graph
topology. In the case of a static graph topology (i.e., G (k) = G for all time k), it can
be shown (see, e.g., [5, 15, 17]) that the convergence of the consensus protocol is
geometric, with the rate being governed by the second largest eigenvalue modulus
(SLEM) of the matrix I− hL. In general, a consensus algorithm on a graph with
smaller SLEM converges more quickly.

However, in practice, a number of transmissions, each occupying a single time
slot, may be necessary for this information exchange among these nodes to occur.
This scenario is common in wireless networks, where concurrent transmissions in
the same frequency band can interfere at a node, and hence may not be decodable.
Therefore if each node can receive data from say at most one neighbor at any given
time, the exchange of information necessary for iteration k will require at least 1 +
max

i
|Ni(k)|. This idea is developed further in this paper.

Communication Protocols: We consider a situation in which the physical loca-
tions of the nodes are given in a d-dimensional space. Every node then decides on
the power with which it transmits. This power determines the communication radius
of the node in each axial direction according to the relation

P = P0rα
c ,

where P0 is a normalization constant, α is the path-loss exponent (typically 2≤ α ≤
5), P is the transmission power and rc is the communication radius along each axial
direction. All nodes at a distance smaller than rc from the transmitter can receive
the transmitted message. Note that we assume that communication is possible only
along axial directions. This is called a Manhattan connectivity model, and is suit-
able for a situation when only line of sight (LOS) communication is possible. In
2-dimensions this is a good model for urban environments where the presence of
buildings inhibits most non-line of sight links. In an 1-dimensional node arrange-



4 Sundaram Vanka, Vijay Gupta, and Martin Haenggi

ment, this model is identical to other connectivity models such as those based on
communication disks centered at the nodes.

Similar to the communication radius, we can also define an interference radius
ri. A node at position x can receive a message successfully from a node at position
y only if ‖y− x‖ < rc, and there is no node at position z that is simultaneously
transmitting, such that ‖z− x‖ < ri (interference constraint). The above equations
should be interpreted in the framework of the Manhattan connectivity model, i.e.,
the distances should be measured only along the axial directions. In this paper, for
simplicity, we assume rc = ri. The results can be generalized to other cases.

Given the above condition for successful transmission, we require a medium ac-
cess control (MAC) protocol for the nodes. We focus on Time Division Multiple
Access (TDMA)-based MAC protocols in this paper rather than random access pro-
tocols. These protocols assure successful communication by scheduling transmis-
sions in time such that messages do not interfere. They demonstrate better through-
put than collision-based MAC protocols, at the expense of greater synchronization
and co-ordination requirements among the nodes [11, 21].

Problem Formulation The operation of the average consensus protocol can be
divided into two phases that are repeated at every update of the node values. In the
first phase, the nodes exchange their values through possibly multiple transmissions.
We consider each transmission to consume one time slot. The effective communica-
tion graph at each update is composed of edges (i, j) such that node j has received
the value of node i during the previous communication phase. In the second phase,
the nodes update their values according to (1). As in the standard model, this step is
assumed to be instantaneous. Therefore, due to multiple transmissions to set up the
consensus graph, in our model, the state update does not occur at every time slot. In
fact, assuming that each communication phase is completed in T time slots, the kth

update can be expressed as

x(kT +T ) = (I−hL)x(kT ). (3)

Therefore the effect of finite communication time, possibly due to interference, is to
slow down the convergence rate.

We are interested in the following problem: Given a set of nodes at known lo-
cations, what is the effect of increasing transmit power on the convergence rate of
the consensus algorithm when the channel-access mechanism accounts for interfer-
ence? In this context, we characterize the convergence of the consensus algorithm
for the optimal MAC protocol that minimizes the number of time slots needed for
communication in order to form a desired consensus graph G (thus maximizing the
update rate). We analyze this problem for two physical distributions of the nodes on
a torus:

1. A regular grid of sensor nodes.
2. A regular grid of nodes that form a communication network for sensor nodes that

are distributed as a binomial point process.
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The transmit power at each node determines its neighbors in the consensus algo-
rithm. The periodic boundary condition is chosen for analytical tractability, and our
analysis becomes accurate as the number of nodes becomes large.

