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Abstract

We study the convergence of the average consensus algorithm in wire-

less networks in the presence of interference. For regular lattices with

periodic boundary conditions, we characterize the convergence properties

of an optimal MAC protocol that maximizes the speed of convergence on

these networks. We extend this analysis to hierarchical networks with

a backbone of communication nodes supporting randomly placed sensor

nodes. We provide analytical upper and lower bounds for the convergence

rate for these networks. Our results show that in an interference-limited

scenario the fastest converging interconnection topology for the consen-

sus algorithm crucially depends on the geometry of node placement. In

particular, we prove that asymptotically in the number of nodes, increas-

ing the transmit power to allow long range interconnections improves the

convergence rate in one-dimensional tori, while it has the opposite e�ect

in higher dimensions.

Index Terms�Consensus algorithms, interference, MAC protocol, wireless net-

works.

1 Introduction

Consensus in general, and average consensus in particular, has become an area

of increasing research focus in recent years (e.g. see [1, 11, 12, 14] and the

references therein). Many applications, including distributed estimation [2, 16,
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17], motion coordination [13] and load balancing of multiple processes [4], have

been analyzed in this framework.

Given n nodes each with a scalar value and a possibly time-varying inter-

connection graph de�ned on these nodes, a consensus algorithm speci�es the

updating rule that every node should follow. The updated value of each node

at every time step depends on the value held by itself and its neighbors at the

previous time step. Initial results about such algorithms showed that the values

held by the nodes converge to a common value provided that the interconnection

graphs satisfy some connectivity constraints. Lately, the focus has shifted to

analyzing the convergence properties in the face of communication constraints

imposed by the channels between the nodes. Thus, e�ects such as quantiza-

tion [10], packet erasures [2, 6], additive channel noise [7, 8], and delays [9] have

begun to gain attention.

Such works typically assume that the communication channels between each

pair of nodes are uncoupled. However, consensus algorithms are often employed

over wireless networks, where models with independent channel realizations are

not suitable. Wireless channels are inherently coupled due to their broadcast na-

ture and the presence of interference. Moreover, in a wireless network, any two

nodes can communicate by spending enough energy. Long range interconnec-

tions lead to a smaller graph diameter, but also to decreased spatial re-use. The

e�ect of long-range interconnections on the rate of convergence of the consensus

algorithm is thus, not clear. The communication topology in wireless networks

thus depends on the network protocols and is, in fact, a design parameter. In

this work, we take the �rst steps towards analyzing the e�ect of such commu-

nication constraints on consensus algorithms and designing the communication

parameters for the consensus problem. In particular, we consider the rate of

convergence of the average consensus algorithm while explicitly accounting for

interference. We analyze the performance of scheduling algorithms that are op-

timal with respect to the rate of convergence. We also provide an analytical

understanding of the impact of transmission power on the rate of convergence.

The paper is organized as follows. We begin by formulating the problem and

introducing our notation. We concentrate on networks of nodes that are phys-

ically placed on a grid with periodic boundary conditions (Section 3). Section

4 extends these results to hierarchical networks with randomly placed sensor

nodes and a regular communication backbone. Some avenues for future work

are presented in Section 5.
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2 Problem Formulation

2.1 Average Consensus Algorithm

In this paper, we will concentrate exclusively on the average consensus algo-

rithm. Consider n nodes that aim to reach consensus with the �nal value being

the average of their initial scalar values. Denote the value held by the i-th node

at time k as xi(k). Also denote by x(k) the n-dimensional vector obtained by

stacking the values of all the nodes in a column vector.

We describe in brief the average consensus algorithm de�ned with a given

interconnection topology among the nodes at every iteration step. The topol-

ogy can be described by a consensus graph, with an edge present between two

nodes if and only if they can exchange information. Denote the neighbor set of

node i at time k by Ni(k), where the argument k is included to model dynamic

interconnection topologies. An iteration consists of every node i exchanging its

state variable xi(k) with all nodes in Ni(k). Assuming that all nodes are al-

lowed to simultaneously broadcast their states to their neighbors, this exchange

happens in a single packet transmission interval (also referred to as a time slot

and normalized to 1). Thus the state of the system evolves as

xi(k + 1) = xi(k)− h
∑

j∈Ni(k)

(xi(k)− xj(k)), (1)

where h is a scalar constant designed to ensure convergence of the algorithm.

In this case, from the perspective of the consensus algorithm, we say that the

iteration time is one time slot.

Denote the interconnection graph at time k by G(k). The system thus evolves

according to the discrete time equation

x(k + 1) = (I − hL(k))x(k), x(0) = x0, (2)

where L(k) denotes the Laplacian matrix of the graph G(k). It can be shown (see,
e.g., [14]) that under proper connectivity assumptions, if the parameter h is small

enough, consensus is achieved with each node assuming the average value xav =
1
n

∑
i xi(0). Throughout our presentation, we will assume that h is �xed and

has a value h < 1
2dmax

where dmax is the maximum degree corresponding to any

node in the consensus graph over all time. In other words, dmax = max
i,k
|Ni(k)|.

To ensure that the nodes converge to the average of x0, it is also essential that
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the graph at every time step be balanced. The protocols we consider below will

ensure that the graph is symmetric, which satis�es this condition.

The rate of convergence of the value of the nodes is a function of the graph

topology. In the case of a static graph topology (i.e., G(k) = G for all time k), it

can be shown (see, e.g., [5, 14, 15]) that the convergence of the consensus proto-

col is geometric, with the rate being governed by the second largest eigenvalue

modulus (SLEM) of the matrix I − hL. In general, a consensus algorithm on a

graph with smaller SLEM converges more quickly. If the matrix L is symmetric,

its SLEM can be written as its norm restricted to the subspace orthogonal to

1n , [1 1 ...1]∗1×n.
However, in practice, a number of transmissions, each occupying a single

time slot, may be necessary for this information exchange among these nodes to

occur. This scenario is common in wireless networks, where concurrent trans-

missions in the same frequency band can interfere at a node, and hence may

not be decodable. Therefore if each node can receive data from say at most one

neighbor at any given time, the exchange of information necessary for iteration

k will require at least 1 + max
i
|Ni(k)|. This idea is developed further in this

paper.

