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Abstract

This paper studies downlink communication in a heterogeneous cellular network where a set of

geographically separated base stations (BSs) cooperates in transmitting data to a common receiver. If a

decoding error occurs, data is cooperatively retransmitted by a possibly different set of BSs, such that

the receiver can benefit from spatiotemporal BS cooperation. Specific cooperation techniques studied in

this paper include joint transmission, base station silencing, and the Alamouti space-time code. Using

tools from stochastic geometry, the coverage probability at the typical user is characterized as an integral

function of the network parameters and the sets of cooperating BSs. The expressions derived reveal the

existence of two qualitatively different operating regimes. In the high-coverage regime, the typical user

is diversity-limited, so cooperation techniques exploiting spatiotemporal diversity are highly effective

in increasing coverage. It is shown that retransmissions always yield time diversity, while channel state

information at the transmitters is required to harvest spatial diversity via joint transmission. In the low-

coverage regime, on the other hand, the typical user is interference-limited, so cooperation techniques

such as joint transmission and base station silencing are effective in increasing coverage as they suppress

part of the interference power.
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I. INTRODUCTION

A. Motivation and Contributions

This paper studies spatiotemporal cooperation in heterogeneous networks where BSs selected

from multiple network tiers cooperate in transmitting data to a common user. In the event a

decoding error, cooperative retransmissions of erroneous data take place, such that the common

user can benefit from spatiotemporal BS cooperation. This setup may arise, for instance, in

next-generation heterogeneous cellular networks employing inter-cell interference coordination

or other BS cooperation techniques. Assuming that all transmitters and receivers in the network

are equipped with a single antenna, the channel between the cooperating BSs and the common

user can be modeled as a distributed MISO system. As a consequence, distributed implementation

of space-time coding can lead to increased network coverage, due to diversity gain and reduced

inter/intra cell interference.

In this general framework, our contributions are as follows. First, we present a tractable

model for studying cooperation in heterogeneous networks that can in principle be used to

analyze arbitrary spatiotemporal cooperation strategies. We then specialize the model to the case

where the BSs in each network tier form a spatially homogeneous point process and the set

of cooperating BSs are selected based on the average received power at the typical user in

the network (strongest-BS association model). We assume that a subset of BSs cooperatively

retransmits data if the signal-to-interference (SIR) ratio at the typical user is lower then a given

threshold value θ, which we refer to as outage event. In this setting, we define the coverage

probability at the typical user as the probability that no outage event occurs after the first

retransmission.

We consider two cooperation strategies:

• Joint transmission (JT): The BSs cooperate by jointly transmitting the same data to the

typical user,

• BS silencing (BSS): The BSs cooperate by silencing the strongest interfering BSs at the

typical user, hence reducing the interference power.

The motivation for studying JT comes from the homonymous strategy in the most recent LTE

standard [2], while BSS is a lower complexity technique that overcomes the biggest limitation

of JT, i.e., the significant backhaul network control traffic needed to establish cooperation.
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Similarly, we consider two decoding methods:

• Independent attempts: As in a simple type-I HARQ scheme, the typical user discards the

received data in the first erroneous transmission and attempts decoding ex novo from the

retransmission.

• Chase combining: As in a type-II HARQ scheme, if a retransmission takes place, then the

typical user uses maximum-ratio-combining (MRC) to combine the received data in the first

transmission and in the retransmission. The outage event in this case is defined as the event

that the sum of the SIRs after two transmissions is lower than the threshold θ.

For each combination of cooperation/decoding techniques, we characterize the coverage proba-

bility at the typical user as an integral function of the network parameters and the number of

cooperating BSs.

The derived expressions are then used to analytically characterize the rate of exponential

increase of the coverage probability as θ → 0, which we refer to as diversity gain. We prove

that in all the cases under consideration the diversity gain increases with the number of re-

transmissions, but is independent of the number of cooperating BSs, unless the cooperating

BSs have knowledge of their respective small-scale fading gain to the receiver. Channel state

information (CSI), in fact, allows the BSs to jointly transmit phase-shifted copies of the same

signal that add coherently at the receiver. We then show that by distributed implementation of

space-time coding techniques at the cooperating BSs, spatial diversity can be achieved even if

CSI is not available at the transmitters. We illustrate this point by analyzing a specific scheme

where two BSs apply Alamouti’s scheme to cooperatively transmit to the typical user. We prove

that in this case a diversity gain of two is achievable even though the BSs do not have CSI, i.e.,

spatial diversity can be fully exploited.

Another noteworthy observation that emerges from numerical evaluations of our derived

expressions is that joint transmission and BSS achieve comparable coverage probability per-

formance for large values of θ. This result can be understood by noticing that, in the large θ

regime, the coverage probability is determined mainly by the probability that the interference

power at the typical user is large. It follows that the cooperation schemes that reduce the amount

of interference at the typical user are highly effective in increasing coverage. Moreover, the

power gain provided by joint transmission has a negligible impact on the coverage probability

compared to the gain due to interference suppression attained by both joint transmission and
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BSS.

B. Related Work and Paper Organization

Finally, we wish to mention a few related works in the literature. Cooperative retransmission

has been mostly studied in the context of relay-assisted communication. In the information-

theoretic literature, [3] analyzed the performance of a decode–forward relay scheme where

relay nodes decode the data transmitted by the source and cooperatively forward it toward the

destination. [4] compared the outage probability and the diversity gain that can be achieved by

using various relaying techniques. [5] and [6] studied cooperative retransmission protocols and

proposed a decentralized algorithm for relay selection. One limitation of these existing studies,

however, is that they do not model the interference caused by other BSs or relay nodes in

the wireless networks. This paper aims at overcoming this limitation by accurately modeling the

interference using tools from stochastic geometry. Stochastic geometry models for heterogeneous

networks have been recently proposed in [7]–[9], where the BSs in different network tiers are

assumed to be spatially distributed according to Poisson point processes (PPPs). Following a

similar model, [10], [11] studied the advantages of cooperative relaying in a homogeneous

network, while we previously studied joint transmission in heterogeneous networks in [12]. Our

previous work, however, did not account for cooperative retransmissions. One technical issue

that arises when dealing with retransmissions is the fact the interference at the typical user

is correlated in time. Interference correlation has been previously studied in [13]–[15], but in

the context of single-tier networks. [16] studied the effect of interference correlation on the

performance of MRC in a SIMO setting. This paper is not the first to characterize the diversity

gain in the high coverage regime. Previously, [17] showed repetition coding does not provide

any diversity gain in an ad hoc wireless network, due to the correlation of the interference across

retransmissions. [18] analyzed the diversity loss due to interference correlation in a SIMO channel

model. It should also be remarked that BSS was first studied in [19] in the case of a single-tier

network.

The remainder of the paper is organized as follows. Section II introduces the system model.

Section III and Section IV present the main results for joint transmission and BS silencing, while

Section V is devoted to Alamouti coding. Section VI presents some numerical results. Section

VII concludes the paper.
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Fig. 1. Example of a two-tier heterogeneous network where the two best BSs, in the sense of average receive power, cooperate

in transmitting data to a common receiver located at the origin (solid arrows). Assuming that a decoding error occurs, data is

cooperatively retransmitted by the best three BSs (dotted arrows). The model considered in this paper allows the number of

cooperating BSs to vary across retransmissions.