For analytical tractability, we make the following assumptions:

• We assume equal transmission power for all nodes.
• We limit the transmission policy to be time-invariant.
• At the time of an update of the values of the nodes, we require that the effective

communication graph be undirected, i.e., for any two nodes i, j in the network,
j ∈Ni ⇔ i ∈N j. Note that this is slightly stronger than the necessary and suffi-
cient condition for convergence of the average consensus algorithm that the graph
be balanced [15].

• We do not assume explicit routing of values through nodes since the consensus
algorithm itself incorporates implicit routing and in-network computation.

• We assume half-duplex operation, and further assume that packets that suffer
collisions cannot be decoded.

Under these assumptions, the following are the main results of the paper:

1. We characterize the rate of convergence for the optimal MAC scheduling proto-
col for the average consensus algorithm for tori in n dimensions.

2. We show that network geometry plays a key role in identifying the optimum
power allocation that maximizes the speed of convergence. In particular, while
the convergence rate increases with the transmission power in 1-dimensional tori,
the opposite is true in higher dimensions.

3. In hierarchical networks, we show that a positive fraction of nodes can always
achieve consensus for certain scalings of backbone node density.

In the next section, we begin by studying the convergence properties of MAC pro-
tocols that maximize the speed of convergence for a given consensus graph G . We
begin by considering nodes placed on a regular grid with periodic boundary condi-
tions.

3 Analysis of a Ring and a 2D Torus

3.1 The 1-D Case: Nodes on a Ring

Consider n nodes numbered {0,1, . . .n−1} placed uniformly on a circle of radius r
centered at the origin, as shown in Figure 1. Suppose that the transmission power is
such that every node can transmit information to m of its nearest neighbors on either
side. As an example, in Figure 1, m = 1. Define Pm, m≤ b n

2c as the transmit power
that provides a communication radius rc = 2r sin

(mπ
n

)
. Hence

Pm ∝
(

2r sin
(mπ

n

))α
, (4)
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where α ≥ 2 is the path-loss exponent. As stated above, for simplicity, we will
assume that the interference radius ri = rc.

We note here that an alternative interpretation of this geometry of node placement
is to consider the n nodes placed on a regular one-dimensional torus [0,1] (hereafter
called a “1-torus” or T1(n)). This interpretation is useful in connecting these results
with those for higher dimensional tori, that are discussed later. In this case, if choose
the location of the first node as the origin, the position of the the kth node is given
by k

n , 0 ≤ k ≤ n− 1, with a periodic boundary condition. In this geometry, the ex-
pression for Pm would appear as Pm ∝

(m
n

)α .

Fig. 1 Schematic of nodes placed along a ring.

If the wireless channel could support simultaneous transmissions by every node,
the system would evolve according to (2), with I−hL being an n×n circulant matrix
with the first row given by

[ 1−2mh 1∗m 0 0 · · · 0 1∗m ],

where
1∗m =

[
1 1 · · · 1

]
1×m .

For future reference, denote by G1,m, L1,m and F1,m the consensus graph, the Lapla-
cian and the update matrix respectively for such a situation. Given the nodes placed
on a ring, G1,m is the consensus graph with the highest connectivity that can be
formed for a given Pm, and therefore will have the fastest convergence. The MAC
protocol that we propose guarantees that the system evolves according to this ma-
trix. However, the communication phase occurs over multiple steps.

We begin by bounding the number of time slots required to form G1,m. Denote
the smallest number of time slots used to form G1,m by T ∗1 (m), or more compactly,
as T ∗1 . Also denote by P∗(m) the optimal TDMA protocol that forms the graph
G1,m in T ∗1 number of steps. Observe that for all m1 ≤ m2, G1,m1 ⊆ G1,m2 . Then
G1,m can always be formed in at most T ∗1 (m1) ≤ T ∗1 (m2) slots. This implies that
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m1 ≤ m2 =⇒ T ∗1 (m1) ≤ T ∗1 (m2). We say a link is formed from node v to node u
whenever the message from v is successfully decoded at u. Since G1,m is undirected
and balanced, an edge e ∈ E1,m connecting v and u is formed iff both v and u form
links with each other. The following result bounds the length of the shortest TDMA
schedule that forms the consensus graph G1,m (and hence the smallest time T in the
update equation (3)) and was proven in [18].