2.2 Communication Protocols

Usual treatments of the average consensus algorithm assume the consensus

graph as given. This presumes the existence of a communication channel be-

tween any two nodes connected by an edge. In typical applications, nodes

communicate over wireless channels. In such situations, any two nodes can

potentially communicate by expending enough power or by lowering the trans-

mission rate. Moreover, the wireless medium is inherently multicast. At a

receiving node, the e�ect of such constraints manifests as interference from un-

intended transmitters. This e�ect on the average consensus algorithm has not

been studied previously.

We consider a situation in which the physical locations of the nodes are given.

Every node then decides on the power with which it transmits. This power

determines the communication radius of the node according to the relation

P = P0r
α
c , (3)

where P0 is a normalization constant, α is the path-loss exponent (typically
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2 ≤ α ≤ 5), P is the transmission power and rc is the communication radius.

All nodes at a distance smaller than rc from the transmitter can receive the

transmitted message.

Similar to the communication radius, we can also de�ne an interference

radius ri. A node at position x can receive a message successfully from a node

at position y only if ‖y − x‖ < rc, and there is no node at position z that is

simultaneously transmitting, such that ‖z − x‖ < ri (interference constraint).

In this paper, for simplicity, we assume rc = ri. The results can be generalized

to other cases.

Given the above condition for successful transmission, we require a medium

access control (MAC) protocol for the nodes. We focus on Time Division Mul-

tiple Access (TDMA)-based MAC protocols in this paper rather than random

access protocols. These protocols assure successful communication by schedul-

ing transmissions in time such that messages do not interfere. They demonstrate

better throughput than collision-based MAC protocols, at the expense of greater

synchronization and co-ordination requirements among the nodes [18, 19].

2.3 Problem Formulation

The operation of the average consensus protocol can be divided into two phases

that are repeated at every update of the node values. In the �rst phase, the

nodes exchange their values through possibly multiple transmissions. We con-

sider each transmission to consume one time slot. The e�ective communication

graph at each update is composed of edges (i, j) such that node j has received

the value of node i during the previous communication phase. In the second

phase, the nodes update their values according to (1). As in the standard model,

this step is assumed to be instantaneous. Therefore, due to multiple transmis-

sions to set up the consensus graph, in our model, the state update does not

occur at every time slot. In fact, assuming that each communication phase is

completed in T time slots, the kth update can be expressed as

x(kT + T ) = (I − hL)x(kT ). (4)

Therefore the e�ect of �nite communication time, possibly due to interference,

is to slow down the convergence rate.

We are interested in the following problem: Given a set of nodes at known

locations, what is the e�ect of increasing transmit power on the convergence
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rate of the consensus algorithm when the channel-access mechanism accounts for

interference? In this context, we characterize the convergence of the consensus

algorithm for the optimal MAC protocol that minimizes the number of time

slots needed for communication in order to form a desired consensus graph G
(thus maximizing the update rate). We analyze this problem for two physical

distributions of the nodes on a torus:

1. A regular grid of sensor nodes.

2. A regular grid of nodes that form a communication network for sensor

nodes that are distributed as a binomial point process.

The transmit power at each node determines its neighbors in the consensus

algorithm. The periodic boundary condition is chosen for analytical tractability,

and our analysis becomes accurate as the number of nodes becomes large. We

assume the following:

• We assume equal transmission power for all nodes.

• We limit the transmission policy to be time-invariant.

• At the time of an update of the values of the nodes, we require that the

e�ective communication graph be undirected, i.e., for any two nodes i, j

in the network, j ∈ Ni ⇔ i ∈ Nj . Note that this is slightly stronger

than the necessary and su�cient condition for convergence of the average

consensus algorithm that the graph be balanced [14].

• We do not assume explicit routing of values through nodes since the con-

sensus algorithm itself incorporates implicit routing and in-network com-

putation.

• We assume half-duplex operation, and further assume that packets that

su�er collisions cannot be decoded.

Under these assumptions, we are able to show the following results:

• We characterize the rate of convergence for the optimal MAC scheduling

protocol for the average consensus algorithm for tori in n dimensions.

• We show that network geometry plays a key role in identifying the opti-

mum power allocation that maximizes the speed of convergence. In par-

ticular, while the convergence rate increases with the transmission power

in 1-dimensional tori, the opposite is true in higher dimensions.
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• In hierarchical networks, we show that a positive fraction of nodes can

always achieve consensus for certain scalings of backbone node density.

In the next section, we begin by studying the convergence properties of MAC

protocols that maximize the speed of convergence for a given consensus graph G.
We begin by considering nodes placed on a regular grid with periodic boundary

conditions.

3 Analysis of a Ring and a 2D Torus

3.1 The 1-D Case: Nodes on a Ring

Consider n nodes numbered {0, 1, . . . n−1} placed uniformly on a circle of radius

r centered at the origin, as shown in Figure 1. Suppose that the transmission

power is such that every node can transmit information to m of its nearest

neighbors on either side. As an example, in Figure 1, m = 1. De�ne Pm,

m ≤ bn2 c as the transmit power that provides a communication radius rc =
2r sin

(
mπ
n

)
. Hence

Pm ∝
(

2r sin
(mπ
n

))α
, (5)

where α ≥ 2 is the path-loss exponent. As stated above, for simplicity, we will

assume that the interference radius ri = rc.

We note here that an alternative interpretation of this geometry of node
placement is to consider the n nodes placed on a regular one-dimensional torus
[0, 1] (hereafter called a �1-torus� or T1(n)). This interpretation is useful in con-
necting these results with those for higher dimensional tori, that are discussed
later. In this case, if choose the location of the �rst node as the origin, the
position of the the kth node is given by k

n , 0 ≤ k ≤ n − 1, with a periodic
boundary condition. In this geometry, the expression for Pm would appear as
Pm ∝

(
m
n

)α
.