II. SYSTEM MODEL

A. Heterogeneous Network Model

We consider a heterogeneous wireless network composed of K independent network tiers of

BSs with different deployment densities and transmit powers. It is assumed that the BSs belonging

to the jth tier have transmit power Pj and are spatially distributed according to a two-dimensional

homogeneous PPP Φj of density λj , j = 1, . . . , K. We denote by Φ = Φ1 ∪ · · ·∪ΦK the spatial

process obtained by superposing the K network tiers, and we define ν : R2 → {1, . . . , K} as

the function that maps every point x ∈ Φ into the index of the network tier to which the BS

located at x belongs.

Due to the stationarity of Φ, we assume without loss of generality that the typical user is

located at the origin of the coordinate system (0, 0) ∈ R2. The path loss of signals transmitted

by the BS located at xi ∈ Φ to the typical user is characterized by two different phenomena,

the average path loss and the small-scale fading. The average path loss coefficient is denoted in

the sequel by li and is related to the BS’s distance from the origin ∥xi∥ and its transmit power

Pν(xi) as

l2i =
Pν(xi)

∥xi∥α
, (1)

where α > 2 denotes the path loss exponent of the propagation environment. The small-scale

fading coefficient is denoted by hk and is modeled as Rayleigh fading, a reasonable model if
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propagation occurs in a built-up urban scattering environment. Notice that the average path loss

coefficients naturally induce an ordering of the BSs in the network in terms of their average

signal strength at the typical user. Accordingly, we assume that the coefficients in (1) are ordered

in decreasing order of magnitude

l21 ≥ l22 ≥ · · · , (2)

such that xi denotes hereinafter the location of the BS with the ith largest average path loss

coefficient l2i (see Fig. 1).

We assume that the top n1 BSs in this ordered list cooperate in transmitting data to the typical

user. This is a natural assumption motivated by the fact that, in practical systems, users maintain

a ranked list of the surrounding cells based on received signal power and may be connected

to many of them simultaneously. If the SIR at the typical user after the first transmission is

below a certain threshold θ, then we say that an outage event occurs and the transmission is

declared unsuccessful. In this case, we assume that the top n2 BSs cooperate in retransmitting

data to the typical user using repetition coding. Notice that we allow the number of cooperating

BSs to vary from n1 to n2 across retransmissions, a reasonable assumption since the BSs’

availability to cooperate may vary in time due to varying load/channel conditions, delays in the

backhaul network, and errors in decoding of ACK/NAK messages sent back from the user. As

an example, Fig. 1 illustrates a two-tier heterogeneous network where n1 = 2 BSs belonging to

different network tiers cooperate in transmitting data, which is then retransmitted by a larger set

of n2 = 3 BSs.

In this setup, the received channel output at the typical user in the kth transmission, k = 1, 2,

can be written as the sum of a desired signal and an interfering signal as follows
∑

i∈Ck

lihiks +
∑

i>nk

lihiksik, (3)

where Ck ≡ C[k] ⊆ {1, 2, . . . , nk} denotes a subset of the cooperating BSs dependent on the

cooperation strategy under consideration, s denotes the channel input symbol of interest, while

sik ≡ si[k] denotes the channel input symbol sent by the ith interfering BS. We consider two

cooperation strategies:

• Joint transmission (JT): In this case, all nk cooperating BSs jointly transmit the same symbol

s to the typical user. Accordingly,

Ck = {1, 2, . . . , nk}
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for every k = 1, 2.

• BS silencing (BSS): In this case,

Ck = {1}

for every k, so BSs cooperate by simply silencing the BSs with ith strongest average path

loss, i = 2, 3, . . . , nk, hence reducing the aggregate interference power.

The system model in (3) embodies the following assumptions:

• Compliantly to the Rayleigh fading assumption, the small-scale fading coefficients {hik} are

assumed to be i.i.d. standard complex Gaussian random variables independent of everything

else. In particular, the coefficients hi1 and hi2 in the first transmission and the retransmission

are assumed to be independent, a valid assumption if retransmissions take place at a time

scale that is larger than the coherence time of the channel.

• The position of the typical user is assumed to remain fixed during the retransmission, a

valid assumption in low-Doppler channel models. As a consequence, the average path loss

coefficients in (3) are assumed to be time invariant.

• The symbols {sik} and s are assumed to be i.i.d. zero-mean random variables of unit

variance. By making such an assumption, we ignore the fact that the BSs which contribute

to the total interference power may cooperate to serve other users in the network. In the case

of BSS, it is clear that this assumption leads to conservative results because by silencing

some of the interferers we can only increase the SIR at the typical user. A similar result,

counterintuitive at first glance, was also proved in [12, Proposition 1] for the case of JT,

where we showed that cooperation among the interferers can only increase the coverage

probability at the typical user.

• The background noise power is assumed to be negligible compared to the total aggregate

interference power (interference-limited regime assumption). Accordingly, (3) does not

include the contribution of the background thermal noise to the received signal.

It follows from (3) that the SIR at the typical user at the end of the kth transmission is

SIRk =
|
∑

i∈Ck li hik|2

Ik
(4)

where we define

Ik :=
∑

i>nk

l2i |hik|2 (5)
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as the aggregate interference power. Notice that I1 and I2 are correlated random variables, since

the average path loss terms are time invariant.

At the receiver side, we consider two decoding methods:

• Independent Attempts: In this case, the typical user makes independent decoding attempts

after each transmission. Given a threshold θ, we define the coverage probability as

P = P(SIR1 > θ) + P(SIR2 > θ, SIR1 < θ) (6)

where P(SIR1 < θ) denotes the probability of the outage event after the first transmission.

• Chase Combining: Here, we assume that if a retransmission takes place, the typical user

performs MRC of the received signal in two transmissions. In this case, the combined SIR

at the output of the MRC receiver is SIR1 + SIR2. For a given threshold θ, the coverage

probability is then defined as

P
MRC = P(SIR1 > θ) + P(SIR1 + SIR2 > θ, SIR1 < θ). (7)

In the sequel, we refer to these two decoding methods as retransmission without MRC and with

MRC, respectively.

III. COVERAGE PROBABILITIES

In this section, we present the main results of the paper. For each combination of cooper-

ation/decoding techniques, we characterize the coverage probability at the typical user as an

integral function of the network parameters and the number of cooperating BSs n1 and n2. We

focus our attention on the case n1 ≤ n2, but the same analysis can be repeated verbatim for the

case n2 ≥ n1.