Lemma 1 (From [18]). Consider the set-up described above, where the consensus
graph G1,m is to be formed in the smallest number of time slots. The optimal TDMA
protocol forms G1,m in the smallest possible number of time slots T ∗1 where

2m+1≤ T ∗1 (m)≤ 4m+1.

Using this result in conjunction with the spectral properties of G1,m yields the
following characterization of the fastest convergence rate that is possible for a given
G1,m.

Theorem 1 (From [18]). Consider the problem set-up described above. If the op-
timal TDMA protocol is used to construct G1,m for each iteration, the error vec-
tor ε(k) = x(k)− 1nxav converges geometrically to zero with the rate of decay β
bounded as

ρ
1

2m+1
1 ≤ β ≤ ρ

1
4m+1

1

where

ρ1 = 1−h(2m+1)+hS(m,n)
1 (5)

S(m,n)
p =

sin( (2m+1)π p
n )

sin(π p
n )

, p = 0,1, . . .n−1.

Remarks

1. For any given transmission power Pm, we see that the MAC constraints reduce
the rate by a factor of T where 2m+1≤ T ≤ 4m+1.

2. The speed of convergence is an increasing function in m, and hence in Pm. An
illustration of this fact is provided in Figure 2. For the purpose of the plot, we
show the time taken for the error norm to become half, termed the “half-value
period”, as a function of transmission power for 31 nodes arranged regularly on a
ring of radius 1 unit. We have assumed α = 2, and the constant of proportionality
in (4) to be unity. For each Pm, we chose h ∝ 1

2m+1 . The results are somewhat
counter-intuitive since the rate reduction due to a larger number of steps in the
communication phase is always compensated by the increase in rate due to higher
connectivity. That forming long range communication links would lead to faster
convergence even in networks with interference was not evident a priori.

3. The effect of increasing the transmission power are the most prominent at small
Pm. This can again be seen from Figure 2. If θ = pπ/n and p¿ n,

sin θ ≈ θ −θ 3/3. (6)
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Fig. 2 Variation of the convergence rate with the transmission power for a ring of n = 31 nodes.

We use (6) to express the spectral gap SG , 1−ρ
1
T

1 when m¿ n as

SG = 1−
(

1−h(2m+1)+h
sin( (2m+1)π

n )
sin( π

n )

) 1
T

≈ ηmh(m+1)(2m+1)T−1n−2.

where η , 4π2

3 . Since h ∝ 1
2m+1 and T = Θ(m) for the optimal schedule, the

spectral gap scales as m
n2 .

3.2 Nodes on a Two-Dimensional Torus

We now generalize our results to higher dimensional tori. Consider a set Td(n)
of n = ld regularly spaced points on a d−dimensional torus located at [0,1]d . An
example when d = 2 is shown in Figure 3. Choose a node as the origin, and label
each node using its displacements along each of the d axes (referred to as the d
axial directions of the torus in this paper). For example, in Figure 3, n = 9 and
the node (1,1) is located at r11 ≡ r(1,1) ,

( 1
3 , 1

3

)
. An alternative interpretation of a

toroidal arrangement in the two-dimensional case is shown in Figure 4. Both these
interpretations yield similar results in the limiting case of a large torus in which case
local distances are not significantly affected by the curvature. We will focus on the
former interpretation in this paper.

Suppose all nodes on a torus Td(n) participate in an average consensus algorithm
of the form (2) with a power allocation of Pm per node. The results for a disc con-
nectivity model were provided in [18]. Here we present results for the Manhattan
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connectivity model. Figure 5 describes the connectivity model for a set of transmit-
ting nodes on a two-dimensional torus of n = 25 nodes and m = 1.

We now formally define the desired consensus graph Gd,m = (V ,Ed,m). The ver-
tex set

V = {0,1, . . . , l−1}d ,

is the set of all points in T2(n). We note that if each node can transmit at power Pm,
the Manhattan connectivity model places edges between two distinct nodes v and u
iff:

1. The locations of v and u must differ in at most one co-ordinate; and
2. At the co-ordinate where they differ, the absolute difference between the respec-

tive values can be at most m/l.

Thus the edge set Ed,m from the formed by connecting all pairs of distinct nodes
whose positions satisfy these conditions.

Fig. 3 The toroidal lattice T2(9). Colored nodes indicate those physically placed in [0,1]2. Node
(0,0) represents the node at the origin, with each of the colored nodes (i, j) being placed at
(i/3, j/3). Nodes that left unfilled are the image nodes that arise due to the periodic boundary
condition.