If the wireless channel could support simultaneous transmissions by every

node, the system would evolve according to (2), with I − hL being an n × n
circulant matrix with the �rst row given by

[ 1− 2mh 1∗m 0 0 · · · 0 1∗m ], (6)

where

1∗m =
[

1 1 · · · 1
]

1×m
. (7)
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Figure 1: Schematic of nodes placed along a ring.

For future reference, denote by G1,m, L1,m and F1,m the consensus graph, the

Laplacian and the update matrix respectively for such a situation. Given the

nodes placed on a ring, G1,m is the consensus graph with the highest connec-

tivity that can be formed for a given Pm, and therefore will have the fastest

convergence. The MAC protocol that we propose guarantees that the system

evolves according to this matrix. However, the communication phase occurs

over multiple steps.

3.1.1 Characterizing the Time for the Communication Phase

We begin by bounding the number of time slots required to form G1,m. De-

note the smallest number of time slots used to form G1,m by T ∗1 (m), or more

compactly, as T ∗1 . Also denote by P∗(m) the optimal TDMA protocol that

forms the graph G1,m in T ∗1 number of steps. Observe that for all m1 ≤ m2,

G1,m1 ⊆ G1,m2 . Then G1,m can always be formed in at most T ∗1 (m1) ≤ T ∗1 (m2)
slots. This implies that m1 ≤ m2 =⇒ T ∗1 (m1) ≤ T ∗1 (m2). In the following,

we say a link is formed from node v to node u whenever the message from v

is successfully decoded at u. Since G1,m is undirected and balanced, an edge

e ∈ E1,m connecting v and u is formed i� both v and u form links with each

other.

Lemma 1. Consider the set-up described above, where the consensus graph

G1,m is to be formed in the smallest number of time slots. The optimal TDMA

protocol forms G1,m in the smallest possible number of time slots T ∗1 where

2m+ 1 ≤ T ∗1 (m) ≤ 4m+ 1. (8)
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Proof. Suppose G1,m is formed in T time slots. Each node is connected to m

nearest neighbours on either side, and the node degree of G1,m is 2m. Suppose

Nt links in G1,m are formed in time slot t. Given that there are are 4mn links

in the graph,
T∑
t=1

Nt = 4mn. (9)

Now suppose that K(t) nodes {vi1 , vi2 , . . . , viK(t)} transmit in time slot t.

Let the respective power allocations be {Pl1 , Pl2 , . . . , PlK(t)}. Clearly, the power
allocation satis�es P1 ≤ Plk < Pbn2 c for k = 1, 2, . . .K(t).

Assume that the power allocated to node vik allows it to broadcast its mes-

sage to at most the lk nearest neighbors on either side, or equivalently form at

most 2lk links. Since there are at most 2m of these links are part of G1,m,

Nt ≤ 2
K(t)∑
k=1

min (m, lk) ≤ 2mK(t), (10)

where the second inequality is obtained by choosing min(m, lk) = m for all

transmitting nodes. To minimize T in (9), we need to maximize Nt for all t.

Observe that any transmission to a neighbor beyond them nearest neighbors

does not contribute to the graph G1,m; this implies that choosing lk = m is

su�cient. This argument holds for any of the K(t) transmitters. Hence each

on the transmitting nodes should form m links on either side, or equivalently

transmit with power Pm.

Now note that the optimal protocol selects {vi1 , vi2 , . . . , viK(t)} for all t while
meeting this upper bound, and ensuring that T is minimized. As noted above,

this minimum value of T has been called T ∗1 .

Since the optimal protocol leads to each node transmitting to m−nearest
neighbors whenever it communicates, for every 2m + 1 adjacent nodes, only

one node can transmit in any slot to avoid interference. As a result, a TDMA

schedule cannot have fewer than 2m + 1 slots. In other words, T ∗1 ≥ 2m + 1.
Denote this interval of 2m+ 1 nodes as the transmission interval of the central

node, with m nodes on each side that it forms a link with during that time slot.

An upper bound on T ∗1 can be obtained by considering the length of a partic-

ular TDMA schedule. Consider a protocol in which each transmitter is allocated

power Pm. Due to interference constraints, no two transmission intervals can

touch overlap each other. Given that there are a total of n nodes uniformly

placed on a ring, the maximum number of allowed transmitters in any time step
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is

Kmax = b n

2m+ 1
c. (11)

The transmission schedule for this MAC protocol is as follows. Consider time

slot 1. Suppose some node v ∈ V transmits at Pm. We require that all nodes

(2m + 1) nodes apart should transmit as long as the half-duplex and inter-

ference constraints are satis�ed. Since the maximum number of simultaneous

transmissions possible is b n
2m+1c, in 2m + 1 time slots, (2m + 1)b n

2m+1c nodes
can transmit. After 2m+ 1 time slots,

n− (2m+ 1)b n

2m+ 1
c = rem(n, 2m+ 1) ≤ 2m (12)

nodes will not have transmitted with this protocol. So this schedule forms G1,m

in Tu = (2m + 1) + rem(n, 2m + 1) ≤ 4m + 1. Hence we conclude T ∗1 ≤ Tu ≤
4m+ 1.

We have thus bounded the length of the shortest TDMA schedule that forms

the consensus graph G1,m. In other words, we have bounded the smallest time

T in the update equation (4).

3.1.2 Bounding the Rate of Convergence

To characterize the fastest convergence possible for a given G1,m we need to use

the above result in conjuction with the spectral properties of G1,m, which are

presented below.

