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Abstract—Wireless networks are fundamentally limited by the
intensity of the received signals and by their interference. Since
both of these quantities depend on the spatial location of the
nodes, mathematical techniques have been developed in the last
decade to provide communication-theoretic results accounting for
the network’s geometrical configuration. Often, the location of
the nodes in the network can be modeled as random, following
for example a Poisson point process. In this case, different
techniques based onstochastic geometry and the theory of random
geometric graphs – including point process theory, percolation
theory, and probabilistic combinatorics – have led to results on
the connectivity, the capacity, the outage probability, and other
fundamental limits of wireless networks. This tutorial article
surveys some of these techniques, discusses their application
to model wireless networks, and presents some of the main
results that have appeared in the literature. It also servesas
an introduction to the field for the other papers in this special
issue.

Index Terms—Tutorial, wireless networks, stochastic geometry,
random geometric graphs, interference, percolation

I. I NTRODUCTION

Emerging classes of large wireless systems such as ad hoc
and sensor networks and cellular networks with multihop cov-
erage extensions have been the subject of intense investigation
over the last decade. Classical methods of communication
theory are generally insufficient to analyze these new types
of networks for the following reasons: (i) The performance-
limiting metric is the signal-to-interference-plus-noise-ratio
(SINR) rather than the signal-to-noise-ratio (SNR). (ii) The
interference is a function of thenetwork geometryon which
the path loss and the fading characteristics are dependent
upon. (iii) The amount of uncertainty present in large wireless
networks far exceeds the one present in point-to-point systems:
it is impossible for each node to know or predict the locations
and channels of all but perhaps a few other nodes.

Two main tools have recently proved most helpful in cir-
cumventing the above difficulties: stochastic geometry [1]and
random geometric graphs [2], [3]. Stochastic geometry allows
to study the average behavior over many spatial realizations
of a network whose nodes are placed according to some
probability distribution. Random geometric graphs capture
the distance-dependence and randomness in the connectivity
of the nodes. This paper provides an introduction to these
mathematical tools and discusses some recent results that were
enabled by them, with the objective of being a first-hand
tutorial for the researcher interested in the field.

A. The role of the geometry and the interference

Since Shannon’s work [4], for the second half of the 20th
century the SNR has been the main quantity of interest
to communication engineers that determined the reliability
and the maximum throughput that could be achieved in a
communication system. In a wireless system, the SNR can
vary among different users by as much as ten to hundreds of
dBs due to differences in path loss, shadowing due to buildings
and obstructions, fading due to constructive or destructive
wave interference. The first-order contributor to this SNR
variation is the path loss. In a cellular system for example,
it is not uncommon for a user close to the base station to have
a channel that is a million times (60 dB) stronger than the
one of a user located near the cell’s edge. If the receivers are
randomly located in space, then the different SNRs due to the
different path losses between them and the base station can be
modeled as having aspatial distribution.

In a wireless network with many concurrent transmissions,
the situation is even more complicated. In this case, the SINR
becomes the relevant figure of merit for the system1. Not
only the received signal power is random due to the random
spatial distribution of the users, but also the interference power
is governed by a number of stochastic processes including
the random spatial distribution of the nodes, shadowing, and
fading. The SINR for a receiver placed at the origino in the
2 or 3-dimensional Euclidean space can be written as:

SINR =
S

W + I
, where I =

∑

i∈T

Pihiℓ(‖xi‖) , (1)

whereS, W , andI are the desired signal, noise, and interfer-
ence powers, respectively. The summation forI is taken over
the set of all interfering transmittersT , Pi is the transmit
power,hi is a random variable that characterizes the cumu-
lative effect of shadowing and fading, andℓ is the path loss
function, assumed to depend only on the distance‖xi‖ from
the origin of the interferer situated at positionxi in space.
Oftenℓ is modeled as a power law,ℓ(‖xi‖) = k0‖xi‖−α, or in
environments where absorption is dominant, as an exponential
law, ℓ(‖xi‖) = k0 exp(−γ‖xi‖), see [5], [6]. In a large
system, the unknowns areT , hi, andxi, and perhapsPi, but it
is the locations of the interfering nodes that most influencethe
SINR levels, and hence, the performance of the network. The

1In many practical situations such as cellular networks and reasonably
dense ad hoc networks, the noise is typically negligible andSIR can be used
interchangeably with SINR without any appreciable loss of accuracy.
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interference is a function of the underlying node distribution
(and mobility pattern for mobile networks) and the channel
access scheme.

A key objective of this tutorial and special issue is to show
that the SINR in (1) can be characterized using stochastic
techniques, and key related metrics such as outage probability,
coverage, connectivity, and capacity can therefore be quanti-
fied.

B. Historical background

Although there has been growing recent interest in the use
of stochastic geometry and random graph theory to describe
wireless networks, some of the underlying approaches go back
100 years, or more. Wireless network performance is mostly
interference-limited, and a large number of users contribute to
the interference in vastly varying magnitudes, as described by
the interference function stated in (1), which is ashot noise
process. In one dimension, a shot noise process is defined as

I(x) =

∞
∑

i=−∞

g(x − Xi), (2)

where{Xi} is a stationary Poisson process onR andg(x) is
the impulse response of a linear system. In its two-dimensional
generalization,x represents a point on the plane and the
Poisson point process is onR2. Wheng(x) depends only on
the Euclidean norm‖x‖, it can be identified with the path
loss functionℓ(‖x‖), and I(x) is the aggregate interference
received at pointx in a wireless network, without fading.
The shot noise process has been studied at least dating back
to Campbell in 1909 [7], who characterized its mean and
variance, followed by Schottky in 1918 [8]. In addition, Rice
performed extensive investigations on the distribution ofI(x)
from 1940 through 1970 [9]. Power law shot noise – most
relevant here – was considered by Lowen and Teich in 1990
[10].

Stochastic geometry has been used as a tool for characteriz-
ing interference in wireless networks at least as early as 1978
[11], and was further advanced by Sousa and Silvester in the
early 1990s [12]–[14]. At that time, two useful mathematics
texts were available to researchers: Stoyan et al.’s stochastic
geometry first edition in 1987 (see [1] for the second edition)
and Kingman’s Poisson Processes [15]. In the late 1990’s,
Ilow and Hatzinakos [16] characterized the impact of random
channel effects – fading, shadowing, path loss, and combina-
tions thereof – on the aggregate co-channel interference, while
Baccelli et al. also began developing tools primarily basedon
Poisson Voronoi tesselations and Delaunay triangulationsfor
the optimization of hierarchical networks [17], [18] and of
mobility management in cellular networks [19]. For a survey
on this line of research, see the forthcoming book chapter by
Zuyev [20].

In the past ten years, stochastic geometry and associated
techniques have been applied and adapted to cellular systems
[21]–[24], ultrawideband [25], cognitive radio [26]–[28], fem-
tocells [29], [30], relay networks [31], and many other types
of wireless systems. However, perhaps the largest impact has
been in the area of ad hoc networks, which are fully distributed

and in which all participating nodes – both transmitters and
receivers – are randomly located. In such networks, it is
impossible even with unlimited overhead to control the SINRs
of all users, due to the coupling of interference: if one user
raises its power, it causes an interference increase to all
other communicating pairs. In this case, characterizing the
(stochastic) geometry of the network is of utmost importance
since it is the first-order determinant of the SINR.

The idea of modeling wireless networks using random
graphs dates back to Gilbert [32], whose paper marks the
starting point for continuum percolation theory. He considered
a random network formed by connecting points of a Poisson
point process that are sufficiently close to each other. Using
this model, he proved the existence of a critical connection
distance above which an infinite chain of connected nodes
forms and below which, in contrast, any connected component
is bounded. His investigations were based on prior work on the
discrete percolation model of Broadbent and Hammersley [33]
and on the theory of branching processes [34]. Gilbert’s origi-
nal model has undergone many generalizations, and continuum
percolation theory is now a rich mathematical field, see [2],
[35]. Extensions most relevant to us consider graphs which
account for interference-limited communication. In this case,
the graph connectivity depends on the SINR at different
nodes. These are studied in [36] and [37]. Another relevant
generalization is the random connection model [38], which
is a random graph that can account for random connections
due to shadow fading effects; as well as nearest neighbor
network models [39]. Finally, a coverage model for wireless
networks based on percolation theory was introduced in [40].
A compendium of random graph results related to wireless
communications appears in [3]. Elements of random graphs
have also proven to be useful to characterize the scaling
behavior of the capacity of wireless networks [41].

C. Paper overview and organization

In §II, we provide an overview of the key mathematical
tools, including point processes, random geometric graphs, and
percolation. In§III, the interference is characterized, and it is
shown that the outage probability is a natural metric to study
in a spatially random wireless network. We then move to other
performance metrics, such as the connectivity of the network
and its coverage in§IV, and the data-carrying capacity and
area spectral efficiency of the network in§V. We conclude
by providing some additional applications of these results,
including epidemic models, wireless security, and transmission
protocol design. The notation and symbols used in the paper
are listed in Table I.