In keeping with the notation developed for the one-dimensional case, we will
denote the Laplacian and the update matrix for Gd,m by Ld,m and Fd,m , I− hLd,m
respectively. Assuming as before that each transmission occupies one time slot, we
now study the convergence properties of the optimal MAC protocol that will form
Gd,m in the smallest number of time slots. In this paper, we set d = 2; the results can
be generalized to tori of higher dimensions.

Using similar arguments as in the one dimensional case, we can show that the
optimal TDMA protocol assigns an equal power Pm to each chosen transmitting
node i in any time slot. Denote by T ∗2 (m), or more compactly by T ∗2 the number
of time slots required by an optimal schedule to construct G2,m. The optimal MAC
schedule places the maximum number N∗

2 (t) of non-interfering transmitters on the
torus in every time slot t = 1,2, · · · ,T ∗2 .
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Note that increased network dimensionality plays an important role in finding
N∗

2 (and consequently, T ∗2 ). This makes the problem of analytically finding T ∗2 non-
trivial. This effect is illustrated in Figure 5 for a 2-torus of n = 25 nodes and m = 1.
The transmitters are chosen from the entire two-dimensional lattice. With power P1,
each node can reach its 4 nearest neighbors as shown. Since each of these nodes must
transmit at least once, at least 4 + 1 = 5 slots are necessary to form the consensus
graph G2,1. Figure 5 shows the optimal transmitting set in the first time slot.

As before, we begin by characterizing the length T ∗2 of the shortest TDMA sched-
ule that constructs G2,m. Thereafter, we exploit the properties of the consensus al-
gorithm along with optimality of the MAC protocol and constraints imposed by our
problem to bound the convergence rates for a 2-torus.

Fig. 4 Schematic of nodes placed along a 2-dimensional torus. The periodic square grid being
considered can be considered a limiting case of a large torus, so that the effect of its curvature on
small distances is not important.

As before, define Pm to be the transmit power that enables a node to form error-
free links with m neighbors in the axial directions. Given that there are

√
n nodes in

either of the axial directions,

Pm ∝
(

m√
n

)α
,

where α ≥ 2 is the path-loss exponent.
We now define the update matrix F2,m. Define circulant matrix Qm to be a

circulant matrix with the first row [ 1−4mh h1∗m 0 · · · 0 h1∗m ]1×l . Further define
Rm , h1∗m⊗ I = h[ I I · · · I ]l×lm

If each node uses power Pm, the Manhattan connectivity model results in a block
circulant update matrix F2,m with its first row being

[ Qm Rm 0 · · · 0 Rm ]l×n. (7)

We now bound the number of time slots required to form G2,m.
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Fig. 5 Effect of network geometry on choosing the transmitter set, shown for T2(25) and m = 1.
The transmitters are shown in red (e.g., (0,0)). Note that the dimensionality is exploited to allow
more concurrent transmissions. The nodes in light-blue (e.g., (4,0)) are covered by transmitters via
their images (shown unfilled).

Lemma 2. If each node transmits at power Pm and the optimal schedule over the
2-torus constructs G2,m in T ∗2 time slots, for 1 < m < bl/2c, T ∗2 always satisfies

Tl ≤ T ∗2 ≤ Tu

where
Tl = m2 +2m+2

and
Tu = 16m2 +8m+1.

Proof. Using similar arguments as in Lemma 1 it is easy to show that power allo-
cation for any node should be at least Pm. Define a feasible TDMA schedule for a
power allocation Pm per node as one that which constructs G2,m while satisfying the
half-duplex and interference constraints described in Section 2.