Theorem 2. Consider the problem set-up described above. If the optimal

TDMA protocol is used to construct G1,m for each iteration, the error vector

ε(k) = x(k) − 1nxav converges geometrically to zero with the rate of decay β

bounded as

ρ
1

2m+1
1 ≤ β ≤ ρ

1
4m+1
1 (13)

where

ρ1 = 1− h(2m+ 1) + hS
(m,n)
1 (14)

S(m,n)
p =

sin( (2m+1)πp
n )

sin(πpn )
, p = 0, 1, . . . n− 1.

Proof. The consensus graph at each update step is balanced and connected.
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Thus, the node values converge to the average of their initial values with the

decay rate as the modulus of the second largest eigenvalue of F1,m [14]. Denote

e−j
2πk
n by Wk,n. Since F1,m is circulant, its kth eigenvalue ρk is

ρk = 1− 2mh+ h

m∑
l=1

(Wk,n +W−k,n)

= 1− (2m+ 1)h+ 2h
m∑
l=0

cos
(

2πkl
n

)
= 1− (2m+ 1)h+ hS

(m,n)
k , k = 0, . . . , n− 1. (15)

It is easy to see ρ0 = 1. The second largest eigenvalue is given by ρ1 =
ρn−1 < 1, where ρ1 was de�ned in (14). From Lemma 1, 2m+1 ≤ T ∗1 ≤ 4m+1.
Thus the convergence rate is bounded as

ρ
1

2m+1
1 ≤ β ≤ ρ

1
4m+1
1 . (16)

Remarks

Figure 2: Variation of the convergence rate with the transmission power for a
ring of n = 31 nodes.

1. For any given transmission power Pm, we see that the MAC constraints

reduce the rate by a factor of T where 2m+ 1 ≤ T ≤ 4m+ 1.
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2. The speed of convergence is an increasing function in m, and hence in

Pm. An illustration of this fact is provided in Figure 2. For the purpose

of the plot, we show the time taken for the error norm to become half,

termed the �half-value period�, as a function of transmission power for 31

nodes arranged regularly on a ring of radius 1 unit. We have assumed

α = 2, and the constant of proportionality in (5) to be unity. For each

Pm, we chose h ∝ 1
2m+1 . The results are somewhat counter-intuitive since

the rate reduction due to a larger number of steps in the communication

phase is always compensated by the increase in rate due to higher connec-

tivity. That forming long range communication links would lead to faster

convergence even in networks with interference was not evident a priori.

3. The e�ect of increasing the transmission power are the most prominent at

small Pm. This can again be seen from Figure 2. If θ = pπ/n and p� n,

sin θ ≈ θ − θ3/3. (17)

We use (17) to express the spectral gap SG , 1− ρ
1
T
1 when m� n as

SG = 1−

(
1− h(2m+ 1) + h

sin ( (2m+1)π
n )

sin (πn )

) 1
T

≈ ηmh(m+ 1)(2m+ 1)T−1n−2.

where η , 4π2

3 . Since h ∝ 1
2m+1 and T = Θ(m) for the optimal schedule,

the spectral gap scales as m
n2 .

3.1.3 Nodes on a Two-Dimensional Torus

We now generalize our results to higher dimensional tori. Consider a set Td(n)
of n = ld regularly spaced points on a d−dimensional torus located at [0, 1]d.
An example when d = 2 is shown in Figure 3. Choose a node as the origin,

and label each node using its displacements along each of the d axes (referred

to as the d axial directions of the torus in this paper). For example, in Figure

3, n = 9 and the node (1, 1) is located at r11 ≡ r(1,1) ,
(

1
3 ,

1
3

)
. An alternative

interpretation of a toroidal arrangement in the two-dimensional case is shown

in Figure 4. Both these interpretations yield similar results in the limiting case

of a large torus in which case local distances are not signi�cantly a�ected by

the curvature. We will focus on the former interpretation in this paper.
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Figure 3: The toroidal lattice T2(9). Colored nodes indicate those physically
placed in [0, 1]2. Node (0, 0) represents the node at the origin, with each of the
colored nodes (i, j) being placed at (i/3, j/3). Nodes that left un�lled are the
image nodes that arise due to the periodic boundary condition.

Suppose all nodes on a torus Td(n) participate in an average consensus algo-

rithm of the form (2) with a power allocation of Pm per node. As an extension

to the 1-D case, we assume that with power Pm, the set of all reachable nodes

will lie in a communication sphere of radius m
n1/d (m < b l2c) centered at the

transmitter. We now have the desired consensus graph Gd,m = (V, Ed,m) where
the vertex set

V = {0, 1, . . . , l − 1}d, (18)

is the set of all points in T2(n). The edge set Ed,m is formed by connecting every

node to all nodes on the torus that are within its communication sphere:

Ed,m = {{v, u} ∈ V2 : v 6= u, `2(rv, ru) ≤ m

n1/d
}, (19)

where `2(x, y) is the Euclidean norm between x and y.

In keeping with the notation developed for the one-dimensional case, we

will denote the Laplacian and the update matrix for Gd,m by Ld,m and Fd,m ,

I − hLd,m respectively. Assuming as before that each transmission occupies

one time slot, we now study the convergence properties of the optimal MAC

protocol that will form Gd,m in the smallest number of time slots. In this paper,

we set d = 2; the results can be generalized to tori of higher dimensions.

Using similar arguments as in Section 3.1.1, we can show that the optimal

TDMA protocol assigns a power Pm to each chosen transmitting node i in any
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time slot. Observe that at most one node can transmit in a time slot inside

the volume occupied by one communication sphere. Denote by T ∗2 (m), or more

compactly by T ∗2 the number of time slots required by an optimal schedule to

construct G2,m. The optimal MAC schedule places the maximum number N∗2 (t)
of non-intersecting spheres on the torus in every time slot t = 1, 2, · · · , T ∗2 .