A. Joint Transmission without MRC

First, we consider the case of JT with independent decoding attempts. The following key

technical lemma characterizes the joint complimentary cumulative distribution function (ccdf) of

SIR1 and SIR2 as a function of the system parameters.
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Lemma 1: For every θ1, θ2 ≥ 0

P (SIR1 > θ1, SIR2 > θ2)

=

∫

A
exp

(

−un2

(

1 + 2G
(

θ1 u
−α

2
n2 v−1

1 , θ2 u
−α

2
n2 v−1

2

))

−
∑n2

i=n1+1 log
(

1 + θ1u
−α

2

i v−1
1

)
)

du,

=: φ(n1, n2, θ1, θ2), (8)

where the integral is over the set

A =
{

u ∈ R
n2

+ : u1 < u2 < . . . < un2

}

, (9)

and where we define

G(x, y) :=

∫ ∞

1

(

1−
1

(1 + xr−α)(1 + yr−α)

)

r dr (10)

and

vk = u
−α

2

1 + u
−α

2

2 + . . .+ u
−α

2
nk , k = 1, 2. (11)

Proof: See Appendix A.

Remark 1: In the special case where n1 = n2 = n and θ1 = θ2 = θ, by performing the change

of variable uj = unk
tj for 1 ≤ j ≤ nk − 1 and then integrating over unk

, it can be easily shown

that (8) simplifies to

φ(n, n, θ1, θ2)

=

⎧

⎪
⎪⎨

⎪
⎪
⎩

(1 + 2G(θ1, θ2))
−1 , n = 1;

∫

D

(n− 1)!
(

1 + 2G(θ1 τ−1
n , θ2 τ−1

n )
)ndt, n > 1,

(12)

where

D =
{

t ∈ R
n−1
+ : 0 < t1 < . . . . . . < tn−1 < 1

}

and

τn = 1 + t
−α

2

1 + . . . t
−α

2

n−1.

Using (12), the marginal ccdfs P(SIRk > θ) can be calculated as

P(SIRk > θ) = φ(nk, nk, θ, 0), k = 1, 2. (13)
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Remark 2: The integral function G(x, y) defined in (10) can not be expressed in closed form in

general but can be easily evaluated numerically since it is related to the hypergeometric function

2F1(·, ·; ·; ·) as follows
⎧

⎪
⎨

⎪⎩

x2

1+x 2F1(1,1;2− 2
α ; x

1+x)−
y2

1+y 2F1(1,1;2− 2
α ; y

1+y )
(α−2)(x−y) , x ̸= y;

x
α(1+x)

(

1 + α+2
α−2 2F1

(

1, 1; 2− 2
α ;

x
1+x

))

, x = y.
(14)

Also, closed-form expressions exist for specific values of α > 2. For example, it can be easily

verified that if α = 4, then

2F1

(

1, 1; 2−
2

α
;

x

1 + x

)

≡
1 + x√

x
tan−1(

√
x).

Using Lemma 1, we prove the following result.

Theorem 1: The coverage probability (6) for JT without MRC is equal to

P = φ(n1, n1, θ, 0) + φ(n2, n2, θ, 0)− φ(n1, n2, θ, θ), (15)

where φ(n1, n2, θ, θ) is defined in (8).

Proof: By (6), the coverage probability can be re-written as

P = P(SIR1 > θ) + P(SIR2 > θ, SIR1 < θ)

(a)
=

2
∑

k=1

P(SIRk > θ)− P(SIR2 < θ, SIR1 < θ)

= P ({SIR1 > θ} ∪ {SIR2 > θ}) , (16)

where (a) follows from basic set theory. Now, we can apply the inclusion-exclusion formula

with P(SIRk > θ) in (13) and P(SIR1 > θ, SIR2 > θ) as in Lemma 1 to derive the result.

The result in Theorem 1 only depends on the number of cooperating BSs n1 and n2, the

threshold θ, and the path loss exponent α. Hence, we can draw similar conclusions as in [12,

Remark 1] on the fact that (15) is independent of the number of network tiers K, and their

respective power levels and deployment densities.

Remark 3: By substituting (12) into (15), it follows that in the special case when n1 = n2 = n,

i.e., if the number of cooperating BSs does not change after the first transmission,

P =
2

1 + 2G(θ, 0)
−

1

1 + 2G(θ, θ)
, (17)
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if n = 1, and

P = 2φ(n, n, θ, 0)−
∫

D

(n− 1)!
(

1 + 2G(θ1 τ−1
n , θ2 τ−1

n )
)ndt, (18)

if n > 1. If we further specialize (17) to the case α = 4, we obtained the remarkably simple

closed-form expression

2

1 +
√
θ tan−1(

√
θ)

−
1

1 + 3
2

√
θ tan−1(

√
θ) + θ

2(1+θ)

.

B. Joint Transmission with MRC

In the case of JT with MRC at the receiver, we have the following result.

Theorem 2: The coverage probability in (7) for JT with MRC is

P
MRC =

∞∫

0

σ(n1, n2, z, (θ − z)+)dz, (19)

where

σ(n1, n2, z, a)

:=

∫

A
exp

(

−un2

(

1 + 2G
(

zu
−α

2
n2 v−1

2 , au
−α

2
n2 v−1

1

))

−
∑n2

i=n1+1 log
(

1 + au
−α

2

i v−1
1

)
)

× 2u
1−α

2
n2 v−1

2 H
(

zu
−α

2
n2 v−1

2 , au
−α

2
n2 v−1

1

)

du, (20)

with A as in (9), vk as in (11), and where we define

H(x, y) :=
∂

∂x
G(x, y) =

∫ ∞

1

r1−α

(1 + xr−α)2 (1 + yr−α)
dr.

Proof: See Appendix B.

Remark 4: In the special case where n1 = n2 = n, (19) simplifies to

P
MRC = φ(n, n, θ, 0) +

θ∫

0

σ(n, n, z, θ − z)dz (21)

and in particular, if n = 1,

P
MRC =

1

1 + 2G(θ, 0)
+

∫ θ

0

2H(z, θ − z)

(1 + 2G(z, θ − z))2
dz. (22)

By comparing (12) and (22), notice that the first term at the right hand side of (22) is equals

φ(1, 1, θ, 0), which by (13) denotes the coverage probability after one transmission using a single

BS. Therefore, the integral term in (22) represents the gain due to retransmission with MRC.
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C. Base Station Silencing

In the case of BSS we prove the following theorem, whose proof is omitted as it follows

similar steps as the proofs of Theorems 1 and 2.

Theorem 3: The coverage probability in (6) for BSS without MRC is equal to

P = ϕ(n1, n1, θ, 0) + ϕ(n2, n2, θ, 0)− ϕ(n1, n2, θ, θ), (23)

where

ϕ(n1, n2, θ1, θ2)

:=

∫

A
exp

(

−un2

(

1 + 2G
(

θ1 u
−α

2
n2 u

α
2

1 , θ2 u
−α

2
n2 u

α
2

1

))

−
∑n2

i=n1+1 log
(

1 + θ1u
−α

2

i u
α
2

1

)
)

du.

(24)

The coverage probability in (7) for retransmission with MRC is equal to

P
MRC =

∞∫

0

ς(n1, n2, z, (θ − z)+)dz, (25)

where

ς(n1, n2, z, a)

:=

∫

A
exp

(

−un2

(

1 + 2G
(

z u
−α

2
n2 u

α
2

1 , a u
−α

2
n2 u

α
2

1

))

−
∑n2

i=n1+1 log
(

1 + au
−α

2

i u
α
2

1

)
)

× 2u
1−α

2
n2 u

α
2

1 H
(

z u
−α

2
n2 u

α
2

1 , a u
−α

2
n2 u

α
2

1

)

du, (26)

with A in (24) and (26) defined as in (9).