Without loss of generality, suppose node (0,0) transmits in the first time slot with
power Pm. From the definition of a feasible schedule, during this time there cannot
exist a transmitter inside the square with vertices (1,1),(1,m),(m,m),(m,1). As a
result, each node that is contained in the square requires time slot each. It is easy
to see that there are (m− 1)2 such nodes. Moreover, any of the 4m nodes that are
currently receiving a message from (0,0) cannot transmit at this time. Therefore,
accounting for the current slot, the length of a feasible schedule cannot be shorter
than Tl = (m−1)2 +4m+1 = m2 +2m+2 slots. In particular, since T ∗2 is the length
of the shortest feasible schedule, T ∗2 ≥ Tl .
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If Tu is number of time slots taken by any feasible schedule to form G2,m, T ∗2 ≤ Tu.
Consider the following schedule: in the first time slot, choose (0,0) as a transmit-
ter, and schedule nodes (0 + p(2m + 1),0 + q(2m + 1)) for p,q = 1, · · · ,b l

2m+1c to
transmit. In other words, we attempt to tile the torus with squares of side 2m+1√

n .
Clearly this is feasible, since each node receives from at most one transmitter. In
each subsequent time slot, repeat this process by choosing some other node (i, j)
inside the square of side (2m + 1)/

√
n centered at the origin and schedule nodes

(i + p(2m + 1), j + q(2m + 1)) for transmission. Repeat this process until all the
(2m + 1)2 nodes in this square have been chosen once. Using arguments similar to
those used in Lemma 1, a maximum of b l

(2m+1)c2 simultaneous transmissions can

be scheduled per time slot. After (2m+1)2time slots,

n−b l
(2m+1)

c2(2m+1)2

= 2b l
2m+1

c(2m+1) rem(l,(2m+1))

+(rem(l,2m+1))2

nodes are yet to transmit. In the first term, we can schedule bl/(2m + 1)c nodes in
each of the 2rem(l,2m+1)≤ 4m “rows”, that require at most 4m(2m+1) additional
time slots. Scheduling one node per time slot, all the remaining (rem(l,2m + 1))2

nodes can transmit in at most 4m2 time slots. Therefore the schedule constructs G2,m
in (2m + 1)2 + 4m(2m + 1)+ 4m2 = 16m2 + 8m + 1 time slots. Thus we conclude
that T ∗2 ≤ 16m2 +8m+1. ut

As compared to the 1-torus, the optimal schedule for a 2-torus is bounded by two
quadratic terms. This arises due to imposing interference constraints to the given
geometry of node placement. As we shall see, this quadratic - rather than linear -
dependence on m is the key to understanding the effect of transmit power on con-
vergence behavior.

3.2.1 Bounding the Rate of Convergence

We now find the eigenvalues of F2,m by exploiting its block circulant property.

Lemma 3. Let G2,m be the consensus graph formed over T2(n) using the Manhattan
connectivity model. If L2.m is its Laplacian then the eigenvalues of the F2,m = I−
hL2,m are

λa,b = 1−2h(2m+1)+hS(m,l)
a +hS(m,l)

b ,

where, as defined above S(m,l)
a =

sin
(

(2m+1)πa
l

)

sin( πa
l ) , a = 0,1, . . . l−1.

Proof. From (7) F2,m is an n×n block circulant matrix with its first block row being
[

Qm Rm 0 0 · · · 0 Rm
]

l×n ,
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where Rm = h1∗m⊗ I. As noted earlier, Qm is circulant. Since the identity and the
all-zero matrices are also circulant, all these matrices share the same eigenvectors.
Using this in conjunction with the properties of block circulant matrices we compute
the eigenvalues µr,s of F2,mas

µr,s =
l−1

∑
t=0

ηr,te− j 2πst
l (8)

where ηr,t is the rth eigenvalue of Qm ∀r,s = 0,1, . . . , l− 1. Using the eigenvalues
for the 1-torus and simplifying yields the eigenvalues of F2,m = I−hL2,m are

λa,b = 1−2h(2m+1)+hS(m,
√

n)
a +hS(m,

√
n)

b (9)

which is the desired result. ut
We are now in a position to bound the rate of decay for the case of the torus. This

is presented in the form of a theorem below.

Theorem 2. Consider a consensus algorithm of the form (2) on G2,m. If each node
transmits at Pm for 1 ≤ m < b

√
n

2 c, the rate of convergence β of an optimal MAC
schedule on G2,m that drives δ (k) = x(k)−1nxav to zero is bounded as

λ
1

m2+2m+2
1 < β < λ

1
16m2+8m+1

1

where

λ1 =
(

1−h(2m+1)+h(2m+1)S(m,
√

n)
1

)

Proof. From Lemma 3 above, the eigenvalues of the update matrix are

λa,b = 1−2h(2m+1)+hS(m,
√

n)
a +hS(m,

√
n)

b

The largest eigenvalue is obtained by maximizing both the sinc terms, i.e., by choos-
ing a = 0,b = 0. The second largest eigenvalue is doubly degenerate, and is obtained
for a = 0,b = 1 or b = 0,a = 1. Any of these choices will simplify (9) to

λ0,1 = λ0,1 = 1−h(2m+1)+hS(m,
√

n)
a = λ1.