II. M ATHEMATICAL PRELIMINARIES

Stochastic geometry [1] is a rich branch of applied prob-
ability which allows the study of random phenomena on the
plane or in higher dimensions. It is intrinsically related to the
theory of point processes [42]. Initially its development was
stimulated by applications in biology, astronomy and material
sciences. Nowadays, it is also used in image analysis and in
the context of communication networks.
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Symbol Definition/explanation
[k] the set{1, 2, . . . , k}

Z, N integers, positive integers
R, R

+ real numbers, positive real numbers
1A(x) indicator function
u(x) , 1{x>0}(x) (unit step function)

d number of dimensions of the network
#A cardinality ofA
P(A) probability of eventA
E(X) expectation of random variableX

LX (s) = E(e−sX) Laplace transform of random variableX
| · | Lebesgue measure
‖ · ‖ Euclidean norm

o origin in R
d

B a Borel subset ofR or R
d

B(x; r) ball of radiusr centered atx
cd , πd/2/Γ(1 + d/2)

(volume of thed-dim. unit ball)
α path loss exponent

FX (x) = P(X 6 x) distribution of random variableX (cdf)
Φ = {Xi} ⊂ R

d point process
Λ, λ counting measure and density forΦ

pc, λc critical probability, density for percolation
h (power) fading random variable (E(h) = 1)

T ∈ R
+ SIR or SINR threshold for successful communication

ǫ ∈ (0, 1) target outage probability for transmission capacity
ℓ : R → R

+ (isotropic) large-scale path loss function
W thermal noise

TABLE I
NOTATION AND SYMBOLS USED IN THE PAPER.

A. Point processes

The most basic objects studied in stochastic geometry are
point processes. Visually, a point process can be depicted
as a random collection of points in space. More formally, a
point process (PP) is a measurable mappingΦ from some
probability space to the space of point measures (a point
measure is a measure which is locally finite and which takes
only integer values) on some spaceE. Each such measure can
be represented as a discrete sum of Dirac measures onE:

Φ =
∑

i

δXi .

The random variables{Xi}, which take their values inE are
the points ofΦ. Most often, the spaceE is the Euclidean
spaceR

d of dimensiond ≥ 1. The intensity measureΛ of
Φ is defined asΛ(B) = EΦ(B) for Borel B, whereΦ(B)
denotes the number of points inΦ ∩ B.

A few dichotomies concerning point processes on Euclidean
spaceR

d are as follows:

• A PP can be simple or not. It is simple if the multiplicity
of a point is at most one (no two points are at the same
location).

• A PP can bestationaryor not. Stationarity holds if the
law of the point process is invariant by translation.

• A PP can be Poisson or not. A formal definition of the
Poisson point process (PPP) is given in the following sub-
section. A PPP offers a handy computational framework
for different network quantities of interest.

– A PPP can be homogeneous or not. In the homo-
geneous case, the density of the points is constant
across space.

– The homogeneous PPP is stationary and simple. This
may be considered as the simplest (and most natural)
point process.

– The framework for non-homogeneous PPPs is also
well developed, although more technical than that of
the homogeneous case. They can be used to model
distributions of users which are not uniform across
space.

– There is also a comprehensive computational frame-
work for stationary point processes which are not
Poisson. This is Palm calculus (see below).

• A point process can beisotropicor not. Isotropy holds if
the law of the PP is invariant to rotation. The homoge-
neous PPP is isotropic. If a PP is isotropic and stationary,
it is calledmotion-invariant.

• A PP can be marked or not; marks assign labels to the
points of the process, and they are typically independent
of the PP and i.i.d. The study of marked point processes
may require the handling of Palm calculus.

1) Poisson point processes:Let Λ be a locally finite mea-
sure on some metric spaceE. A point processesΦ is Poisson
on E if

• For all disjoint subsetsA1, · · · , An of E, the random
variablesΦ(Ai) are independent;

• For all setsA of E, the random variablesΦ(A) are
Poisson.

A key property states that conditionally on the fact that
Φ(A) = n, thesen points are independently (and uniformly
for homogeneous PPP) located inA. This leads to an explicit
representation of the Laplace functional ofΦ. If E = R

d, this
Laplace functional is defined for general point processesΦ by

LΦ(f) , E

[

e−
R

Rd f(x)Φ(dx)
]

= E

[

e−
P

X∈Φ
f(X)

]

,

wheref is a non-negative function onRd. In the Poisson case,

LΦ(f) = exp

(

−
∫

Rd

(

1 − e−f(x)
)

Λ(dx)

)

. (3)

This is the basis for a large number of formulas like,e.g., those
on the Laplace transform of the shot noise (or interference),
see§III. Other appealing features of PPPs are their invariance
to a large number of key operations. In particular,

• The superposition of two or more independent PPPs
(which is defined as the sum of the associated point
measures) is again a PPP; this can be extended to
denumerable sums under some conditions.

• The independent thinning of a PPP is again a PPP;
this can be extended to the case of location-dependent
thinning, where a point is retained or not depending on
its location.

• The point process obtained by displacing pointXi inde-
pendently of everything else according to some Markov
kernel K(Xi, ·) that defines the distribution of the dis-
placed position of the pointXi yields another PPP; this
result is often referred to as the displacement theorem.

In each case, the intensity of the resulting PPP can be obtained
in closed form from that of the initial PPP and the involved
transformations (e.g., the thinning probability or the kernelK).
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If ρ(x, ·) is the probability density pertaining to the Markov
kernel applied to a PPP of intensityλ(x) on R

d, the displaced
points form a PPP of intensity

λ′(y) =

∫

Rd

λ(x)ρ(x, y)dx .

In particular, if λ(x) is constantλ and ρ(x, y) is a function
of y − x only, thenλ′(y) = λ for all y.

A striking property of PPPs is Slivnyak’s theorem which
states that the law ofΦ−δx conditional on the fact thatΦ has
a point atx is the same as the law ofΦ. In mathematical terms,
the reduced Palm probabilityP x! of a PPP is the distribution
of this Poisson point process itself. This is usually expressed as
P x! = P , for all pointsx ∈ Φ. This means that the properties
seen from a pointx ∈ R

d are the same whether we condition
on having a pointx ∈ Φ or not — if the point atx is not
considered. For example, we have for the mean number of
points within distancer of x:

EΦ(B(x; r) \ {x}) = E

(

Φ(B(x; r) \ {x}) | x ∈ Φ
)

= Λ(B(x; r)) ,

whereB(x; r) is the ball of radiusr centered atx.
2) Stationary point processes:The theory of stationary

point processes is based on the concept of marks and on the
Matthes definition of Palm probability [42], [43].

Roughly speaking, a mark of some point of a stationary
point process is a quantity that “follows this point” when
the collection of points is transported by a global translation
operation. For instance, the local configuration of neighbors
of point X , which is defined as the collection of points in a
ball of radiusR centered atX , is a mark of this point. IfR
is infinity, this mark is the universal mark ofX , namely ’the
point process seen fromX ’.

The Palm probabilityP o of a stationary point process is
the law of this universal mark, which can be shown to be the
same for all points. It can be understood as the law of the point
process given that it has a point at the origin. As defined here
P o is a probability on the space of point measures.

Campbell’s formula for stationary point processes, which is
a direct consequence of the last definition, states that when
denoting byΦ− x the global translation of all points ofΦ by
the vectorx, then

E

[

∑

X∈Φ

f(X, Φ− X)

]

=

∫

N

∫

Rd

f(x, φ)λdxP o(dφ), (4)

where N is the space of simple point sequences, for all
positive functionsf(x, φ) of x ∈ R

d and φ a point measure
on R

d. Hereλ is the intensity ofΦ, that is the mean number
of points per unit space. The last formula is the key tool
for computing the mean values of sums on the points of a
stationary point process. Applied to PPPs, they are particularly
simple. LetΦ be a stationary PPP of intensityλ on R

d. Then
for non-negativef ,

E

(

∑

X∈Φ

f(X)

)

= λ

∫

Rd

f(x)dx (5)

and

var

(

∑

X∈Φ

f(X)

)

= λ

∫

Rd

f2(x)dx . (6)

These expressions can be used, for example, to calculate the
mean and variance of the interference in a network or to
determine the mean node degree.

Important examples of stationary point processes that lead
to nice computational results include

• point processes with repulsion,e.g., Matérn hard core
point processes or determinantal point processes;

• point processes with attraction,e.g., Neyman-Scott cluster
processes, permanental point processes [44] or Hawkes
point processes [45].

For more on this, see [1] and [42].

B. Boolean models and random geometric graphs

1) The germ–grain model:The most celebrated model of
stochastic geometry and the basic model of continuum per-
colation is the Boolean or germ-grain model. In the simplest
setting, the Boolean model is based on a Poisson point process
Φ, the points of which,{Xi}, are also calledgerms, and on an
independent sequence of i.i.d. compact sets{Ki} called the
grains. Formally, the Boolean model is

Ξ =
⋃

i

(Xi + Ki)

whereXi + Ki = {Xi + y, y ∈ Ki}.
The Poisson set of germs and the independence of the

grains make the Boolean model analytically tractable. It is
often considered as the null hypothesis in stochastic geometry
modeling.