Remark 5: By comparing (8) and (24), notice that the integral function ϕ is defined exactly

as φ after replacing vk in (8) by u−α/2
1 . Similarly, the integral function ς defined in (26) is equal

to σ in (20) after replacing vk by u−α/2
1 .

Remark 6: In the special case when n1 = n2 = n > 1, it can be verified, by making the

change of variables ui = unti, i = 1, 2, . . . , n− 1, that the coverage probabilities without MRC

and with MRC at the typical user simplify to

P = 2ϕ(n, n, θ, 0)−
1∫

0

(n− 1)(1− t)n−2

(1 + 2G(θtα/2, θtα/2))n
dt, (27)
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and

P
MRC =

∞∫

0

dz

1∫

0

n(n− 1)(1− t)n−2H(zt
α
2 , (θ − z)+t

α
2 )

1
2t

−α
2 (1 + 2G(zt

α
2 , (θ − z)+t

α
2 ))n+1

dt, (28)

respectively.

Remark 7: It can be easily shown that the marginal ccdf P(SIRk > θ) obtained by setting in

ϕ(nk, nk, θ, 0) in Theorem 3 recovers the expression derived in [19, Theorem 1].

IV. HIGH-COVERAGE REGIME: DIVERSITY GAINS

In this section, we use the integral expressions derived in Section III to study the qualitative

behavior of the coverage probability in the high-coverage regime. As in [19, Definition 3], we

define the diversity gain dn1,n2
at the typical user as the rate of exponential increase of the

coverage probability as θ → 0, i.e.,

dn1,n2
= lim

θ→0

log(1− P)

log θ
. (29)

In (29) the subscripts n1 and n2 are adopted to emphasize the dependency of the diversity gain

on the number of cooperating BSs. Our main result is an analytical expression for dn1,n2
for all

the cooperation schemes/receiver methods considered in this paper.

As a first step, we state a technical lemma of independent interest, providing asymptotic forms

for the outage probability in the small θ regime.

Lemma 2: Let Y1, Y2 be i.i.d. chi-squared distributed random variables with m degrees of

freedom and let (J1, J2) be a pair of arbitrarily distributed positive random variables mutually

independent of (Y1, Y2) such that

E[(J1J2)
m/2] < ∞. (30)

Then, as θ → 0,

P

(
Y1

J1
< θ,

Y2

J2
< θ

)

∼ θm
E

(

(J1J2)m/2
)

2m (Γ(m/2 + 1))2
(31)

and

P

(
Y1

J1
+

Y2

J2
< θ

)

∼ θm
E

(

(J1J2)m/2
)

2mΓ(m+ 1)
. (32)
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Proof: See [20].

Notice that in Lemma 2 no assumptions are made on the distribution of the pair (J1, J2)

modeling the possibly correlated interference powers at the typical receiver in two consecutive

transmissions, except for the finiteness of a certain moment of the joint distribution. Therefore,

Lemma 2 can be applied in other situations than those treated in this paper. For the specific

setting under consideration, the following technical lemma ensures that (30) is satisfied.

Lemma 3: Under the system model in (3), we have

Elj ,Ik

(
In1

1

l21l
2
2 . . . l

2
n1

In2

2

l21l
2
2 . . . l

2
n2

)

< ∞,

where Ik is defined in (5).

Proof: See [20].

Using Lemmas 2 and 3, we can derive the following diversity gain result for the case of JT.

Theorem 4: For every n1, n2 ≥ 1, the diversity gain in (29) for JT is

dn1,n2
= 2

both with MRC and without MRC.

Proof: First, we write the outage events for retransmission with and without MRC in form

of the events considered in Lemma 2. Then, we prove that the condition in Lemma 2 is satisfied

in our case.

Focusing on retransmission without MRC, we can write the outage event as

2
⋂

k=1

{SIRk < θ}

=
2
⋂

k=1

{∣
∣
∣
∣
∣

nk∑

j=1

lj hjk

∣
∣
∣
∣
∣

2

< θIk

}

=
2
⋂

k=1

{∣
∣
∑nk

j=1 lj hjk

∣
∣
2

∑

j>nk
l2j/2

︸ ︷︷ ︸

Yk

<
2θIk

∑

j>nk
l2j

︸ ︷︷ ︸

θJk

}

. (33)

Here, Yk is exponentially distributed with mean 2 or, equivalently, chi-squared distributed with

m = 2 degrees of freedom due to the fact that |
∑nk

j=1 lj hjk|2 is exponentially distributed
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with mean
∑

j>nk
l2j . Y1 and Y2 are independent since the fading coefficients hjk are mutually

independent.

In case of retransmission with MRC, the coverage probability in (7) can be further expressed

as

P
MRC = P(SIR1 > θ) + P(SIR1 + SIR2 > θ, SIR1 < θ)

(a)
= P(SIR1 + SIR2 > θ) (34)

where (a) follows from set theory and the fact that SIRk > 0. Hence, the outage event can be

written as

{SIR1 + SIR2 < θ} ≡
{
Y1

J1
+

Y1

J1
< θ

}

(35)

where Yk and Jk are defined as for the case of retransmission without MRC above. Now, we

need to prove that EJ1,J2[J1J2] is finite to apply the result in Lemma 2. We have

EJ1,J2[J1J2] = 4Elj ,Ik

[
2
∏

k=1

Ik
∑nk

j=1 l
2
j

]

(a)

≤ 4Elj ,Ik,1

[
2
∏

i=1

Ik,1
l21

]

(36)

where Ik,1 is the aggregate interference power assuming nk = 1; (a) follows due to the fact

that we are increasing the numerator inside the product by adding a positive term
∑nk

j=2 l
2
j and

decreasing the denominator inside the product by subtracting the same positive term. From

Lemma 3 with n1 = n2 = 1, it follows that the above expression is finite. Hence, we get a

diversity gain of 2 for retransmission with and without MRC.

A similar result holds for the case of BSS.

Theorem 5: For every n1, n2 ≥ 1, the diversity gain in (29) for BSS is

dn1,n2
= 2

both with MRC and without MRC.

Proof: By following similar steps as in the proof of Theorem 4, we can derive the outage

events for retransmission without MRC and with MRC in the form of (33) and (35), respectively
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with Yk = 2|h1k|2 which is chi-squared distributed with 2 degrees of freedom and Jk = 2Ik/l21.

Now, we need to prove that EJ1,J2[J1J2] is finite to apply the result in Lemma 2. We have

EJ1,J2[J1J2] = 4Elj ,Ik

[
2
∏

k=1

Ik
l21

]

(a)

≤ 4Elj ,Ik,1

[
2
∏

k=1

Ik,1
l21

]

(37)

where Ik,1 is the aggregate interference power assuming nk = 1; (a) follows due to the fact that

we are increasing the numerator inside the product by adding a positive term
∑nk

j=2 l
2
j . Using

Lemma 3 with nk = 1, we can prove that the above expression is finite. Hence, we get a diversity

gain of 2 for retransmission with and without MRC.