Note that increased network dimensionality plays an important role in �nd-

ing N∗2 (and consequently, T ∗2 ). This makes the problem of analytically �nding

T ∗2 non-trivial. This e�ect is illustrated in Figure 5 for a 2-torus of n = 25
nodes and m = 1. The transmitters are chosen from the entire two-dimensional

lattice. With power P1, each node can reach its 4 nearest neighbors as shown,

with 5 nodes in each communication sphere. Since there can be at most one

transmission within this sphere, forming the consensus graph G2,1 requires at

least 4 + 1 = 5 slots. Figure 5 shows the optimal transmitting set in the �rst

time slot.

As before, we begin by characterizing the length T ∗2 of the shortest TDMA

schedule that constructs G2,m. Thereafter, we exploit the properties of the

consensus algorithm along with optimality of the MAC protocol and constraints

imposed by our problem to bound the convergence rates for a 2-torus.

Figure 4: Schematic of nodes placed along a 2-dimensional torus. The periodic
square grid being considered can be considered a limiting case of a large torus,
so that the e�ect of its curvature on small distances is not important.

As before, de�ne Pm to be the transmit power that enables a node to form

error-free links with m neighbors in the axial directions. Given that there are
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Figure 5: E�ect of geometry in sphere packing, shown for T2(25) and m = 1.
The transmitters are shown in red (e.g., (0,0)). Note that the dimensionality is
exploited to allow more concurrent transmissions. The nodes in light-blue (e.g.,
(4,0)) are covered by transmitters via their images (shown un�lled).

√
n nodes in either of the axial directions,

Pm ∝
(
m√
n

)α
, (20)

where α ≥ 2 is the path-loss exponent. De�ne Π to be the elementary circu-

lant matrix having as the �rst row [ 0 1 0 · · · 0 0 ]1×m. Then the update

matrix F2,m can be written as

F2,m =
∑
ij

aijΠi ⊗Πj (21)

where ⊗ denotes the Kronecker product and

aij = h∀i, j s.t. i2 + j2 ≤ m2 (22)

for (i, j) 6= (0, 0) and a00 = 1− h|{(i, j) ∈ Z2 : i2 + j2 ≤ m2}|. We now bound

the number of time slots required to form G2,m.

Lemma 3. If each node transmits at power Pm and the optimal schedule over

the 2-torus constructs G2,m in T ∗2 time slots, for 1 < m < bl/2c, T ∗2 always
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satis�es

Tl ≤ T ∗2 ≤ Tu (23)

where

Tl = 2m2 + 2m+ 1 (24)

and

Tu = 16m2 + 8m+ 1. (25)

Proof. Using similar arguments as in Lemma 1 it is easy to show that power

allocation for any node should be at least Pm. De�ne a feasible TDMA schedule

for a power allocation Pm per node as one that which constructs G2,m while

satisfying the half-duplex and interference constraints described in Section 2.

Without loss of generality, suppose node (0, 0) transmits in the �rst time slot

with power Pm. Let B denote its communication disc, i.e., a circle of radius m√
n

centered at (0, 0). From the de�nition of a feasible schedule, other than (0, 0),
no other node inside B can transmit at this time. This means a feasible schedule

can allow at most one transmission inside B. Therefore any feasible schedule

needs at least as many time slots as the number of nodes inside a sphere of

radius m√
n
centered at (0, 0), in order to form G2,m. In other words, a feasible

schedule has at least |B ∩ T2(n)| time slots. This involves counting the number

of nodes of a square grid that fall inside the circle we are considering, which

can be cumbersome. For our purposes, it will su�ce to �nd a lower bound for

this value by counting only those nodes that fall in a suitably chosen square U
circumscribed by B.

Consider a square U having as its vertices, the nodes (m, 0), (0,m), (−m, 0)
and (0,−m). Clearly U ⊆ B. Each of its diagonals contains 2m+ 1 nodes. The

line segments joining nodes (−m + |k|, k) and (m − |k|, k) for k = −m,−m +
1, . . . ,m− 1,m are all parallel to the segment joining (−m, 0) and (m, 0). Each
such segment has exactly 2m+ 1− 2|k| nodes. Counting all these nodes yields

the number of nodes in B:

|U ∩ T2(n)| =
m∑

k=−m

(2m+ 1)− 2|k|

= 2m+ 1 + 2
m∑
k=1

2(m− k)

= 2m2 + 2m+ 1.
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We can thus choose Tl = 2m2 + 2m+ 1 as the lower bound on the length of any

feasible schedule that forms G2,m. In particular, T ∗2 is the length of the shortest

feasible schedule. Consequently, T ∗2 ≥ Tl.
If Tu is number of time slots taken by any feasible schedule to form G2,m,

T ∗2 ≤ Tu. Consider the following schedule: in the �rst time slot, choose (0, 0)
as a transmitter, and schedule nodes (0 + p(2m + 1), 0 + q(2m + 1)) for p, q =
1, · · · , b l

2m+1c to transmit. In other words, we attempt to tile the torus with

squares of side 2m+1√
n

. Clearly this is feasible, since each node lies in at most

one communication sphere. In each subsequent time slot, repeat this process by

choosing some other node (i, j) inside the square of side (2m+ 1)/
√
n centered

at the origin and schedule nodes (i+ p(2m+ 1), j+ q(2m+ 1)) for transmission.

Repeat this process until all the (2m + 1)2 nodes in this square have been

chosen once. Using arguments similar to those used in Lemma 1, a maximum

of b l
(2m+1)c

2 simultaneous transmissions can be scheduled per time slot. After

(2m+ 1)2time slots,

n− b l

(2m+ 1)
c2(2m+ 1)2

= 2b l

2m+ 1
c(2m+ 1) rem(l, (2m+ 1))

+(rem(l, 2m+ 1))2

nodes are yet to transmit. In the �rst term, we can schedule bl/(2m+1)c nodes
in each of the 2rem(l, 2m + 1) ≤ 4m �rows�, that require at most 4m(2m + 1)
additional time slots. Scheduling one node per time slot, all the remaining

(rem(l, 2m+ 1))2 nodes can transmit in at most 4m2 time slots. Therefore the

schedule constructs G2,m in (2m + 1)2 + 4m(2m + 1) + 4m2 = 16m2 + 8m + 1
time slots. Thus we conclude that T ∗2 ≤ 16m2 + 8m+ 1.

