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I. Introduction

We are interested in various transmission strategies for sending
information from a source s over a large distance to a target t in
ad hoc wireless networks where the nodes are distributed as a
Poisson process of intensity 1. We wish to transmit reliably (s
and t lie in the same component with probability 1−ε), quickly
(through few hops), and economically (using little power).

In Gilbert’s disk model [4] for omni-directional transmis-
sion, for each point x of the Poisson process, we take a disk
Dx of area a centred at x, and postulate that two points x and
y of the process can communicate if y ∈ Dx or, equivalently,
x ∈ Dy. Joining two points by an edge if they can communi-
cate, we obtain an infinite geometric random graph Ga. Note
that the area a is exactly the expected degree of a vertex.

Gilbert proved that there exists a critical area ac such that
if a > ac then Ga almost surely has an infinite component, and
if a < ac then Ga almost surely has only finite components.

The existence of an infinite component, i.e., percolation, is
not sufficient for our problem since the proportion of vertices
in the infinite component may be very low. To achieve con-
nectivity the power must increase with the number of vertices,
since there is some positive chance that a vertex is isolated.
Independently, Penrose [6, 7], and Xue and Kumar [5] proved
that the threshold on the degree is log n where n is the num-
ber of vertices in the region. So to guarantee that s and t
are connected we need enormous power, and we do not know
anything about transmission speed5.

II. Directional Transmitters

If has been shown that percolation can occur if a vertex can, on
average, broadcast to 1+o(1) neighbors if we have transmitters
that transmit (1) to a randomly oriented sector of angle δ and
radius r or (2) to an annulus of inner and outer radii 1 and
1 + δ. These results6 show that as soon as the average degree
exceeds one, there is an infinite component.

Result (1) shows that with directional transmissions, even
with very low power there exist points at arbitrarily large
distance that can communicate. It does not give us any bound
on how many hops this will take or how likely this transmission
is. Indeed if the power is such that we expect only 1 + η
neighbours then there is a significant probability (e−(1+η))
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that s has no neighbours at all, and hence definitely can not
talk to t. Hence even to hope for reliable transmission with
reliability 1− ε the vertex s must expect log(1/ε) neighbours,
and similarly for t. Rather than pushing the power this high,
we make s and t better nodes than the rest. With a more
powerful transmitter s and a more sensitive receiver t there is
a high chance of s and t communicating even with all the rest
of the nodes being low power:

Theorem 1 Fix an angle φ (small but not tiny, i.e., not tend-
ing to zero). Suppose that all the transmitters nearer s than
t broadcast directionally into a sector of radius r and angle
δ oriented randomly inside the sector of angle φ pointed in
the st direction, and that all the transmitters nearer t than
s receive directionally, again with radius r and angle δ this
time randomly oriented in a sector of angle φ pointed in the
ts direction. Finally suppose that s can transmit to any point
within distance R and that t can receive from any point within
distance R. Then, provided that R is large enough indepen-
dently of the distance from s to t and that the area of a sec-
tor, δr2/2, is greater than 1, node s can communicate with the
node t with probability arbitrarily close to one. Moreover the

number of hops is at most (1 + o(1))
(

3φ
4r sin(φ/2)

)

d(s, t).

This is the main result of this paper. Since the expected dis-
tance of a neighbour of a vertex is 4r sin(φ/2)/3φ, this is the
best that we could hope for.

Note that the transmitters and receivers are directed ran-
domly: they do not need to know the locations of their nearby
neighbours. Indeed, if they all point directly towards t we
need a higher density of transmitters; i.e., the critical area is
bounded away from one.

We conjecture that Theorem 1 holds using only directional
transmitters (i.e., all receivers are omni-directional).
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