It follows from Theorems 4 and 5 that in all cooperation/decoding techniques under consider-

ation the diversity gain (29) is two, independently of the number of cooperating BSs. This result

can be understood noticing that in our setup the fading coefficients across two transmissions

are assumed to be independent, so they provide time diversity that translates in lower outage

probability. Had we considered a scenario with N retransmissions, the diversity gain would

have been N . At the same time, the result in Theorem 4 shows that despite having multiple

BSs simultaneously transmitting, cooperation via joint transmission fails in exploiting the spatial

diversity provided by the independent fading coefficients from the spatially separated BSs to

the typical user. This result can be explained as follows. Observe from (3) that the signals

transmitted by the BSs in Ck sum non-coherently at the receiver and therefore the effective

channel
∑

i∈Ck li hik is statistically equivalent to a SISO Rayleigh fading channel, both in the

case of JT and BSS.

To contrast this negative result, we show next that if the cooperating BSs have knowledge of

their respective small-scale fading gain to the receiver, then spatial diversity can be exploited

via joint transmission. CSI, in fact, allows the BSs to jointly transmit phase-shifted copies of the

same signal that add coherently at the receiver. Specifically, if hik is known at the transmitter,

then the BS located at xi can compensate the phase shift caused by the channel by premultiplying

the transmitted symbol by h∗
ik/|hik|. It follows that in this case the SIR at the end of the k-th

transmission can be written as

SIRk =
|
∑nk

i=1 lj |hik||2

Ik
, (38)
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In this setup, we have the following result.

Theorem 6: For every n1, n2 ≥ 1, the diversity gain in (29) for JT with CSI at the transmitters

satisfies

dn1,n2
= n1 + n2

both with MRC and without MRC at the receiver.

Proof: See Appendix C.

It follows from Theorem 6 that we get full diversity gain when BSs have CSI. A similar result

is obtained in [12, Theorem 5] where a single transmission is considered with coherent JT.

V. ALAMOUTI CODING

In the previous section, we showed that in order to exploit spatial diversity by JT, the

cooperating BSs need to have CSI. This limitation of joint transmission can be overcome by

distributed implementation of space-time coding techniques at the cooperating BSs. We illustrate

this point by analyzing a specific scheme where two BSs apply Alamouti’s code to cooperatively

transmit to the typical user.

In Alamouti’s code, pairs of coded symbols are transmitted to the typical receiver in two

channel uses, typically adjacent resource elements in the time/frequency domain, such that the

channel gain from the transmitter to the receiver can be assumed to remain constant during the

transmission of the pair of symbols.

Following the notations in (3), the received signal in two adjacent resource elements can be

written as

y1 = l1 h1 s1 + l2 h2 s2 + z1

y2 = −l1 h1 s
∗
2 + l2 h2 s

∗
1 + z2 (39)

where zk =
∑

j>2 lj hj sjk for k = 1, 2; hj denotes the random fading coefficient between BS

located at xj and the user located at origin. hj’s are i.i.d. zero mean complex Gaussian random

variables with unit variance. s1 and s2 are the two desired symbols and ∗ denotes the Hermitian

operator. The above equations can be rewritten as
⎡

⎣
y1

y∗2

⎤

⎦

︸ ︷︷ ︸

y

=

⎡

⎣
l1 h1 l2 h2

l2 h∗
2 −l1 h∗

1

⎤

⎦

︸ ︷︷ ︸

H

⎡

⎣
s1

s2

⎤

⎦

︸ ︷︷ ︸

s

+

⎡

⎣
z1

z∗2

⎤

⎦

︸ ︷︷ ︸

z

(40)
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Next, we consider a suboptimal receiver which treats the z as white Gaussian noise and hence

projects the received signal y on to the columns of matrix H , such that the matched filter output

can be expressed as

1
√

|det(H)|
H∗y =

√

|det(H)|s+
1

√

|det(H)|
H∗z. (41)

Assuming that the symbols s1, s2 and sjk are independent of each other and have zero mean and

unit variance, we can write the SIR as

SIR1 = SIR2 =
|det(H)|

I
, (42)

where I denotes the aggregate interference power given by

I =
∑

j>2

l2j |hj |2. (43)

A. Coverage Probability

Using the expression for SIRk in (42), we can define the coverage probability for a given

threshold θ as

Pc = P

(
2
⋂

k=1

{SIRk > θ}

)

= P (SIR1 > θ) . (44)

We derive the coverage probability result for Alamouti coding in Theorem 7.

Theorem 7: The coverage probability in (44) for Alamouti coding is

1∫

0

(
1

(1 + 2G(θtα/2, 0))2
−

tα/2

(1 + 2G(θ, 0))2

)
dt

1− tα/2
. (45)

Proof: See Appendix D

Notice that similar to the previous coverage probability results, the coverage probability for

Alamouti coding is independent of the number of network tiers, their transmit powers and

densities.
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B. Diversity Gain

In this subsection, we prove the diversity gain result for Alamouti coding. Similar to the

definition in (29), we define the diversity gain for Alamouti coding as

d = lim
θ→0

log(1− Pc)

log θ
. (46)

Theorem 8: The diversity gain in (46) for Alamouti coding is 2.

Proof: As θ → 0, using the fact that G(x, 0) ∼ x
α−2 −

x2

2(α−1) and (1+x)−2 ∼ 1−2x+3x2

as x → 0, the coverage probability in (45) can be written as

Pc ∼
1∫

0

(

1−
2θ2tα/2

α− 1
−

12θ2tα/2

(α− 2)2

)

dt

⇒ 1− Pc ∼ θ2
(

2

α− 1
+

12

(α− 2)2

)
2

α + 2
. (47)

Hence, we get the diversity gain of 2.

VI. NUMERICAL EVALUATION

In this section, we present numerical evaluations of the integral expressions for the coverage

probabilities derived in this paper. We assume α = 4 for all the numerical evaluations.

A. High Coverage Regime

Fig. 2 compares the coverage probability achieved by the Alamouti code (45) with those of

JT without MRC (17) and JT with MRC (22) in the special case of retransmission without

cooperation, i.e., n1 = n2 = 1. Notice that all these schemes achieve a diversity gain of two.

By contrast, we plot the performance of a scheme studied in [12] based on JT with n = 2

cooperating BSs and no retransmission (hereinafter referred to as spatial cooperation), which

only achieves a diversity gain of one. Notice the difference in the rate of convergence to 1 of the

corresponding curves as θ → 0. It can also be noticed from the figure that the spatial cooperation

outperforms (17) and (22) for θ > 5 dB. In the low-coverage regime, in fact, the typical user

is interference-limited, so the spatial cooperation achieves higher coverage by suppressing part

of the interference power. Notice that the Alamouti code achieves the best performance in all

regimes.



20

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold θ (in dB)

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

 

 

With MRC, n1=n2=1
Without MRC, n1=n2=1

No retransmission, JT, n=2
Alamouti

Fig. 2. Coverage probabilities to compare the effect of

diversity gain using (13), (17), (22) and (45).
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Fig. 3. Coverage probabilities comparing JT and BSS for

different number of cooperating BSs using (15), (18), (23)

and (27).