Among the key results on this model, let us quote (from
[1]):

• Coverage: the simplest coverage question is the distri-
bution of the number of grains that intersect a given
compact set, for instance a given location of the space.
This distribution is Poisson.

• Volume fraction: in the homogeneous case, what is the
fraction of a big ball which is covered by grains? This can
be derived using the analysis of coverage and an ergodic
theorem.

• Contact distribution: given that a location is not covered,
what is the radius of the bigest ball (resp. length of the
longest segment of orientationθ) centered at this location
that does not intersect any grain of the Boolean model?

These questions extend to many other models, either with non-
Poisson germs, or with Poisson germs but grains that are not
i.i.d. An interesting application in the context of networks is
considered in [46], where the grains are SINR cells, namely
the region of the space around a transmitter where the SINR
with respect to this transmitter exceeds a given threshold.Here
the interference is the field created by the other points of the
Poisson point process.
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2) Gilbert’s random disk graph:This is a model for wire-
less networks that is a special case of the Boolean model
described above, and is due to Gilbert [32]. Assume that the
compact sets described in the last subsection are all balls of
radiusr/2. We define the random disk graph of a Poisson point
Φ process of intensityλ with ranger, denoted asGλ,r as the
graph with nodes the points ofΦ and with edges betweenX
andY if the two grains touch,i.e., if ‖X − Y ‖ ≤ r. This is
the most basic random geometric graph and a central object in
random graph theory. The following questions are of particular
interest within this setting:

• Does this random graph has an infinite component? This
is of course equivalent toΞ having an infinite component.
This property is referred to aspercolation. A striking
result is that there is a deterministic critical value0 <
rc < ∞ such that whenr < rc, there is no such infinite
component with probability 1 (i.e., there is no percolation
for all realizations ofΦ), whereas whenr > rc, there is
an infinite component with probability 1 (i.e., there is
percolation for all realizations ofΦ). This is proven in
§IV-C.

• In case percolation occurs, what is the fraction of nodes
included in the infinite component? In case of it does not
occurr, what is the typical size of a component?

The main tool for addressing these continuum percolation
questions is a reduction to discrete bond or site percolation.
For more on the matter, see [3], [35], [47].

C. Voronoi tessellation

By definition, a tessellation is a collection of open, pairwise
disjoint polyhedra (polygons in the case ofR

2) whose closures
cover the space, and which is locally finite (i.e., the number
of polyhedra intersecting any given compact set is finite).

Given a simple point measure (or point sequence)φ on R
d

and a pointx ∈ R
d, we define theVoronoi cellCx(φ) of the

point x ∈ R
d w.r.t. φ to be the set

Cx(φ) = {y ∈ R
d : ‖y − x‖ < inf

xi∈φ,xi 6=x
‖y − xi‖} . (7)

For a simple point processΦ =
∑

i δXi on R
d, we define

the Voronoi tessellationor mosaicgenerated byΦ to be the
marked point process

V =
∑

i

δ(Xi,CXi
(Φ)−Xi) ,

whose marks are the Voronoi cells shifted to the origin.
The Delaunay triangulationgenerated by a simple point

measureφ is a graph with the set of verticesφ and edges
connecting eachy ∈ φ to any of its Voronoi neighbors.

The Delaunay triangulation of a Poisson point process is an
object of central importance in communications. In a regular
periodic (say hexagonal or triangular) grid it is obvious how to
define the neighbors of a given vertex. However, for irregular
patterns of points like a realization of a PPP, which is often
used to model set of nodes in mobile ad hoc networks, this
notion is much less evident. The Delaunay triangulation offers
some purely geometric definition of neighborhood in such
patterns.

For quantitative properties of Poisson–Voronoi tessellations
(mean cell size, mean number of sides of the cell, etc.)
and Poisson–Delaunay graphs (mean degree, mean length of
a typical edge, mean size of a typical triangle) see,e.g.,
[48]. In [17], [18], [49], Voronoi tessellation-based models of
cellular access network were considered to derive closed-form
expressions for the mean number of users in a cell, the mean
length of connections, and the total power received at the base
station.

III. I NTERFERENCECHARACTERIZATION AND OUTAGE

In this section we apply some of the techniques introduced
above to study the interference in large ad hoc networks and
the outage probability of any given link.

A. Interference

We start with the general question: what can be said of the
total interference power measured at a pointx in the network,
given by

I(x) ,
∑

Y ∈Φt

ℓ(‖x − Y ‖) ,

where Φt is a point process of transmitters (assumed to be
interferers) onR2? Φt is typically a subset of a larger point
processΦ since it constitutes the nodes selected by the MAC
scheme to transmit concurrently. For example, if nodes in a
homogeneous PPP of intensity1 transmit independently and
randomly with probabilityp (slotted ALOHA), Φt is a PPP
with intensity p. Due to Slivnyak’s result (see§II-A1), I(x)
does not depend on the given location where interference
is measured; in particular, it does not matter whetherx is
part of the underlying point processΦ or not (as long as its
contribution toI is not considered ifΦt is conditioned on
having a point atx).

As mentioned in§I-B, researchers have followed an analogy
to shot noise processesto analyze the distributional properties
of I(x) [9], [16], [50]. This analogy can be used to derive the
Laplace transform of the interference as follows.

Let Φ , {Ri = ‖Xi‖} be the distances of the points
of a d-dimensional uniform PPP of intensityµ from an
arbitrary origin o. Then Φ is an inhomogeneous PPP with
intensity functionλ(r) = µcddrd−1, where cd = |B(o, 1)|
is the volume of thed-dimensional unit ball. Considering the
interference as a shot noise process (2), and also accounting
for the fading terms, we can identifyhrℓ(r) = hrr

−α for i.i.d.
fadingh with the impulse response of the shot noise process.
We would then like to calculate the Laplace transform

LI(s) , E[e−sI ] = E

[

∏

R∈Φ

exp
(

−shRR−α
)

]

of the interference. This is a Laplace functional withf(r) =
sℓ(r) = shrr

−α. The expectation is to be taken over both
Φ andh, but since the fading is assumed independent of the
point process, the expectation overh can be moved inside the
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product, so we have from (3) (see also [61, Eqn. (3)])

LI(s) = exp

{

−
∫ ∞

0

Eh[1 − e−shr−α

]λ(r)dr

}

= exp
(

− µcdE[hδ]Γ(1 − δ)sδ
)

, (8)

where δ , d/α. Note that this expression is only valid for
δ < 1. So:

• For α 6 d, we haveI = ∞ a.s. This is a consequence of
the cumulated interference from the many far transmitters
whose signal powers do not decay fast enough to keep
the interference power finite. For a finite network, the
interference would be finite.

• For α > d we haveI < ∞ a.s. butE(I) = ∞ due to the
singularity of the path loss law at the origin. Even if we
consider only the nearest interferer,E(I) is infinite. If a
bounded path loss law is used, all moments exist.

In the important case of Rayleigh fading,E[hδ] = Γ(1 + δ),
so, using the properties of the gamma function, we obtain the
closed-form result

LI(s) = exp
(

− µcds
δ πδ

sin(πδ)

)

.

So the interference has astable distributionwith character-
istic exponentδ and dispersionµcdE[hδ]Γ(1−δ). Sinceδ < 1,
I does not have any finite moments.

A closed-form expression for the interference distribution
only exists forδ = 1/2; this is the inverse Gaussian or Lévy
distribution, as has been established in [51].

Using the distribution of the distances to then-th nearest
neighbor [52], the distributions of the interference (without
fading) from then-th nearest neighbor are easily found. The
tail probabilities do not depend on the presence or type of
fading and are given by

P(In > x) ∼ 1

n!
(λcd)

nx−nδ , x → ∞ .

This means thatE(Ip
n) exists for p < nδ. For example, if

interference-canceling techniques are used and the interference
from thek nearest interferers can be cancelled, we needk > α
in two-dimensional networks to have a finite second moment.

If the non-singular path loss modelℓ(x) = (1 + ‖x‖)−α

is used, the tail probability of the interference reflects the tail
probability of the fading process: If the fading has an expo-
nential or power-law tail, so does the interference. This holds
for general motion-invariant processes [53]. Other approaches
to the singularity issue are given in this issue [54], [55].

B. Outage

An outageof a wireless link is said to occur when a packet
transmission fails. In many situations, it is justified to equate
the outage event to the event thatSINR < T for some threshold
T that depends on the physical layer parameters such as rate
of transmission, modulation, and coding. The complementary
probability is the success probabilityps , P(SINR > T ).