From Lemma 1 we know that the length T ∗2 of the optimal schedule length is
bounded as Tl ≤ T ∗2 ≤ Tu, where Tl = m2 +2m+2 and Tu = 16m2 +8m+1.

The rate of convergence of G2,m with the optimal schedule is λ 1/T ∗2
1 ≤ λ 1/Tu

1 since

T ∗2 ≥ Tu. Similarly, λ 1/Tl
1 ≤ λ 1/T ∗2

1 . Hence the result follows. ut
To understand the effect of higher transmit power on the convergence rate in

2-tori, first simplify the expressions for λ1 in Theorem 2 using h = γ/(4m + 1),
0 < γ < 1:



14 Sundaram Vanka, Vijay Gupta, and Martin Haenggi

λ1 = 1− γ
(2m+1)
(4m+1)

+ γ
sin((2m+1)π/

√
n)

(4m+1)sin(π/
√

n)

Comparing this to the 1-torus case with h = γ/(2m+1),

ρ1 = 1− γ + γ
sin((2m+1)π/n)
(2m+1)sin(π/n)

.

Clearly λ1 is of similar form as ρ1 in Theorem 1, except for the
√

n.
However, there is a significant difference between the two cases in the length of

the optimal schedule. This length was shown to be Θ(m) for the 1-torus, and Θ(m2)
for the 2-torus. This means that the effect of interference depends on the geome-
try of node placement. High transmit powers reduce available network throughput
by causing more interference. In TDMA-scheduling MAC protocols, this effect is
reflected in longer schedules. For a 1-torus, this is still offset by the resultant long-
range connections. However, this is no longer true for higher dimensions where the
convergence rate worsens with increasing transmit power.

3.2.2 Tori in Arbitary Dimensions

The results in Lemma 2 can be extended to higher dimensional grids with toroidal
boundary conditions. Indeed using similar arguments for power Pm the optimal
schedule for a d−dimensional torus cannot be shorter than (m−1)d +2md +1. Sim-
ilarly, to find the upper bound one can generalize the schedule described in Lemma
1 that was used to find an upper bound. It can be shown that the optimal schedule
will be Θ(md).

The results in Lemma 3 can also be generalized to d−dimensions as λ1 = 1−
h(2m + 1) + hS(m,l)

1 . Thus the convergence rate increases with transmit power in
geometries having dimension 2 or more.

4 Hierarchical networks

Since calculation of the rates of convergence for average consensus for arbitrary
graphs is not possible even without the interference constraints, we do not expect
to be able to extend our results for arbitrary graphs. In this section, we consider
another useful class of graphs that allow us to state analytical results. We consider a
variation on the random geometric graphs by adding a backbone of dedicated (long-
distance) communication nodes. Thus we consider a hierarchical network with N
sensing nodes uniformly randomly placed on a torus in [0,1]d , and Kd identical
regularly spaced backbone nodes on the torus, as shown in Figure 6 for d = 1.

We assume that the backbone nodes do not participate in sensing, and only com-
municate with each other in the network. Each backbone node has a fixed exclusive
region of coverage, i.e., it (alone) collects data from all the sensing nodes within a
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Fig. 6 Schematic of backbone nodes placed along a 1-dimensional torus. The ith backbone node
is placed at ri =

(
i− 1

2

) 1
K from the origin, for i = 1,2, . . . ,K.

sphere of radius r = 1/2K. Initially, each backbone node collects and averages the
data from all the sensing nodes in its region of coverage. All the backbone nodes
now run an average consensus algorithm among themselves with their respective
averaged data as initial values. We assume the Manhattan connectivity model. It is
possible to pass on this (global) average back to all the nodes within their coverage
regions in O(1) steps. Therefore for analyzing the rate of convergence, it is suffi-
cient to analyze the time taken for collecting data by the backbone nodes and the
time taken to reach consensus among these nodes.

We begin by characterizing the number of sensors reporting to each backbone
node.