In terms of resources, assuming that it takes one resource block for a BS to transmit the

message to the receiver, spatial cooperation with n = 2 cooperating BSs always uses two

resource blocks regardless of whether the user needs it or not. Alamouti code always uses

four resource blocks to transmit two messages, i.e., two resource blocks per message. In case of

retransmission without cooperation, the message is retransmitted only when the first transmission

is unsuccessful. Therefore, we do not necessarily have to use two resource blocks in case of

retransmission without cooperation. In fact, the expected number of resource blocks used in

case of retransmission without cooperation is 1+ 1 · P(SIR1 < θ) = 2− 1
1+

√
θ tan−1(

√
θ)

, which is

less than two resource blocks. Retransmission without cooperation also minimizes the backhaul

overhead in distributing the desired symbols among cooperating BSs. Therefore, retransmission

without cooperation is the most resource efficient way to serve the user for low values of θ.

B. Low Coverage Regime

Fig. 3 compares the performance of JT without MRC and BSS without MRC in two cases,

(n1, n2) = (2, 2) and (n1, n2) = (1, 2) using (15), (18), (23) and (27). As expected, JT outper-

forms BSS in general. However, the performance gap between these two schemes reduces as

θ grows and approaches to zero for θ > 20 dB. This means that in the low-coverage regime

the power gain provided by JT has a negligible impact on the coverage probability compared to
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Fig. 4. Coverage probabilities for retransmission with MRC and spatial cooperation using (13), (19) and (22).

the gain due to interference suppression attained by both JT and BSS. Since BSS requires less

backhaul overhead than JT, it follows that BSS is a preferable cooperation technique for large

values of θ.

C. Retransmission with MRC

Fig. 4 compares the coverage probabilities for spatial cooperation with n = 2 cooperating BSs

and retransmission with MRC for different values of n1 and n2 using (13), (19) and (22). The

figure shows that if the receiver has MRC capability, we can reduce number of cooperating BSs

by using chase combining compared to spatial cooperation while using same number of resource

blocks. For example, when we compare retransmission with MRC using n1 = n2 = 1 and spatial

cooperation using two cooperating BSs, the former provides higher coverage probability up to

the threshold of 5 dB and stays comparable to the latter for higher values of thresholds. Similarly,

when we compare MRC using n1 = 1, n2 = 2 and spatial cooperation using three cooperating

BSs, MRC provides higher coverage probability up to the threshold of 9 dB and then stays

comparable to spatial cooperation. Therefore, retransmission with MRC can provide better or

comparable performance to spatial cooperation while using fewer cooperating BSs and hence

less backhaul overhead.
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VII. CONCLUSIONS

In this paper, we considered the problem of spatiotemporal cooperation in interference-limited

heterogeneous wireless networks. We focused on two cooperation techniques—JT and BSS—

and two decoding techniques—independent attempts and chase combining. For each pair of

cooperation/decoding schemes, we derived an integral expression for the coverage probability,

that we defined as the probability that the combined SIR across two retransmissions exceeds a

threshold value θ. We remark that θ provides an estimate of the attainable spectral efficiency in

the network, for instance by a simple inversion of the constrained capacity formula of a Gaussian

channel, hence it is related to the achievable data rate by the typical user.

Our analysis reveals the existence of two qualitatively different operating regimes. For small

values of θ, the coverage probability is determined, in first approximation, by the probability

that the channel fading gain from the cooperating BSs to the receiver is close to zero. In

this regime, both retransmissions and joint transmission provide diversity benefit against the

channel fading process and hence result in improved coverage compared to the non-cooperation

baseline. However, while retransmissions always yield time diversity, channel state information

at the cooperating BSs is required in order to achieve spatial diversity. Therefore, we conclude

that in this diversity-limited regime link layer retransmission techniques such as HARQ are a

viable alternative to spatial cooperation techniques such as joint transmission, unless distributed

implementation of space-time codes such as the Alamouti code is possible.

For large values of θ, on the other hand, the coverage probability is determined mainly by

the probability that the interference power is large. In this regime, both joint transmission and

BSS are effective cooperation techniques in improving the coverage probability as they both

suppress part of the interference power. Since our numerical results show that both techniques

achieve comparable performance and since BSS requires less overhead traffic in the backhaul

network than joint processing, we conclude that in the interference-limited regime BSS is a

viable alternative to joint transmission.

It should be remarked that in order to ensure analytical tractability, this paper focused on the

single antenna case and on simple space-time cooperation techniques. Nevertheless, we believe

that the main insight of the paper, i.e., the existence of two separate regimes, transcends the

simplicity of our model. Finally, we wish to remark that while in this paper we assumed that
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BSs retransmit erroneous data at most once, most of the proof techniques generalize to the

case of arbitrary number of retransmissions, although they will lead to more involved integral

expressions for the coverage probability.

APPENDIX A

PROOF OF LEMMA 1

We first map the PPPs to a single one-dimensional PPP whose points represent the inverse of

the received power. For every i = 1, . . . , K, let Ξi = {∥x∥α/Pi, x ∈ Φi} denote the normalized

path loss between each BS in Φi and the typical user located at the origin. By the mapping

theorem [21, Theorem 2.34], Ξi is a PPP with intensity λi(x) = λi
2π
α P 2/α

i x2/α−1, x ∈ R+. From

the independence of the PPPs Φ1, · · · ,ΦK , it follows that Ξ1, · · · ,ΞK are also independent and

thus the process Ξ =
⋃K

i=1 Ξi is a non-homogeneous PPP with intensity λ(x) =
∑K

i=1 λi(x).

Let the elements of Ξ be indexed in increasing order, such that ∥x1∥α/Pν(x1) ≤ ∥x2∥α/Pν(x2) ≤

∥x3∥α/Pν(x3) ≤ · · · , and define γi = ∥xi∥α/Pν(xi) = l−2
i as the normalized path loss between

the typical user and the i-th BS in the ordered list.

Assuming n1 ≤ n2, the normalized path loss of the cooperating BSs in C2 is given by

γ = {γ1, . . . , γn2
}. Then, by defining gik := |hik|2 for k = 1, 2 and g = (g1, g2), the

interference in the k-th transmission Ik =
∑

i>nk
gikγ

−1
i . Now, the joint ccdf of SIR1 and SIR2,

as φ(n1, n2, θ1, θ2) for JT, is expressed as

P

(
2
⋂

k=1

{SIRk > θk}

)

=P

(
2
⋂

k=1

{∣
∣
∣

∑

i≤nk

γ−1/2
i hik

∣
∣
∣

2
> θkIk

}
)

(a)
= Eγ,Ξ,g

[

exp

(

−
θ1I1

∑

i≤n1
γ−1
i

)

· exp

(

−
θ2I2

∑

i≤n2
γ−1
i

)]

=Eγ EΞ,g

⎡

⎣e
−

θ1
∑

i>n1
gi1γ

−1
i

∑
i≤n1

γ−1
i

−
θ2

∑
i>n2

gi2γ
−1
i

∑
i≤n2

γ−1
i

∣
∣ γ1, . . . , γn2

⎤

⎦

=

∫

0<y1<...
...<yn2

<∞

L

(

θ1
∑

i≤n1
y−1
i

,
θ2

∑

i≤n2
y−1
i

)

fγ(y) dy, (48)
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where (a) follows due to the fact that hi1 and hi2 are mutually independent and
∣
∣
∣