In the case where the desired signalS is subject to Rayleigh
fading, we obtain for the success probability over a link of

distanceR

ps = P(S > T (W + I)) = exp

(

−TRαW

P

)

E(e−TRαI) ,

(9)
whereP is the transmit power. The first term only depends
on the noise (or SNR), while the second only depends on the
interference (or SIR). Focusing on this interference term we
notice that this is the Laplace transform of the interference
evaluated ats = TRα. So, in ad-dim. interference-limited
network whose nodes are distributed as a uniform PPP of
intensity λ with ALOHA channel access with probabilityp,
the success probability is given by (8), replacings by TRα:

ps = exp
(

− λpcdR
d
E[hδ]Γ(1 − δ)T δ

)

(10)

Here we have used the fact that ALOHA channel access
performs independent thinning of the PPP, which results in
a PPP of lower intensity. The interferers’ channels may be
subject to a different type of fading (or no fading), all that
matters isE[hδ].

The equivalence of Laplace transforms and success proba-
bilities has been pointed out in [56]–[58], and in [58] several
generalizations can be found.

C. Throughput

The transmission success probability in the previous subsec-
tion is derived assuming that the desired transmitter transmits
while the received listens. To optimize the network parameters,
such as the ALOHA transmit probabilityp, the unconditioned
success probabilities must be considered. In the case of
ALOHA and half-duplex transceivers, thespatial throughput
is p(1 − p)ps(p). Finding the optimump means finding the
optimum trade-off between spatial reuse (a largerp results
in a higher density of concurrent transmissions) and success
probabilities (a largerp results in higher interference and thus a
lower success probability). In [58], a related metric, thespatial
density of successpps is optimized in function ofp. In some
cases, the optimal value, which is known in closed form, does
not depend on the intensityλ of the underlying point process.

The same framework can also be used to find the optimum
value for the SINR thresholdT that maximizes thearea spec-
tral efficiency. A larger T permits higher transmission rates
(or spectral efficiencies if normalized by the bandwidth) but
results in lower success probabilities (see further discussion
in §V-B). Similarly, theprobabilistic progress, usually defined
as the product of distance times success probability can be
maximized by finding the optimum link distanceR [59].
Choosing a largerR may increase the progress but comes
with the disadvantage of a lower success probability [60]. In
[58], an expression for progress based on extremal shot noise
is derived, and in [61], the distribution and the mean value
of the throughput of a typical user (as given by Shannon’s
formula) are given using Fourier transform techniques.

IV. PERCOLATION AND CONNECTIVITY

A. Introduction

Percolation theory was originally introduced to model the
porosity of materials. It has since then developed into a lively
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branch of probability. More recently, percolation models have
been used to model the connectivity of wireless multi-hop
networks.

The main property of percolation models is that they exhibit
a phase transitionin their connectivity behavior: depending on
some (continuous) parameters, the components of the model
are either all finite (sub-critical case) or one giant component
forms (super-criticalcase). In the context of networking, such
a transition affects the performance of the system greatly:
without a giant component, the network would be completely
fragmented and unusable. It is therefore of prime importance
to characterize the conditions under which the network is
super-critical. In this section, we cover some basics of per-
colation theory, starting with the simplest models and proof
techniques, and then moving on to models that are more
appropriate for wireless networks.

Percolation theory deals mostly with models of infinite size.
We start with these classical models and briefly address finite
networks.

B. Discrete percolation: Bond percolation in infinite lattices

The bond percolation model is defined as follows: consider
the infinite square latticeZ2 and connect each pair of nearest
neighbors independently with probabilityp. Then define the
component (orcluster) of the originC as the set of elements of
Z

2 that are connected to the origin by a sequence of adjacent
edges. We define thepercolation probabilityas

θ(p) := P(#C = ∞).

The central result of percolation theory is the following:

Theorem 1 (Broadbent and Hammersley [33])There
exists a number0 < pc < 1 such thatθ(p) = 0 for p < pc

and θ(p) > 0 for p > pc.

In the particular case of bond percolation onZ
2, the exact

value ofpc is known to be1/2 [62]. Other specific cases and
properties ofθ(p) can be found in [47]. To prove Theorem 1,
we need first to observe thatθ(p) is an increasing function.
Although this is a very intuitive property, its proof is not so
trivial (see,e.g., [35, Ch. 2.2] for a general method). It is then
enough to prove that there exists some probabilityp1 > 0
such thatθ(p1) = 0 and some probabilityp2 < 1 such that
θ(p2) > 0. The following two sections are devoted to finding
p1 andp2.

1) Absence of percolation for small values ofp: We start
from the observation that if the origin belongs to an infinite
cluster, then for any integern, one can find in the lattice a
self-avoiding path of lengthn starting at the origin. Thus we
have

θ(p) ≤ P(∃ a path of lengthn starting ato) ∀n . (11)

If all direct neighbors ofZ2 were connected by an edge, the
numberκ(n) of such path would be bounded from above by4·
3n−1. Since edges are present with probabilityp, each of these
κ paths exists with probabilitypn. Using the union bound, we
find that

P(∃ a path of lengthn starting ato) ≤ 4p(3p)n−1.

Fig. 1. A realization of the bond percolation model onZ2 (plain lines) and
its dual (dotted lines).

If p < 1/3, this quantity tends to zero whenn increases,
so that (11) impliesθ(p) = 0. So we have established that
pc > 1/3.

2) Existence of an infinite cluster for sufficiently large
p: Our proof relies on the classical Peierls argument [63].
Consider the dual lattice ofZ2, which consists of vertices that
are shifted by half a unit in both directions, as depicted in
Figure 1. An edge is placed between two direct neighbors of
the dual lattice if it does not intersect an edge of the direct
lattice.

The key observation is that if a component is finite in the
original lattice, it is necessarily surrounded by a circuitin the
dual lattice. To prove that a vertex (e.g., the origin) belongs to
an infinite cluster with positive probability, it is thus enough
to show that the probability that a circuit surrounds the origin
in the dual lattice is less than one. Let us estimate the number
σ(n) of possible circuits of length2n that surround the origin:
it is easy to see that it is bounded by

σ(n) ≤ (n − 1) · 32(n−1) .

Therefore, the probability that there exists a circuit around the
origin with all edges closed upper bounded by

P(closed circuit) ≤
∞
∑

n=2

(1 − p)2nσ(n)

=
9(1 − p)4

[1 − 9(1 − p)2]2
.

One can verify that whenp > 1 − 1/(2
√

3) ≈ 0.71, the
above sum converges to a number smaller than one. As a
consequence, the origin belongs to an infinite cluster with
positive probability.

Note that since the existence of an infinite cluster does not
depend on the state of a finite number of edges, we can use
Kolmogorov’s zero-one law to conclude that the probability
that such a cluster exists is either zero or one (seee.g., [64]). If
it was zero, then the origin would belong to an infinite cluster
also with probability zero. Therefore, wheneverθ(p) > 0, an
infinite cluster exists with probability one.

C. Continuum percolation: The random geometric graph

The basic random geometric graph or disk graphGλ,r, as
defined in§II-B2, relies on two assumptions: First, the nodes’
location follows a two-dimensional Poisson point process.
Second, each node can communicate directly to any other
node within a radiusr around it. The latter assumption comes
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from the following model: assume that nodes emit with a
certain powerP and that this signal is attenuated over distance
according to a deterministic decreasing functionℓ(d). Assume
also that receivers can successfully receive data if the signal
is at leastβ times stronger than the ambient noise, which has
powerW . Then the transmission radius is defined by

r , max{d :
Pℓ(d)

W
≥ β}. (12)

Similarly to the discrete model, we denote byθ(λ, r) the
probability that a node located at the origin belongs to an
infinite cluster. Due to its simplicity, the graphGλ,r can be
rescaled while keeping its connectivity properties. Indeed, if all
distances are divided byγ, the underlying PPP is transformed
into another Poisson process with intensityγ2λ. Thus, the
graphGγ2λ,r/γ has the same connectivity properties asGλ,r

and we have
θ(γ2λ, r/γ) = θ(λ, r).

As in the bond percolation model, we briefly explain a way
to show that a phase transition occurs inGλ,r.

1) Absence of an infinite cluster for small values ofλ:
Consider a nodeo placed at the origin. We populate the setC
of the nodes connected too step by step: at step zero, we set
C = {o}. Then at each step, we add toC all nodes that share
an edge with an element ofC. As each node has on average
λπr2 edges, this process can be compared to a Galton-Watson
process [34] where each individual gives birth toλπr2 children
in average. The difference is that in our process, the number
of nodes added at each step might be smaller, as some nodes
sharing edges with elements ofC might be already inC. It is
known that if the average number of children per individual
in a Galton-Watson process is smaller than one, the process
stops after a finite number of steps [34]. As our process grows
more slowly, it certainly stops in this case too. Therefore we
have that ifλ < 1/(πr2), the cluster of the origin is finite a.s.

2) Existence of a giant cluster for largeλ: We use a
mapping onto a bond percolation model: We divide the plane
into squares of sizec = r/2

√
2 as shown in Figure 2. Each

square corresponds to a potential edge of the lattice, which
is added if at least one point of the Poisson process falls
into this square. Thus, each edge is present with probability
p = 1 − exp(−λc2), independently of the other edges. As
a consequence, ifλ ≥ log 2/c2, the edge percolation model
contains an infinite cluster a.s.