Lemma 4. For large N and if the number of backbone nodes scales as o( N
logN ) w.h.p.

the number of sensors per coverage area is n = Nπd/2

Γ (1+d/2)(2K)d , where K is the number
of nodes per dimension.

Proof. This can be proved by a a variation of the argument used in the theory of
random geometric graphs to show regularity. Consider a sphere S of radius r cen-
tered at point P on the torus. Marking the points 1,2, . . . ,N, we can associate with
each point k, a random variable Xk (1≤ k ≤ N) be defined as:

Xk = 1S (k)

where 1(.) is the indicator function. That is, 1S (k) = 1 if k∈S , and 0 otherwise.
Since the sensing nodes are placed on the torus uniformly and independently of each
other, {Xk} are iid Bernoulli with success probability

p =
Vol. of sphere
Vol. of torus

=
πd/2

Γ (1+d/2)(2K)d .

The number of sensors inside the sphere is thus a binomial random variable

N

∑
k=1

Xk , Y,
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with µ , EY = N p. We can now use the Chernoff bound:

P(|Y −µ |> µδ )≤ 2exp
(
−µδ 2

2

)
.

For 0 < δ < 1, since the number of nodes Kd = o( N
logN ) we can always choose

δ =

√
4logN

N
· γKd = o(1), N → ∞

for some γ > 0. Plugging in this value into the bound, we see that

P(Y /∈ [µ(1−δ ),µ(1+δ )])≤ 1
N2ηγ ≤

1
N3 ,

where η = πd/2

2dΓ (1+d/2) and γ is chosen such that ηγ > 2. So w.h.p.,

Y = N p(1±o(1)).

Thus, the probability that any coverage area does not have n(1±o(1)) nodes is

P(∪k{Yk /∈ [µ(1−δ ),µ(1+δ )]}) ≤ ∪kP(Yk /∈ [µ(1−δ ),µ(1+δ )])

= Kd 1
N3 < N

1
N3 =

1
N2

where we have used the union bound. The result now follows readily. ut
Since each of the Kd backbone nodes has n sensors in its coverage region w.h.p.

when N is large, a total of nKd sensing nodes will be covered by the backbone
network. Therefore for large N, it is always possible to achieve consensus over a
positive fraction

κ =
nKd

N
=

πd/2

2dΓ (1+d/2)

of the sensing nodes, independent of N and K.
We will now study specific cases for d = 1 and 2. To begin, we note that for

d = 1,

κ1 =
π1/2

2Γ (3/2)
= 1,

and for d = 2,
κ2 =

π
4Γ (2)

=
π
4
≈ 78.5%.

As stated above, we assume that each backbone node collects data by polling all
the sensing nodes in its coverage region. This is done in parallel over all backbone
nodes, by a suitable choice of transmit power. Assuming each node transmits in one
time slot, we need n time slots to initialize the consensus algorithm, where w.h.p.
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n =
αN
Kd .

During the consensus phase, the network topology is identical to the (regular) ring
and torus topologies discussed previously. As before, let each node transmit at fixed
power Pmto reach m ≤ bK/2c neighbors per direction per dimension. Using the
results in Theorems 1 and 2, we obtain that for Kd = o

(
N

logN

)
, w.h.p.,

(
1−h(2m+1)+hS(m,K)

1

) 1
4m+1 ≥ β ≥

(
1−h(2m+1)+hS(m,K)

1

) 1
2m+1

for the ring or 1D torus and

(
1−h(2m+1)+hS(m,K)

1

) 1
16m2+8m+1 > β >

(
1−h(2m+1)+hS(m,K)

1

) 1
m2+2m+2

for the 2D torus.

5 Conclusions

We introduced a framework that considers the effects of realistic communication
constraints on average consensus algorithms. In particular, we analytically charac-
terize the performance of the medium access control algorithm that maximizes the
speed of convergence. We study the effect of transmit power on convergence in the
presence of interference. In inteference-limited wireless networks, the geometry of
node placement plays a key role in deciding the fastest converging consensus graph.
While forming long-range links (using more power) always improves the conver-
gence on ring topologies, it is not so for higher-dimensional tori.

This work could be extended to other classes of graphs, like Cayley graphs and
expander graphs that have good convergence properties [3]. Another issue is the
effect of stochastic data loss through effects due to fading and interference, using a
different framework as compared to [2, 6], to explicitly account for interference.
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