∑

i≤nk
γ−1/2
i hik

∣
∣
∣

2

is exponentially distributed with mean
∑nk

i=1 γ
−1
i because of the Rayleigh fading assumption;

L(s1, s2) is the Laplace transform of the interference vector [I1, I2] and fγ(y) is the joint

distribution of γ which can be obtained by following the similar steps as in the derivation of

the joint distribution of the nearest points in a homogeneous PPP [22]. It can be easily verified

that for any 0 < y1 < . . . < yn2
< ∞, the joint distribution of γ is given by

fγ(y) = e−π
∑K

i=1 λiP
2/α
i y

2/α
n2

n2∏

i=1

(
K
∑

j=1

2π

α
λjP

2/α
j y2/α−1

i

)

. (49)

Given γ = y, the Laplace transform of the interference vector, L(s1, s2), can be expressed as

EΞ,g

[

e−s1I1−s2I2 | γ = y
]

=EΞ,g

[

e−s1
∑n2

i=n1+1
gi1y

−1
i × e−

∑

j>n2
(s1gj1+s2gj2)γ

−1
j

]

(a)
=

n2∏

i=n1+1

(
1

1 + s1y
−1
i

)

EΞ

[

∏

j>n2

1
(

1 + s1γ
−1
j

) (

1 + s2γ
−1
j

)

]

(b)
=

n2∏

i=n1+1

(
1

1 + s1y
−1
i

)

e
−

∫ ∞

yn2

(

1− 1

(1+s1x
−1)(1+s2x

−1)

)

λ(x)dx

(c)
=

n2∏

i=n1+1

(
1

1 + s1y
−1
i

)

× exp

(

−2π
K∑

i=1

λiP
2/α
i y2/αn2

G
(

s1y
−1
n2
, s2y

−1
n2

)

)

, (50)

where (a) uses the fact that gi1 and gi2 are mutually independent and exponentially distributed

with unit mean; (b) is due to the probability generating functional for a PPP [21, Theorem

4.9]; (c) follows from the transformation x = yn2
tα and the definition of G(x, y) in (8).

Substituting (49) and (50) in (48) and using the transformation ui = π
∑K

j=1 λjP
2/α
j y2/αi gives

the result in (8) for JT.

APPENDIX B

PROOF OF THEOREM 2

As in the proof in Appendix A, we define the combined normalized path loss process Ξ with

intensity measure λ(x). We assume n1 ≤ n2 and define γi, gi, g and Ii as in Appendix A. The

coverage probability in (7) can be further expressed as

P
MRC = P(SIR1 > θ) + P(SIR1 + SIR2 > θ, SIR1 < θ)
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(a)
= P(SIR1 + SIR2 > θ)

= P

(

θ − SIR2 < SIR1

)

= EΞ,Z,g

[

P

(

(θ − Z)I1 <
∣
∣
∣

∑

i≤n1

γ−1/2
i hi1

∣
∣
∣

2
∣
∣
∣
∣
∣
Ξ, Z

)]

,

where (a) follows from set theory and the fact that SIRk > 0 and we define the random variable

Z = SIR2 for simplicity. Using the fact that |
∑

i≤n1
γ−1/2
i hi1|2 is exponentially distributed with

mean
∑n1

i=1 γ
−1
i because of the Rayleigh fading assumption, the coverage probability can be

expressed as

EΞ,Z,g1

[

exp

(

−
(θ − Z)+I1
∑

i≤n1
γ−1
i

)]

=EΞ,Z,g1

[

exp

(

−s1(θ − Z)+
∑

i>n1

gi1γ
−1
i

)]

=EΞ,Z

[

∏

i>n1

1

1 + s1(θ − Z)+γ−1
i

]

=EΞ,Z

[

∏

i>n1

f(γi/(θ − Z)+)

]

(51)

where we define s1 = 1/
∑

i≤n1
γ−1
i and f(x) := 1

1+s1x−1 . Next, we derive the conditional

probability distribution function (pdf) of Z as follows

P(Z ≤ z | Ξ) = P

⎛

⎜
⎝

∣
∣
∣

∑n2

i=1 γ
−1/2
i hi2

∣
∣
∣

2

∑

i>n2
gi2γ

−1
i

≤ z
∣
∣
∣Ξ

⎞

⎟
⎠

= 1− Eg2

[

exp

(

−
z
∑

i>n2
gi2γ

−1
i

∑

i≤n2
γ−1
i

)]

= 1−
∏

i>n2

1

1 + zs2γ
−1
i

,

where we define s2 = 1/
∑

i≤n2
γ−1
i . Differentiating the above equation with respect to z, we

get the pdf of Z as

fZ|Ξ(z) =
∑

j>n2

⎛

⎜
⎝

s2γ
−1
j

(1 + zs2γ
−1
j )2

∏

i>n2

i ̸=j

1

1 + zs2γ
−1
i

⎞

⎟
⎠ . (52)
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Now we can compute the expectation over Z in (51) using (52) as
∫ ∞

0

EΞ

[

∏

i>n1

f(γi/(θ − z)+)× fZ|Ξ(z)

]

dz

(a)
=

∫ ∞

0

Eγ

⎡

⎢
⎣

n2∏

i=n1+1

f(a−1γi)× EΞ

⎡

⎢
⎣

∑

j>n2

s2γ
−1
j f(a−1γj)

(

1 + zs2γ
−1
j

)2

∏

k>n2

k ̸=j

f(a−1γk)

1 + zs2γ
−1
k

⎤

⎥
⎦

⎤

⎥
⎦ dz

(b)
=

∫ ∞

0

Eγ

[
n2∏

i=n1+1

f(a−1γi)×
∫ ∞

γn2

s2x−1f(a−1x)λ(x)

(1 + zs2x−1)2
EΞ

[

∏

k>n2

f(a−1γk)

1 + zs2γ
−1
k

]

dx

]

dz

(c)
=

∫ ∞

0

Eγ

[
n2∏

i=n1+1

f(a−1γi)×
∫ ∞

γn2

s2x−1f(a−1x)λ(x)

(1 + zs2x−1)2
exp

(

−
∫ ∞

γn2

(

1−
f(a−1y)

1 + zs2y−1

)

λ(y)dy

)

dx

]

dz

(d)
=

∫ ∞

0

Eγ

[
n2∏

i=n1+1

f(a−1γi)× 2π
K
∑

j=1

λjP
2/α
j γ2/α−1

n2
s2 ×H

(

zs2γ
−1
n2
, as1γ

−1
n2

)

×

exp

(

−2π
K
∑

j=1

λjP
2/α
j γ2/α

n2
G
(

zs2γ
−1
n2
, as1γ

−1
n2

)

)]

dz

(e)
=

∫ ∞

0

∫

0<u1<...
...<un2

<∞

n2∏

i=n1+1

1

1 +
au−α/2

i
∑

k≤n1
u
−α/2
k

×
2u1−α/2

n2

∑

k≤n2
u−α/2
k

×H

(

zu−α/2
n2

∑

k≤n2
u−α/2
k

,
au−α/2

n2

∑

k≤n1
u−α/2
k

)

× exp(−un2
)

× exp

(

−2un2
G

(

zu−α/2
n2

∑

k≤n2
u−α/2
k

,
au−α/2

n2

∑

k≤n1
u−α/2
k

))

dudz

=

∫ ∞

0

σ(n1, n2, z, (θ − z)+)dz (53)

where (a) defines a = (θ − z)+; (b) is due to the Campbell-Mecke formula [21]; (c) is due

to the probability generating functional for a PPP [21, Theorem 4.9]; (d) follows from the

transformations x = γn2
tα, y = γn2

uα and the definitions of G(x, y) in (8) and H(x, y) in (20);

(e) uses the values of s1, s2 and the pdf of γ in (49) and then uses the transformation ui =

π
∑K

j=1 λjP
2/α
j y2/αi for i = 1, . . . , n2. Hence, we get the desired result in Theorem 2 for JT.