Moreover, if two edges are adjacent, then by construction
two points of the Poisson process are located in squares that
share at least at one corner. Therefore, the distance between
them is less than2

√
2c = r, and they are connected in

Gλ,r. Accordingly, an infinite collection of connected edges
corresponds to an infinite set of connected points inGλ,r.
We can thus conclude that ifλ ≥ log 2/c2, Gλ,r contains an
infinite cluster a.s.

The exact value of the critical densityλc(r) or critical radius
rc(λ) is unknown. Forλ = 1, the bounds1.1979 < rc <
1.1988 were established with99.99% confidence in [65].

3) Generalization to the Boolean model:Gilbert’s random
geometric graph is a particular case of the Boolean model (see
§II-B). Let us consider a Boolean model of arbitrary dimension

2c

c

Fig. 2. On the left hand side, the division of the plane into squares. On
the right hand side, each square is assigned to an edge of a bond percolation
model (bold lines).

d where grains are balls whose radius is now random. It turns
out that for a suitable radius distribution, a phase transition
is observed at some critical germ density. Denoting byR the
(random) radius of a ball, one can show [35] that whenever the
dimension of the modeld is greater than one andE(R4) < ∞,
there exists a critical value ofλ below which the union of the
balls Ξ has only finite components and above which a giant
component forms.

D. Other models

In this section, we briefly describe other percolation models
that are relevant to communication networks. In all of them,
the location of the nodes is modeled by a Poisson point process
of densityλ over R

2. They differ only by the criterion used
for adding edges between nodes.

1) Nearest-neighbors networks:In this model, each node
connects to itsk nearest neighbors. This model is for example
suitable for a dense wireless network where nodes use power
control algorithm in order to be connected only to theirk first
neighbors.

An important property of this model is that the value of
λ does not affect the connectivity of the model (it is called
a scale-freemodel). Therefore, its only relevant parameter is
k. One can show that there exists a critical value ofk for
which a giant component forms, and below which only finite
clusters are observed. In two dimensions, the critical value is
conjectured to bek = 3 [39].

2) Random connection model:This model is another gen-
eralization of Gilbert’s model. For each pair of nodes, we
consider the distancex between them. Then we add an edge
between them with probabilityg(x), whereg is a function
from R

+ to [0, 1] such that
∫∞

0 xg(x)dx < ∞.
This model takes some randomness of the wireless channel

into account: nodes connect to each other probabilistically,
depending on their distances. The probability of failed connec-
tion can for example model a shadow fading effect. Gilbert’s
original model can be retrieved by settingg(x) = u(r − x).
A similar phase transition as in Gilbert’s model can be
observed at some critical density of nodesλ [38]. One relevant
question is how this critical density changes with the shapeof
the connection functiong(x). The work in [66] has shown
that under some spreading transformations ong, the critical



9

density cannot increase. The spread-out limiting case has also
been worked out in [67], showing that in the case of very
long, unreliable connections, the critical density has a limit
corresponding to that of an independent branching process,
i.e. the average degree of the corresponding random graph at
the percolation threshold tends to 1. Alternative proofs ofthese
spreading results also appear in [68], [69].

3) Signal-to-interference ratio graph (STIRG) model:The
connectivity criterion in (12) compares the received signal to
the ambient noise only. However, if several nodes are using
the same channel, interference degrades the received signals.
In the so-called STIRG model [36], [37], the SNR threshold
is replaced by an SINR threshold as in (9) so that the nodes
Xi, Xj ∈ Φ are connected by an edge if

Pℓ(‖Xi − Xj‖)
W + γ (max{I(Xi); I(Xj)} − Pℓ(‖Xi − Xj‖))

≥ T,

whereI(Xi) =
∑

Xk∈Φ\{Xi}
Pℓ(‖Xi −Xk‖). This condition

ensures that the two nodes have a sufficiently high SINR to
exchange data in both directions despite the interference of all
the other nodes. The factorγ ≤ 1 serves as a weight for the
interference term and models the gain of the spread spectrum
scheme (if any).

This model differs from the others by the fact that if has
more degrees of freedom. Clearly, whenγ = 0, the model
is equivalent to Gilbert’s model, and it percolates above the
critical node density for Gilbert’s graphλc. In the case of
attenuation function of bounded support, it has been shown
in [36] that for large enoughλ one can chooseγ small enough
so that the model percolates. This result has been strengthened
in [37] to show that this is the case wheneverλ > λc and
also for attenuation functions of unbounded support. In other
words, whenever the node density is super-critical (in Gilbert’s
sense), the model can tolerate a certain amount of interference
before the giant component disappears. Figure 3 gives a picto-
rial representation of this mathematical result obtained through
computer simulation, illustrating the parameter domain where
percolation occurs for a power attenuation functionℓ(·) of
bounded support.

E. Connectivity in finite networks

In finite networks, there is of course no infinite cluster,
and therefore no percolationstricto sensu. However, if one
considers a sufficiently large network, one expects to observe
a similar phenomenon: if the density of nodes is large enough,
a component that contains a large fraction of the nodes
should emerge. The following theorem follows from [70] and
confirms this intuition in the case of Gilbert’s disk graph.

Theorem 2 Consider the restriction of a Boolean model to a
square of size

√
n×√

n, whose connectivity graph is denoted
by Gλ,r(n). Denote byCλ,r(η, n) the event that there exists in
Gλ,r(n) a component that contains at leastηn vertices. Then
we have

lim
n→∞

P(Cλ,r(η, n)) =

{

1 if η < θ(λ, r)
0 if η > θ(λ, r)

 0
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Fig. 3. Percolation threshold of the STIRG model: in this figure, we evaluated
by simulation the region of the parameter space(λ, γ) where percolation
occurs (supercritical region).

As a consequence of the above theorem, sinceθ(λ, r) is
never equal to one, there is always a non-vanishing fraction
of disconnected nodes in the network. However, if one lets the
connectivity ranger increase withn, the fraction of connected
nodes can be made to converge to one. If the connectivity
range of the nodes is a functionr(n) of the number of nodes,
the condition forasymptotic connectivity(i.e. the condition
under which the probability that all nodes are connected tends
to one when then increases) is given by

r(n) =

√

log n

π
+ c(n),

wherec(n) is any function such thatlimn→∞ c(n) = ∞. This
result can be deduced from [70] and has been published in its
explicit form in [71]. A similar condition on the rate at which
p → 1 to observe full connectivity in a bond percolation model
on ann × n grid has been derived in [72].

Nearest-neighbor model:A similar result on asymptotic
connectivity has been derived for the nearest-neighbors model.
The rate at which the number of neighborsk must increase
with n is [73]:

0.3043 logn ≤ k(n) ≤ 0.5139 logn .

In summary, tools from percolation theory and random ge-
ometric graphs have enabled analytical studies of the connec-
tivity properties of large ad hoc networks. While connectivity
is a fundamental prerequisite for network operation, it does
not guarantee any network throughput or capacity. The study
of the capacity of wireless networks is the topic of the next
section.

V. CAPACITY AND SCALING LAWS

The capacity of a communication system is the maximum
data-rate in bits per second that can be reliably transferred
from transmitter to receiver. In the strict information-theoretic
sense, this is an unsurpassable upper bound that, in practice,
can only be approached. In a single Tx-Rx link of unit
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bandwidth subject to AWGN, the capacity in bits per channel
use (i.e., bps/Hz) is given by the Shannon-Hartley formula:

log2

(

1 +
S

W

)

, (13)

where, as before,S = Pℓ(r) and W are the received power
and Gaussian thermal noise at the receiver, respectively.

The situation becomes more complex in an ad hoc network
with n Tx-Rx pairs, where the capacity is much more difficult
to define and compute. The most general (and natural) descrip-
tion is given by the so-calledcapacity region, which is ann×n
matrix C where thecij entry corresponds to the capacity from
nodei to nodej, which is also dependent on the signals being
generated by the remainingn − 1 transmitting nodes in the
network. These can either interfere with the communication
betweeni and j, or be cooperative and aid communication
betweeni and j. Clearly, due to the many possible ways
of interaction, the capacity region of an ad hoc network is
difficult to characterize. Even for very small values ofn,
such asn = 3, the capacity region has yet to be determined.
Therefore, intermediate descriptive theories that fall short of
the strict information-theoretic standard are needed, as pointed
out in more detail in [74].

A. Capacity scaling laws

One attempt to simplify the problem came in 2000 by Gupta
and Kumar [75]. Their approach was to introduce two main
simplifications: on the one hand, they proposed to study the
case in which all the nodes in the network are required to
transmit at the same bit-rate. This implies that the whole
capacity region reduces to a single scalar quantity. On the
other hand, they proposed to compute only thescaling limit,
i.e., the order-of growth of such a scalar quantity as the number
of nodes in the network increases. In addition, Gupta and
Kumar’s scaling law was also derived under some assumptions
on the physics of propagation (i.e., channel gains that decay
as a power law of the distance between transmitters and
receivers), and on some restrictions on the cooperation strategy
employed by the nodes (i.e., multi-hop operation and pairwise
coding and decoding at each hop). Their main result was the
so-called square-root law, namely, asn increases the per-node
bit-rate decreases as1/

√
n.