As compared to the 1-torus, the optimal schedule for a 2-torus is bounded

by two quadratic terms. This arises due to imposing interference constraints to

the given geometry of node placement. As we shall see, this quadratic - rather

than linear - dependence on m is the key to understanding the e�ect of transmit

power on convergence behavior.

3.1.4 Bounding the Rate of Convergence

Finding the eigenvalues of F2,m also seems intractable. This di�cultly arises

from the fact that the nodes that can receive data from a particular node are
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speci�ed through circular disks (or spheres). While in a one-dimension such

disks can cover the entire ring, such coverage is not possible in higher dimensions.

For our purpose, we lower and upper bound such discs by squares of suitable

side length that cover the entire region. The idea is illustrated in Figure 6. To

this end, we begin with the following preliminary result.

Lemma 4. Let Ĝ2,m be the consensus graph formed over T2(n) by placing edges
between each node (i, j) with all other nodes (k, l) 6= (i, j) satisfying

`∞(rij , rkl) ≤
m√
n
, 1 ≤ m < b

√
n

2
c. (26)

where `∞ denotes the ∞−norm. Also denote the Laplacian of Ĝ2,m by L̂2,m and

its maximum degree by dmax and the update matrix F̂2,m = I − hL̂2,m for some

0 ≤ h ≤ 1
2dmax

. Then the eigenvalues of the F̂2,m are

λa,b = 1− h(2m+ 1)2 + hS(m,l)
a S

(m,l)
b , (27)

where, as de�ned above S
(m,l)
a =

sin( (2m+1)πa
l )

sin(πal ) , a = 0, 1, . . . l − 1.

Proof. To begin, note that the Laplacian matrix L̂2,m of Ĝ2,m is an n× n block

circulant matrix with each of its l block rows being[
A0 Bm 0 0 · · · 0 Bm

]
l×n

(28)

where Bm , 1∗m ⊗ A1. Here the l × l matrices A0 and A1 are also circulant,

their �rst row being an l × 1 matrix [ dk −1∗m 0 0 · · · 0 −1∗m] , with

d0 = (2m+ 1)2−1 and d1 = −1. With this structure, we can use the properties

of block circulant matrices and the fact that Ak's are themselves circulant (and

consequently share the same eigenvectors) to compute the eigenvalues of L̂2,m

as

µr,s =
l−1∑
t=0

ηr,te
−j 2πst

l (29)

where ηr,t is the r
th eigenvalue of At ∀r, s = 0, 1, . . . , l − 1. Using the 1-torus

result from equation (15) for ηr,t and simplifying, the eigenvalues of F̂2,m =
I − hL̂2,m are

λa,b = 1− h(2m+ 1)2 + hS(m,
√
n)

a S
(m,
√
n)

b (30)

which is the desired result.
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We are now in a position to bound the rate of decay for the case of the torus.

This is presented in the form of a theorem below.

Theorem 5. Consider a consensus algorithm of the form (2) on G2,m. If each

node transmits at Pm for 1 ≤ m < b
√
n

2 c, the rate of convergence β of an optimal

MAC schedule on G2,m that drives δ(k) = x(k)− 1nxav to zero is bounded as

λ
1

2m(m+1)
1 < β < λ̃

1
16m2+8m+1
1 (31)

where m̃ , b m√
2
c and

λ1 =
(

1− h(2m+ 1)2 + h(2m+ 1)S(m,
√
n)

1

)
λ̃1 =

(
1− h(2m̃+ 1)2 + h(2m̃+ 1)S(m̃,

√
n)

1

)
Proof. Consider undirected graphs Gsub,G and Gsup with a common vertex set V
and edge sets Esub ⊆ E ⊆ Esup, with the same edge weights. Call G the nominal

graph and Gsub and Gsup as sub- and super-graphs of G. Suppose all the graphs
satisfy conditions to reach average consensus. The proof rests on two simple

but important facts:

Fact 1: If iterations are done at the same rate and all the edge weights positive,

the consensus algorithm on a graph cannot be slower than that on its sub-graphs.

This follows from the fact that the second largest eigenvalue always decreases if

edges are added to a graph (cf. [20, Thm. 3.2]).

Fact 2: Suppose the iterations on these graphs occur every Tu, T
∗
2 and Tl time

slots respectively, with Tu ≥ T ∗2 ≥ Tl. Then the graphs on which the consensus

algorithm converges the fastest and slowest are still Gsup and Gsub respectively.

In what follows, we will �rst de�ne the nominal consensus graph G and choose

appropriate super- and sub-graphs Gsup and Gsub. We will then use the results

from Lemma 3 to obtain the values of Tl, T
∗
2 and Tu.

Consider the graph Ĝ2,m as de�ned in Lemma 4. Note that

`2(rij , rkl) ≤ c =⇒ `∞(rij , rkl) ≤ c. (32)

Choosing c = m√
n
, it is easy to see that every edge in E2,m is present in Ê2,m.

It follows that Ĝ2,m ⊇ G2,m. We now have a super-graph of G2,m. This is

illustrated in Figure 6 for n = 25,m = 2.
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Figure 6: Edges to (2, 2) in T2(25) in Ĝ2,m̃, G2,m and Ĝ2,m for m = 2. For nodes
shown in orange (e.g. (2,3)), edges between (2,2) and these nodes exist in all
these graphs. For nodes colored yellow (e.g. (4,2)), such edges exist only in
G2,m and Ĝ2,m. For the green nodes (e.g. node (0,0)), such edges exist only in

Ĝ2,m.