APPENDIX C

PROOF OF THEOREM 6

Given the point processes, the sum in the numerator of the SIR expression in (38) is a

sum of Rayleigh distributed random variables. We henceforth denote these random variables as

Sik = li |hik|.
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For retransmission without MRC, we can express the outage probability using (38) as

P

⎛

⎝

2
⋂

k=1

⎧

⎨

⎩

(
nk∑

i=1

Sik

)2

< θIk

⎫

⎬

⎭

⎞

⎠

= Eli,Ik

⎛

⎜
⎜
⎝

2
∏

k=1

∫

Dnk,
√

θIk
(xk)

nk∏

i=1

gSik|li(xik)dxk

⎞

⎟
⎟
⎠

,

where gSik|li(x) =
x
2l2i

e−x2/2l2i is the probability density function of Sik and we define Dn,r(x) =

{x ∈ (R+)n : ∥x∥1 < r}. The outage probability can be further expressed by substituting

xik =
√
θIktik as:

Eli,Ik

⎛

⎜
⎝

2
∏

k=1

(θIk)
nk

∫

Dnk,1(tk)

e
−θIk

nk
∑

i=1

t2ik
2l2i

nk∏

i=1

tik
l2i
dtk

⎞

⎟
⎠

(a)∼ θn1+n2 Eli,Ik

⎛

⎜
⎝

2∏

k=1

Ink
k

∫

Dnk,1(tk)

nk∏

i=1

tik
l2i
dtk

⎞

⎟
⎠

(b)
= θn1+n2 Eli,Ik

(
2
∏

k=1

Ink
k

∏nk
i=1 l

−2
i

(2nk)!

)

, (54)

where (a) is due to the fact that exp(x) ∼ 1 as x → 0 and (b) is due to [23, Equation 4.634].

Applying Lemma 3, we get a diversity gain of n1 + n2 for retransmission without MRC.

For retransmission with MRC, we define Wk =
(
∑nk

i=1
Sik)

2

Ik
for k = 1, 2 and use (38) to express

the outage probability as

P

(
2
∑

k=1

Wk < θ

)

=Eli,Ik

[∫ ∞

0

P (W1 < θ − w | I1) fW2|I2(w)dw

]

(55)

Following similar steps as in (54), we can derive the cdf of Wk given Ik, FWk|Ik(x) for x ≥ 0

and k = 1, 2 as follows.

P (Wk < x | Ik)

= (xIk)
nk

∫

Dnk,1(tk)

e
−xIk

nk
∑

i=1

t2ik
2l2i

nk∏

i=1

tik
l2i
dtk (56)
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and fWk|Ik(x) = ∂
∂xFWk|Ik(x). Substituting these values in (55), the outage probability is ex-

pressed as

Eli,Ik

[∫ ∞

0

FW1|I1
(

(θ − w)+
)

fW2|I2(w)dw

]

(a)
= Eli,Ik

[∫ 1

0

FW1|I1 (θ(1− t)) fW2|I2(θt)θdt

]

=Eli,Ik

⎡

⎢
⎣

1∫

0

(θ(1− t)I1)
n1 (θI2)

n2tn2−1 ×
∫

Dn2,1(t2)

∫

Dn1,1(t1)

e
−θ(1−t)I1

n1
∑

i=1

t2i1
2l2i

n1∏

i=1

ti1
l2i
dt1×

e
−θtI2

n2
∑

i=1

t2i2
2l2i

(

n2 − θtI2

n2∑

i=1

t2i2
2l2i

)
n2∏

i=1

ti2
l2i
dt2dt

]

(b)∼θn1+n2 Eli,Ik

[
2
∏

k=1

Ink
k

(2nk)!
∏nk

i=1 l
2
i

]

n2B(n1 + 1, n2), (57)

where (a) is due to the transformation w = θt and the fact that FW1|I1(0) = 0; (b) is due to

the fact that exp(x) ∼ 1 as x → 0 and then we use [23, Equation 4.634] for nk dimensional

integrals and the definition of the beta function for the integral in t. Applying Lemma 3, we get

a diversity gain of n1 + n2 for retransmission with MRC.

APPENDIX D

PROOF OF THEOREM 7

By defining γ as in Appendix A with n1 = n2 = 2 and gi = |hi|2, we can express the coverage

probability in (44) as

Pc = P
(

g1γ
−1
1 + g2γ

−1
2 > θI

)

(a)
= EI,γ

[
γ2e−γ1θI − γ1e−γ2θI

γ2 − γ1

]

(b)
= Eγ

[
γ2L(θγ1, 0)− γ1L(θγ2, 0)

γ2 − γ1

]

, (58)

where (a) follows from the fact that g1 and g2 are exponentially distributed with unit mean and

the cdf of the hypoexponential distribution; (b) follows by the definition of the Laplace transform

in (50). Using the value of L(., .) in (50) and the joint density function of γ in (49), the above



29

coverage probability can be further expressed as

∫

0<y1≤
y2<∞

(

y2 exp

(

−2π
K
∑

i=1

λiP
2/α
i y2/α2 G (θy1/y2, 0)

)

−y1 exp

(

−2π
K
∑

i=1

λiP
2/α
i y2/α2 G (θ, 0)

))

fγ(y)

y2 − y1
dy

(a)
=

∫

0<u1≤
u2<∞

(

uα/2
2 exp

(

−2u2G
(

θ(u1/u2)
α/2, 0

))

− uα/2
1 exp (−2u2G (θ, 0))

) e−u2

uα/2
2 − uα/2

1

du

(b)
=

∞∫

0

du2

1∫

0

dt
(

uα/2
2 exp

(

−2u2G
(

θtα/2, 0
))

− (u2t)
α/2 exp (−2u2G (θ, 0))

) u2e−u2

uα/2
2 − (u2t)α/2

(c)
=

1∫

0

(
1

(1 + 2G(θtα/2, 0))2
−

tα/2

(1 + 2G(θ, 0))2

)
dt

1− tα/2
, (59)

where (a) follows from the change of variable ui = π
∑K

i=1 λiP
2/α
i y2/αi for i = 1, 2; (b) is due

to the substitution u1 = u2t and (c) follows by integrating over u2.
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