Due to their restrictive model, the result of Gupta and Ku-
mar cannot be considered an unsurpassable bound in the strict
information-theoretic sense. It does not allow sophisticated
network coding strategies but only point-to-point transmission
across multiple hops, and it relies on a specific physical
propagation model in which the signal power received at
distance‖x‖ from the transmitter is given byℓ(x) = ‖x‖−α.
Under this model, at each hop the collective interference can
be approximated as Gaussian and its power added to the noise
term W in (13). In this way, any point-to-point link in the
network from an arbitrary chosen origin to pointx ∈ R

2 can
support a rate of

log2

(

1 +
Phxℓ(‖x‖)
W + I(x)

)

.

Since there is no a priori reason to operate the network in
a multi-hop fashion and treat the interference termI(x) as
pure noise, the square root law of Gupta and Kumar can
in principle be surpassed. One can, for example, envisage a
network strategy in which groups of nodes help each other,
rather than interfere, by coherently summing their signalsat
the receiver.

Perhaps the main contribution of Gupta and Kumar has
been to show that such a simple geometric interference-
based model can lead to meaningful insights on the capac-
ity limitations of wireless networks operated with current
multi-hop technologies. Furthermore, their paper showed that
stochastic geometry tools such as random Voronoi tessellations
and random geometric graphs can be used to analyze the
performance of network protocols.

Gupta and Kumar’s work sparked an enormous interest
in the field. On one side, under the same restrictive model,
simpler strategies achieving the same square root law have
been proposed [41], [76]. The work in [41] is particularly
relevant in the context of this paper, as it showed a connection
between protocol design and percolation theory. In that paper,
the flow of information through the network is compared to
the number of disjoint paths crossing the network from side
to side in an underlying percolation model. It is shown that in
a network of area proportional to the number of nodesn, the
number of disjoint paths crossing the network area from side
to side in the underlying percolation model grows with

√
n.

Hence, roughly speaking, the amount of information that can
flow across the network is only of the order of

√
n, and since

n nodes must share this flow, the1/
√

n bound follows.
On the other side, researchers were interested in discovering

whether the square root law holds in a more general context.
Hence, they started to seek bounds on the capacity scaling
that were independent on the network operation strategy.
This more general approach led to considerable success.
Starting with the work of Xie and Kumar [77],information-
theoretic scaling laws, independent of any strategy used for
communication, have been established by many authors [78]–
[82]. These arise from the application of the information-
theoretic cut-set bound [83, Ch. 15] which allows one to bound
the total information flow across any network cut, allowing
arbitrary cooperation among the nodes. Among these works,
a short information-theoretic derivation of the square root law
relying on geometric elements of spatial point processes is
given in [80]. It is important to notice, that while essentially
confirming the square root law in a more general context, all
the results above still depend on the assumptions made on the
electromagnetic propagation process.

Indeed, more striking results appear in [84], and [81].
These papers show that a much higher per-node bit-rate than
Θ(1/

√
n) can be achieved in wireless networks by changing

the assumptions on the physical propagation process. These
authors introduce the presence of an additional source of
randomness by adding fading. Under some assumptions on
the fading process and when the path loss exponentα is
sufficiently small, these authors describe node cooperation
strategies based on space-time codes which can achieve an
almost constant per-node bit rate: a great improvement com-
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pared to Gupta and Kumar’s original bound! Hence, the
main message of the above papers is that there is a gain to
be expected when adopting more complex node cooperation
strategies than simple multi-hop operation.

A recent additional effort has been made in [85], which
recognizes that the strong dependence of information-theoretic
results on heuristic physical propagation models is somehow
undesirable for a theory that seeks the fundamental limits of
communication. They showed that the square root law also
arises from physical limitations dictated by Maxwell’s physics
of wave propagation, in conjunction to the information-
theoretic cut-set bound. This result shows that the original
prediction of Gupta and Kumar is also due to a degrees-
of-freedom limitation that is independent of empirical path-
loss models and stochastic fading models. In other words,
stochastic fading assumptions such as in [84], and [81] are
open to debate, as they can lead to non-physical results.

But does this lead to the conclusion that the sophisticated
cooperative strategies described in [84] and [81] do not lead
to any improvement over multi-hop operation? The general
answer is no. Recall that scaling results are only up to order
and pre-constants can make a huge difference in practice.
Sophisticated cooperative communication schemes could cer-
tainly improve upon nearest-neighbor routing. The precise
amount of this improvement, if any, remains unknown; it is
only known that this improvement vanishes asn grows [85].

B. Transmission capacity and area spectral efficiency

Although scaling laws provide significant insight on the
large-scale performance of ad hoc networks, a finer view
of throughput limits is needed to understand how different
technologies and protocols affect the baseline performance
of distributed wireless networks. Many, even most, commu-
nication design choices will have a significant effect on the
achievable SINR and hence throughput, while not affecting
the scaling law. In this section, we show how stochastic
geometry and, in particular, the techniques for characterizing
interference and outage of§III, can be used to determine the
area spectral efficiency (ASE) in a specific ad hoc network
design; in other words, the number of bits per second per unit
of bandwidth that can be transmitted in a given area.

The ASE is formalized by a metric termed thetransmission
capacity, first proposed in [86], which is the maximum number
of bits per second sent by all users in the network per unit
area, subject to a constraint on outage probability relative to a
SINR threshold. Formally, the transmission capacity is defined
as

c(λ) , λǫ(1 − ǫ) (14)

measured in transmissions/area, whereλǫ is the maximum
density of transmissions supported such thatP[SINR < T ] ≤
ǫ, for an SINR targetT . Adding the per-user data rate (which
would be on the order oflog2(1 + T ) bps/Hz) results in the
area spectral efficiency. Transmission capacity is used as the
capacity metric in a few papers in this issue [87], [88], and
a more extensive tutorial on transmission capacity is available
online [89].

There are some shortcomings of this metric, namely that it is
usually a single-hop metric rather than end-to-end, presumes a
common SINR target and outage probability (conceptually like
the packet error rate), and is more the description of a given
technology through its achieved SINR than of technology-
independent fundamental limits. Nevertheless, it does capture
key aspects of capacity – “good” communication techniques
should provide higher transmission capacity – and combined
with a homogeneous Poisson distribution for the interfering
nodes, yields superior analytical tractability to other network
throughput metrics. We now provide the simplest baseline
model for transmission capacity. The key aspects of the model
are as follows, with generalizations noted.

• Fixed transmit distanceR. Variable transmit distances can
be used but reduce the tractability: in general a loss factor
of E[R2]/(E[R])2 is experienced if the transmit distance
R is a random variable [90].

• Single transmit and receive antennas. Multiple antennas
can obviously increase the transmission capacity [60],
[91]–[93].

• Homogeneous PPP for interferers, which implies an
ALOHA-type transmission scheme. Generalizations are
nontrivial, but one to clustered PPPs has been undertaken
[94], and exclusion regions are considered in [95].

• Interference is treated as noise, although it can in princi-
ple be cancelled or suppressed by an appropriate receiver
to get higher capacity [96]–[98].

The key to transmission capacity is outage probability,
which for the case of Rayleigh fading can be exactly derived.
Setting this equal to the outage probability targetǫ and solving
(10) for λǫ (see (14)), the transmission capacity in this simple
case is (two-dimensional networks, thermal noise neglected)

co(ǫ) =
(1 − ǫ) ln(1 − ǫ)

C(α)R2T 2/α
=

ǫ

C(α)R2T 2/α
+ Θ(ǫ2) , (15)

where C(α) = π1+2/α/ sin(2π/α). This simple expression
shows precisely how the number of supportable users in the
network depends on outage probability (about linearly, forlow
outage), path loss exponentα, and target SIRT (noise can be
included at the expense of more bulky expressions).

If there is no fading – just large-scale path loss – it is
possible to get tight bounds but not an exact solution. In
this case, bounds on the transmission capacity are as follows,
where we have included the noise powerη and transmit power
ρ for SNR = ρ/η

(α − 1)ǫ

απ

(

1

R2T 2/α
+ SNR

2/α

)

+ Θ(ǫ2) ≤ co(ǫ)

≤ ǫ

π

(

1

R2T 2/α
+ SNR

−2/α

)

+ Θ(ǫ2). (16)

Note the similarity between (15) and (16): they are within
a small constant of each other, all the parameters are of
the exact same order. Arbitrary fading distributions can be
accommodated at further loss of tractability [90], but again
there is no change in the first-order effects of the system
parameters.
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What is useful about the transmission capacity is that
it allows candidate technologies and design choices to be
compared objectively, analytically, and fairly simply. For ex-
ample, one might ask how adding spread spectrum modu-
lation (CDMA) to the system would change the number of
supportable users. The answer with the transmission capacity
metric is fairly immediate. With asynchronous binary direct-
sequence spread spectrum (DSSS), the target SINR is effec-
tively decreased to2T/3M at the cost of a bandwidth penalty
of M2. If frequency-hopping (FH) was used instead,M
independent channels are created with an effective interference
density ofλ/M on each of them. With some straightforward
manipulations it can be seen that the transmission capacities
become

cDS(ǫ) =

(

3M

2

)
2
α

co(ǫ), cFH(ǫ) = Mco(ǫ) . (17)

The ratio
cFH

cDS
= k1M

1− 2
α (18)

implies that frequency-hopping is a superior form of spread
spectrum in an ad hoc network, for example by a factor of√

M when α = 4. In principle, any modulation technique,
multiple access or even scheduling protocol can be analyzed
using the transmission capacity metric to predict relativegains.