De�ne m̃ = b m√
2
c and form a graph Ĝ2,m̃ = (V, Ê2,m̃). It is easy to see that

`∞(rij , rkl) ≤ b m̃√
n
c`2(rij , rkl)

=⇒ `2(rij , rkl) ≤
√

2b m̃√
n
c

≤ b
√

2m̃√
n
c ≤ m√

n
.

Therefore Ĝ2,m̃ ⊆ G2,m.

The di�erences in connnectivity in the graphs Ĝ2,m̃, G2,m and Ĝ2,m are illus-

trated in Figure 6, for a torus of n = 25 nodes and m = 2. Here m̃ = b2/
√

2c =
1. Consider now the nodes connected to node (2, 2). For Ĝ2,1 over this torus,

edges are placed between nodes (2, 2) and (k, l) i� `∞(r22, r) ≤ 1
5 . In Figure

6, these are the nodes on or inside the inner-most square centered at (2, 2).
In G2,m such edges are placed between nodes that are within a communication

disk of radius 2
5 , i.e., when `2(r22, r) ≤ 2

5 . These nodes comprise of the nodes

shown on or inside the circle. In the case of Ĝ2,2, all nodes on the torus satisfy

`∞(r22, r) ≤ 2
5 . This comprises of all nodes inside the outer square.

The consensus graphs Ĝ2,m and G2,m correspond to update matrices F̂2,m

and F2,m respectively for all m. We now use the results for eigenvalues of the

Laplacian L̂2,m , derived in Lemma 4. The rate of convergence on Ĝ2,m is

a function of the second largest eigenvalue modulus, that is obtained setting
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a = 0 and b = 1 in (30):

λ0,1 = 1− h(2m+ 1)2 + h(2m+ 1)S(m,l)
1 , λ1. (33)

Making the substitution m← m̃ gives

λ̃1 , 1− h(2m̃+ 1)2 + h(2m̃+ 1)S(m̃,l)
1 . (34)

which is the corresponding value for Ĝ2,m̃.

Consider now a consensus algorithm on Gsub = Ĝ2,m̃, G = G2,m and Gsup =
Ĝ2,m. All the graphs are given equal edge weights h, determined by the max-

imum node degree in Ĝ2,m. Suppose the optimal MAC schedule on the torus

forms G2,m in T ∗2 time slots. In other words, an iteration on G2,m occurs every

T ∗2 time slots. Furthermore, let each iteration on Ĝ2,m and Ĝ2,m̃ occur be in Tl

and Tu time slots respectively, where Tl = 2m2+2m+1 and Tu = 16m2+8m+1.
From Lemma 3 we know that Tu ≥ T ∗2 ≥ Tl. Since we now know the second

largest eigenvalue modulus of these graphs Ĝ2,m and Ĝ2,m̃, the convergence rates

of these graphs are, respectively, λ
1/Tl
1 and λ̃

1/Tu
1 . The bound on the convergence

rate β

λ
1/Tl
1 < β < λ̃

1/Tu
1 (35)

of the G2,m that is formed using the optimal schedule now follows from Fact

2.

To understand the e�ect of higher transmit power on the convergence rate

in 2-tori, �rst simplify simplifying the expressions for λ1 and λ̃1 in Theorem 5

using h = γ/(2m+ 1)2, 0 < γ < 1:

λ1 = 1− γ + γ
sin ((2m+ 1)π/

√
n)

(2m+ 1)sin (π/
√
n)

λ̃1 = 1− γ (2m̃+ 1)2

(2m+ 1)2

+γ
(2m̃+ 1)
(2m+ 1)2

sin ((2m̃+ 1)π/
√
n)

sin (π/
√
n)

.

Comparing this to the 1-torus case with h = γ/(2m+ 1),

ρ1 = 1− γ + γ
sin ((2m+ 1)π/n)
(2m+ 1)sin (π/n)

. (36)
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Figure 7: Variation of convergence rate with transmission power on a 2-torus.

Clearly λ1 is of the same form as ρ1 in Theorem 2, except for the
√
n. For large

m, the behaviour of λ̃1 will also be similar to λ1.

However, there is a signi�cant di�erence between the two cases in the length

of the optimal schedule. This length was shown to be Θ(m) for the 1-torus,

and Θ(m2) for the 2-torus. This means that the e�ect of interference depends

on the geometry of node placement. High transmit powers reduce available

network throughput by causing more interference. In TDMA-scheduling MAC

protocols, this e�ect is re�ected in longer schedules. For a 1-torus, this is still

o�set by the resultant long-range connections. However, this is no longer true

for higher dimensions. In Figure 7, we plot the bounds for β obtained from

Theorem 5 for a 2-torus with n = 4096 nodes arranged as a 64 × 64 toroidal

lattice. Observe that the convergence rate worsens with increasing transmit

power. This is surprising when compared to the 1-torus, where the result is the

opposite.

3.1.5 Tori in Arbitary Dimensions

The results in Lemma 3 can be extended to higher dimensional grids with

toroidal boundary conditions. Indeed using similar arguments for power Pm the

optimal schedule for a d−dimensional torus cannot be shorter than |U ∩ Td(n)|
where U is a polyhedron that can be circumscribed by the sphere of radius

m/
(
n1/d

)
. Similarly, to �nd the upper bound one can generalize the schedule

described in Lemma 1 that was used to �nd an upper bound. It can be shown

that the optimal schedule will be Θ(md).
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The results in Lemma 4 can also be generalized to d−dimensions as λ1 = 1−
h(2m+1)d+h(2m+1)d−1S

(m,l)
1 for the lower bound and choosing m̃ = bm/

√
dc

to �nd λ̃1 for an upper bound on the convergence rate. Thus the convergence

rate increases with transmit power in geometries having dimension 2 or more.