C. The road forward

Scaling laws on transport capacity and exact results on
transmission capacity both provide important views into the
network capabilities, but both presently fall short of providing
a complete metric for the achievable network throughput.
Future research should attempt to bridge this gap, by utilizing
stochastic geometry to quantify end-to-end achievable rates.
For example, each hop in the network can be considered to
have some outage probability, and an aggregation of such
stochastic links comprises an end-to-end connection in thenet-
work, with some aggregate outage probability, achievable data
rate, and queueing delays at relay nodes. A recent example
in this vein can be found in [99], where a delay-minimizing
routing strategy for ad hoc networks is proposed. The analysis
is complicated by the spatial and temporal correlations that
exist in the interference due to the common randomness in
the nodes’ positions [100].

Another promising related approach is the increasing pop-
ularity of erasure channels and erasure networks to model the
performance of links that are occasionally in outage [101].Al-
though this has never been done, one can envision combining
emerging results on the capacity of wireless erasure networks
with outage (erasure) probabilities computed with the help
of stochastic geometry tools. Two important new techniques
from information theory for characterizing interference in
wireless networks include the deterministic capacity [102] and
the degrees-of-freedom region [103]. These approaches both
require relative values for the channel gains of each link,

2Asynchronous binary sequences ofM ±1 bits have a cross-correlation
variance of 2

3M
, perfectly synchronized sequences have1

M
which is actually

not as desirable.

which again may require stochastic geometry to characterize
in a statistical sense for a typical node placement. In short,
stochastic geometry can be viewed as a supplement and tool
for many approaches to determining network capacity.

When discussing the capacity in its information-theoretic
sense, that is as an upper bound to the best possible network
throughput, it is important to note that the capacity is not likely
to be achieved by a purely random choice of transmitters.
Rather, capacity-approaching techniques will almost surely
require some degree of cooperation or at least coordination
among the contending transmitters, which will degrade the
relevance of the 2-D Poisson distribution upon which most
results in this tutorial are based. As again highlighted in
the conclusions, particularly from the standpoint of under-
standing network capacity, new stochastic geometric tools
that go beyond a homogeneous PPP are urgently needed to
better characterize networks with cognition and intelligent
transmission scheduling. Some recent results in this direction
can be found in [94], [104].

VI. OTHER APPLICATIONS: ROUTING, INFORMATION

PROPAGATION, POINT PROCESSES WITHFADING , AND

SECRECY

While the connectivity and capacity have been the main
applications of stochastic geometry and random geometric
graphs to wireless networks, there have recently been other
problems areas where these techniques have led to interesting
results. Some of them are briefly described in this section.

A. Routing

While many of the analytical results discussed so far focus
on single-hop metrics (outage, single-hop throughput and
progress), recently progress has been made toward analyzing
routing protocols on a PPP using stochastic geometry tools
to evaluate the mean cost of the route and its fluctuations
[105]. A typical example is that of greedy forward routing
where a transmitter sends a packet to the nearest node which
is closer to the packet’s destination than the transmitter.In
the Poisson case, the geometry of the associated routes can
be analyzed thanks to the locality of the definition of the next
hop [105]. Another approach is taken in [106] where nearest-
neighbor routing in a sector pointed at the destination is
compared with routing schemes that use longer hops. In these
papers, interference is not taken into account to determinethe
feasibility of a link. A first attempt to combine routing with
an SINR-based link model can be found in [107].

B. Epidemic models; first-passage percolation

Random geometric graphs are useful to model the propa-
gation of information (or disease, fire, or anything else) in
a network of randomly placed nodes. Here we briefly cover
some broadcasting strategies and elements of first-passage
percolation.

We denote byG∗
λ,r the graph obtained by adding a node

at the origin in the standard random geometric graphGλ,r.
As explained in§II-A1, adding this point is equivalent to
conditioningGλ,r on the presence of a node at the origin.
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1) Broadcasting in multi-hop networks:Consider the sce-
nario where a message is to be broadcast in a static network
whose connectivity is represented by the graphG∗

λ,r. Let
us assume that the MAC layer prevents collisions perfectly,
and that each nodes forwards the message when it receives
it for the first time (flooding). Under this algorithm, the
message propagates to the entire component to which the
source belongs. Therefore, the probability that the message
reaches an infinite number of nodes is equal to the probability
that the source belongs to an infinite clusterθ(λ, r).

a) Probabilistic broadcast (gossiping):The number of
transmission occurring in the above algorithm is exactly equal
to the number of nodes who received the message. This
number is unnecessarily large, since each transmission reaches
all the neighbors of the sender. Thus, each node receives the
message from each neighbor while once would be enough.
A strategy to reduce the number of transmission is to let the
nodes forward the message only with a probabilityp < 1.

The decision whether to forward or not can be made by the
nodes before the broadcast starts. Thus, in order to analyzethe
propagation of the message, one can thin the point process
and retain only the nodes who are willing to forward the
message (called hereafteractivenodes). We obtain a thinned
PPP of intensitypλ on which we can construct restricted graph
Gpλ,r. Thus the message originating at the origin reaches an
infinite number of nodes if the origin is active and belongs
to an infinite cluster of the thinned graph. This happens with
probability θp(λ, r) := pθ(pλ, r), as the two conditions are
independent. As a consequence, if the original graphGλ,r is
super-critical, there is a critical value forp above which the
probabilityθp(λ, r) of a successfulbroadcast (i.e., a broadcast
where an infinite number of nodes are reached) is strictly
positive.

The next value of interest is the fraction of nodes reached by
the message in case of a successful broadcast. Nodes reached
by the message include the active nodes that belong to the
infinite cluster inGpλ,r and the inactive nodes that are within
distancer from them. The fraction of nodes belonging to the
latter category can be computed as follows: Consider a location
x of R

2. If an active node were located atx, it would belong
to the infinite cluster ofGpλ,r with probabilityθ(pλ, r). This
means that the pointx is within a distance less thanr from
a node of the infinite cluster with that probability. Thus, the
total fraction of nodes reached by the message is precisely
θ(pλ, r), which is a surprisingly simple result.

b) Other models: Probabilistic broadcasting has been
studied in [108], and an extension to a model with collisions
can be found in [109].

Another variation of the gossiping algorithm, where nodes
forward the message only if their node degree is less than a
certain threshold, can be addressed using the STIRG model
presented in§IV-D3 by using the step functionℓ(x) = 1 −
u(x− r) as an attenuation function. A sophisticated algorithm
to realize degree-dependent activation in a sensor networkcan
be found in [110], where the authors show the existence of a
phase transition for the propagation of messages under their
algorithm.

2) First-passage percolation:First-passage percolation is a
branch of percolation theory that addresses the actual length
of the shortest path in percolation models (seee.g., [111] for
an introduction). It is useful to compute the propagation speed
of messages in a multi-hop network.

a) Asymptotic shape:Consider the graphG∗
λ,r, and de-

fine thehop distance(also calledchemical distance) between
two nodes as the number of hops on the shortest path between
them (or infinity if no such path exists). LetSk be the set of
nodes that are at distancek from the origin. We expect that
the shape ofSk is relatively circular around the origin. The
following theorem confirms this intuition:

Theorem 3 (see,e.g., [112]) There is aµ > 0 such that for
any 0 < ε < 1 almost surely

Sk ⊂ B(o; (1 + ε)kµ)\B(o; (1 − ε)kµ)

for all sufficiently largek.

b) Blinking model:First-passage percolation can also be
used to assess the speed of propagation of a message in a
dynamic model. An example is given in [113], where nodes
alternate between active and sleep mode in a random and
independent fashion: At any instant, only a fractionf < 1 of
the nodes are active, so that the connectivity graph isGfλ,r.
As the message is emitted by the source, it instantaneously
propagates to all active nodes that are connected to the source.
If fλ is below the critical density, the initial propagation is
a.s. limited to a finite number of nodes. Then, the propagation
continues as further nodes switch to active mode. First-passage
percolation allows to show that in this case, the asymptotic
shape the the area where the message has propagated after a
time t is still circular for larget despite the sub-criticality of
the graph at each instant.

In the ALOHA case, initial results on the propagation speed
in interference-limited ad hoc networks can be found in [114],
[115]. It is shown that a similar shape theorem holds as in the
interference-free case (Th. 3).