4 Hierarchical networks

Since calculation of the rates of convergence for average consensus for arbitrary

graphs is not possible even without the interference constraints, we do not expect

to be able to extend our results for arbitrary graphs. In this section, we consider

another useful class of graphs that allow us to state analytical results. We

consider a variation on the random geometric graphs by adding a backbone of

dedicated (long-distance) communication nodes. Thus we consider a hierarchical

network with N sensing nodes uniformly randomly placed on a torus in [0, 1]d,
and Kd identical regularly spaced backbone nodes on the torus, as shown in

Figure 8 for d = 1.

Figure 8: Schematic of backbone nodes placed along a 1-dimensional torus. The
ith backbone node is placed at ri =

(
i− 1

2

)
1
K from the origin, for i = 1, 2, . . . ,K.

We assume that the backbone nodes do not participate in sensing, and only

communicate with each other in the network. Each backbone node has a �xed

exclusive region of coverage, i.e., it (alone) collects data from all the sensing

nodes within a sphere of radius r = 1/2K. Initially, each backbone node collects

and averages the data from all the sensing nodes in its region of coverage. All

the backbone nodes now run an average consensus algorithm among themselves

with their respective averaged data as initial values. It is possible to pass on

this (global) average back to all the nodes within their coverage regions in O(1)
steps. Therefore for analyzing the rate of convergence, it is su�cient to analyze
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the time taken for collecting data by the backbone nodes and the time taken to

reach consensus among these nodes.

We begin by characterizing the number of sensors reporting to each backbone

node.

Lemma 6. For large N and if the number of backbone nodes scales as o( N
logN )

w.h.p. the number of sensors per coverage area is n = Nπd/2

Γ(1+d/2)(2K)d
, where K

is the number of nodes per dimension.

Proof. This can be proved by a a variation of the argument used in the theory

of random geometric graphs to show regularity. Consider a sphere S of radius

r centered at point P on the torus. Marking the points 1, 2, . . . , N , we can

associate with each point k, a random variable Xk (1 ≤ k ≤ N) be de�ned as:

Xk = 1S(k) (37)

where 1(.) is the indicator function. That is, 1S(k) = 1 if k ∈ S, and
0 otherwise. Since the sensing nodes are placed on the torus uniformly and

independently of each other, {Xk} are iid Bernoulli with success probability

p =
Vol. of sphere

Vol. of torus
=

πd/2

Γ(1 + d/2)(2K)d
. (38)

The number of sensors inside the sphere is thus a binomial random variable

N∑
k=1

Xk , Y, (39)

with µ , EY = Np. We can now use the Cherno� bound:

P(|Y − µ| > µδ) ≤ 2 exp
(
−µδ

2

2

)
. (40)

For 0 < δ < 1, since the number of nodes Kd = o( N
logN ) we can always choose

δ =

√
4logN
N

· γKd = o(1), N →∞ (41)

for some γ > 0. Plugging in this value into the bound, we see that

P(Y /∈ [µ(1− δ), µ(1 + δ)]) ≤ 1
N2ηγ

≤ 1
N3

, (42)
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where η = πd/2

2dΓ(1+d/2)
and γ is chosen such that ηγ > 2. So w.h.p.,

Y = Np(1± o(1)). (43)

Thus, the probability that any coverage area does not have n(1±o(1)) nodes
is

P(∪k{Yk /∈ [µ(1− δ), µ(1 + δ)]})

≤ ∪kP(Yk /∈ [µ(1− δ), µ(1 + δ)])

= Kd 1
N3

< N
1
N3

=
1
N2

where we use the union bound. The result now follows readily.

Since each of the Kd backbone nodes has n sensors in its coverage region

w.h.p. whenN is large, a total of nKd sensing nodes will be covered by the back-

bone network. Therefore for large N , it is always possible to achieve consensus

over a positive fraction

κ =
nKd

N
=

πd/2

2dΓ(1 + d/2)
(44)

of the sensing nodes, independent of N and K.

We will now study speci�c cases for d = 1 and 2. To begin, we note that for

d = 1,

κ1 =
π1/2

2Γ(3/2)
= 1, (45)

and for d = 2,
κ2 =

π

4Γ(2)
=
π

4
≈ 78.5%. (46)

As stated above, we assume that each backbone node collects data by polling

all the sensing nodes in its coverage region. This is done in parallel over all

backbone nodes, by a suitable choice of transmit power. Assuming each node

transmits in one time slot, we need n time slots to initialize the consensus

algorithm, where w.h.p.

n =
αN

Kd
. (47)

During the consensus phase, the network topology is identical to the (regular)

ring and torus topologies discussed previously. As before, let each node transmit
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at �xed power Pmto reach m ≤ bK/2c neighbors per direction per dimension.

Using the results in Theorems 2 and 5, we obtain that for Kd = o
(

N
logN

)
,

w.h.p.,

(
1− h(2m+ 1) + hS

(m,K)
1

) 1
4m+1 ≥ β

≥
(

1− h(2m+ 1) + hS
(m,K)
1

) 1
2m+1

for the ring or 1D torus and

(
1− h(2m̃+ 1)2 + h(2m̃+ 1)S(m̃,K)

1

) 1
16m2+8m+1

> β >
(

1− h(2m+ 1)2 + h(2m+ 1)S(m,K)
1

) 1
2m(m+1)

for the 2D torus, where m̃ = b m√
2
c as de�ned in Theorem 5.

5 Conclusions

We introduced a framework that considers the e�ects of realistic communication

constraints on average consensus algorithms. In particular, we analytically char-

acterize the performance of the medium access control algorithm that maximizes

the speed of convergence. We study the e�ect of transmit power on convergence

in the presence of interference. In inteference-limited wireless networks, the ge-

ometry of node placement plays a key role in deciding the fastest converging

consensus graph. While forming long-range links (using more power) always

improves the convergence on ring topologies, it is not so for higher-dimensional

tori.

This work could be extended to other classes of graphs, like Cayley graphs

and expander graphs that have good convergence properties [3]. Another issue is

the e�ect of stochastic data loss through e�ects due to fading and interference,

using a di�erent framework as compared to [2, 6], to explicitly account for

interference.
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