C. Point processes with fading

The path loss over a wireless link is well modeled by the
product of a distance component (often called large-scale path
loss) and a fading component (called small-scale fading or
shadowing). It is usually assumed that the distance part is
deterministic while the fading part is modeled as a random
process. This distinction, however, does not apply to many
types of wireless networks, where the distance itself is subject
to uncertainty. In this case it may be beneficial to consider the
distance and fading uncertainty jointly,i.e., to define a PP that
incorporates both.

We introduce a framework that offers such a geometrical
interpretation of fading and some new insight into its effect
on the network.

Let {Yi}, i ∈ N, be a stationary Poisson point process inR
d

of intensity 1, and define thepath loss point process(before
fading) asΦ = {Xi , ‖Yi‖α} for a path loss exponentα.
Let {h, h1, h2, . . .} be an iid stochastic process withh drawn
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Fig. 4. A Poisson point process of intensity 1 in a16 × 16 square. The
reachable nodes by the center node are indicated by a bold× for a path gain
threshold ofs = 0.1, a path loss exponent ofα = 2, and Rayleigh fading
(standard network). The circle indicates the range of successful transmission in
the non-fading case. Its radius is1/

√
s ≈ 3.16, and there are aboutπ/s ≈ 31

nodes inside.

from a distributionF , Fh with unit mean and letΞ = {ξi ,
Xi/hi} be thepath loss process with fading.

Assume that there is a transmitter at the origin, and all
other nodes are receivers. So there is no interference, and
the network is purely noise-limited. Nodes can receive the
transmission if their path lossξi is smaller than1/s. These
nodes are said to be connected to the origin. The processes of
connected points are denoted byΦ̂ and Ξ̂, respectively. So

Φ̂ = {Xi ∈ Φ: ξi < 1/s} ; Ξ̂ = Ξ ∩ [0, 1/s) .

Fig. 4 shows a PPP of intensity 1 in a16 × 16 square,
with the nodes marked that can be reached from the center,
assuming a path gain threshold ofs = 0.1. The disk shows
the maximum transmission distance in the non-fading case.

SinceΦ and Ξ are constructed from a uniform PPP using
mapping and independent random scaling (fading), the pro-
cessesΦ, Φ̂, Ξ, andΞ̂ are Poisson. We would like to find the
number of connected nodes and their expected sum-distance
E(
∑

X∈Φ̂ X1/α) which may also be also termed thebroadcast
transport sum-distance.

1) Connectivity:Using the Nakagami-m fading model, we
have [116]

• Φ̂ is Poisson witĥλ(x) = λ(x)(1−F (sx)) (independent
thinning).

• With Nakagami-m fading, the numberN̂ = Φ̂(R+) of
connected nodes is Poisson with mean

EN̂m =
cd

(ms)δ

Γ(δ + m)

Γ(m)
, (19)

where δ = d/α as before, and theconnectivity fading
gain, defined as the ratio of the expected numbers of
connected nodes with and without fading, is

EN̂m

EN̂∞

=
1

mδ

Γ(δ + m)

Γ(m)
= E(hδ) . (20)

2) Broadcast transport sum-distance and capacity:The
broadcast transport sum-distanceD, i.e., the expected sum
over the all the distanceŝX1/α

i from the origin is defined as

Dm , E





∑

X∈Φ̂

X1/α



 . (21)

Using Campbell’s theorem (5), it can be shown that the
broadcast transport sum-distance for Nakagami-m fading is

Dm = cd
δ

∆

1

(ms)∆
Γ(m + ∆)

Γ(m)
, (22)

where∆ = (d+1)/α and the (broadcast)fading gainDm/D∞

is
Dm

D∞
=

1

m∆

Γ(m + ∆)

Γ(m)
= E(h∆) . (23)

So the fading gainDm/D∞ is the∆-th moment ofh.
To obtain the (broadcast) transport capacity, we may mul-

tiply D by the rate of transmissionR. Assuming at-capacity
signaling,R = log2(1 + s). When maximizing the product
DR over R (or s), we find that an optimum rate only exists
if ∆ 6 1. If ∆ > 1 (or α < d + 1), DR can be made
arbitrarily large by letting the rate go to zero — irrespective
of the transmit power! This follows fromR(s) = Θ(s) and
D(s) = Θ(s−∆) as s → 0. So DR = Θ(s1−∆) which
diverges if∆ > 1.

D. Secrecy

There has been growing interest in information-theoretic
secrecy in wireless networks. To study the impact of the
secrecy constraint on the connectivity of ad hoc networks, we
introduce a new type of random geometric graph, the so-called
secrecy graph, that represents the network or communication
graph including only links over which secure communication
is possible. We assume that a transmitter can choose the rate
very close to the capacity of the channel to the intended
receiver, so that any eavesdropper further away than the
receiver cannot intercept the message. This translates into a
simple geometric constraint for secrecy which is reflected in
the secrecy graph. Here we describe some of the properties of
the secrecy graph.

Let Ĝr = (Φ, Ê) be a disk graph inRd (see§IV-C), where
Φ = {Xi} ⊂ R

d is a PPP of intensity 1 representing the
locations of the nodes, also referred to as the “good guys”.
We can think of this graph as the unconstrained network graph
that includes all possible edges over the good guys could
communicate if there were no secrecy constraints.

Take another PPPΨ = {Yi} ⊂ R
d of intensityλ represent-

ing the locations of the eavesdroppers or “bad guys”. These
are assumed to be known to the good guys.

Based onĜ, we define the following secrecy graphs:
The directed secrecy graph:~G = (φ, ~E). Replace all edges

in Ê by two directional edges. Then remove all edges
−−−→
XiXj

for which Ψ (B(Xi; ‖Xi − Xj‖)) > 0, i.e., there is at least
one eavesdropper in the ball.

From this directed graph, two undirected graphs are derived:
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The basic secrecy graph:Gλ,r = (Φ, E), where the (undi-
rected) edge setE is

E , {XiXj :
−−−→
XiXj ∈ ~E and

−−−→
XjXi ∈ ~E} .

The enhanced secrecy graph:G′
λ,r = (φ, E′), where

E′ , {XiXj :
−−−→
XiXj ∈ ~E or

−−−→
XjXi ∈ ~E} .

With θ(λ, r) being the probability that the component in
Gλ,r containing the origin (or any arbitrary fixed node) is
infinite, we know from§IV-C that θ(0, r) > 0 for r > rc,
whererc ≈ 1.198 is the critical radius for percolation of the
(unrestricted) disk graph. For radii larger thanrc, we define

λc(r) , inf{λ : θ(λ, r) = 0} , r > rc, (24)

as the critical density for percolation on the secrecy graph.
Some of the properties of these secrecy graphs can be

analytically determined, such as the out-degree in directional
graph ~Gλ,∞ which turns out to be geometric with mean1/λ.
This is easily seen if we consider the sequence of nearest
neighbors ofo in the combined processΦ ∪ Ψ. Nout = n if
the closestn are inΦ and the(n + 1)-st is in Ψ. Since these
are independent events,

P[Nout = n] =
λ

1 + λ

(

1

1 + λ

)n

. (25)

The node degree distribution forr < ∞ can also be found
analytically; it is a distribution that includes the Poisson and
geometric distributions as special cases. Asλ → 0 it is Poisson
(standard disk graph), while forr → ∞ it is geometric (this
is the case considered above). Depending on the values ofr
andλ, we can identify a power-limited and a secrecy-limited
operating regime.

Further results and bounds on the percolation threshold for
the secrecy graph are given in [117]. It turns out thatλ = 0.15
already makes percolation impossible. Hence a small density
of eavesdroppers can have a drastic impact on the connectivity
properties of the network.

VII. C ONCLUDING REMARKS

In this tutorial article we have argued that stochastic geom-
etry and random graph theory are indispensable tools for the
analysis of wireless networks that allow analytical results on a
number of concrete and important problems. We have shown
how to apply these tools to model and quantify interference,
connectivity, outage probability, throughput, and capacity of
wireless networks. We have also argued that there are many
other possible future applications of these techniques, a few of
which are mentioned in§VI, and in the accompanying special
issue, highly mobile wireless networks [118] and information
propagation [119], [120] (also discussed in§VI).

Because the techniques presented in this paper have
emerged from the fields of applied probability, point processes,
queueing theory, percolation theory, and are now being adapted
to the engineering arena, it is important that cross-disciplinary
dialogues continue, in part through dedicated journal issues

like the present one and workshops like SpaSWiN3. We also
hope that an increasing number of engineering graduate pro-
grams will offer formal classroom training in these methods.

Many important areas for future study remain. In order
to better model cooperative wireless networks – including
techniques as basic as carrier sensing and as sophisticatedas
interference alignment and network coding – tractable results
or approximations that go beyond the stationary Poisson
distribution for the node locations are highly desirable but
presently lacking. The capacity of wireless networks is one
of the most important open problems in information theory,
and stochastic geometry and random graphs appear destined
to play a key role in characterizing it, given the primacy
of network geometry in determining interference and hence
achievable rates. Present attempts at determining achievable
end-to-end rates using these tools are still at an early stage.
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