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Abstract

Due to its tractability, a multi-tier model of mutually independent Poisson point processes (PPPs) for

heterogeneous cellular networks (HCNs) has recently been attracting much attention. However, in reality,

the locations of the BSs, within each tier and across tiers, are not fully independent. Accordingly, in

this paper, we propose two HCN models with inter-tier dependence (Case 1) and intra-tier dependence

(Case 2), respectively. In Case 1, the macro-BS (MBS) and the pico-BS (PBS) deployments follow

a Poisson point process (PPP) and a Poisson hole process (PHP), respectively. Under this setup and

conditioning on a fixed serving distance (distance between a user and its nearest serving BS), we derive

bounds on the outage probabilities of both macro and pico users. We also use a fitted Poisson cluster

process to approximate the PHP, which is shown to provide a good approximation of the interference

and outage statistics. In Case 2, the MBSs and the PBSs follow a PPP and an independent Matern cluster

process, respectively. Explicit expressions of the interference and the outage probability are derived first

for fixed serving distance, second with random distance, and we derive the outage performance, the

per-user capacity and the area spectral efficiency for both cases. It turns out that the proposed Case 2

model is a more appropriate and accurate model for a HCN with hotspot regions than the multi-tier

independent PPP model since the latter underestimates some key performances, such as the per-user

capacity and the ASE, by a factor of 1.5 to 2. Overall, the two models proposed provide good tradeoffs

among the accuracy, tractability, and practicability.
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I. INTRODUCTION

A. Motivation

To meet the crushing demands for mobile data traffic and universal seamless coverage, cellular

networks are currently undergoing a major transformation from a thoroughly planned deployed

to more irregular, heterogeneous deployments of macro-, pico- and femto-base stations (BSs) [3].

This increasing heterogeneity and density in cellular networks renders the traditional hexagonal

and regular deployment models of limited utility but, in turn, motivates recent studies, tools

and results inspired by stochastic geometry [4–6]. Most of the stochastic geometry works on

cellular networks focus on the case where the BS deployment follows a homogeneous Poisson

point process (PPP) for single-tier networks [7], or multiple tiers of mutually independent

PPPs for heterogeneous cellular networks (HCNs) [8–10]. This means that the BSs are located

independently of each other and their spatial correlation is ignored. Although the assumption of

Poisson processes makes the analysis tractable, it does not seem realistic in the case of uneven

population distributions and when BSs are deployed with an objective (say, capacity) that is

strongly associated with user activities, which leads to dependence among the BSs including

inter-tier dependence (i.e., the BSs belonging to different tiers exhibit repulsion) and intra-tier

dependence (i.e., the BSs within a tier are not totally independent but planned deployments with

a degree of randomness due to irregular terrains and hotspots). Therefore, models for HCNs

accounting for the spatial dependence should be devised and analyzed.

B. Related Work

Although significant efforts have been made recently towards analyzing the HCNs by both

academia and industry, very few works focus on the modeling of HCNs. An increasingly popular

approach is to use the homogeneous PPP model from stochastic geometry to capture the irregular

network topology of HCNs. The model with K independent tiers of PPP distributed BSs, i.e.,

the so-called HIP (homogeneous independent Poisson) model in [11], is by far the most well-

understood HCN model in the literature due to its simplicity and tractability [8–10]. However,

although there is randomness in the locations of small cells due to the variable capacity demands
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across the coverage area, it is unrealistic to assume that the positions of the BSs are completely

uncorrelated. This is because the BSs are likely to be deployed through a sophisticated network

planning procedure, which results in inter-tier and intra-tier correlations among the BSs. To our

best knowledge, only [12] has proposed spatial models of HCNs with dependence; they are

based on the Ginibre point process (GPP) [13] whose points exhibit repulsion, accounting for

the negative correlation among the BSs in different tiers and that in the same tier, respectively.

However, the correlation among the BSs is not always of repulsive nature; sometimes, BSs are

clustered due to increased user density. Therefore, both the inter-tier and the intra-tier dependence

need to be considered when modeling the HCNs, which has been partially investigated in our

previous works [1] and [2]: for the former, we propose a two-tier HCN model with inter-tier

dependence, where the BSs in different tiers should be deployed at certain distance to avoid the

high outage probabilities resulting from the cross-tier interference; and for the latter, we propose

a two-tier HCN model with intra-tier dependence, where small cells are primarily added to

increase capacity in hotspots with high user demand. Accordingly, it is unnecessary to add small

cells to every macrocell; instead, they should be placed in regions where an MBS cannot offer

enough capacity. The analysis in our previous works are conditioned on the distance between a

user equipment (UE) and its serving BS, i.e., the serving distance, while, in this paper, we will

randomize the serving distance to make the analysis more general and complete, and provide a

more detailed comparison with the HIP model.

C. Contributions

The main objective of this paper is to investigate novel models that capture the spatial

dependence of real HCNs, which makes them more applicable to actual network deployments

than the HIP model, and to provide useful insights into the analysis and design of future wireless

networks.

Specifically, we propose two two-tier HCN models with two types of BSs, i.e., MBSs and

PBSs, aiming at two different cases: (1) the inter-tier dependence is considered and the small

cells are primarily added to serve the edge UEs and (2) the intra-tier dependence is considered

and the small cells are primarily added to increase capacity in hotspots.

In Case 1, PBSs are deployed only outside the MBS exclusion regions. This architecture, to

some extent, helps reduce the inter-tier interference (because of the exclusion region), which is

July 14, 2014 DRAFT



4

one of the major challenges of HCNs. Under this setup, the MBS and the PBS deployments

follow a PPP and a Poisson hole process (PHP) [4, Section 3.3], respectively. The users are

uniformly distributed in the whole plane, following a PPP. Due to the inter-tier dependence,

an exact calculation of the interference and outage probability seems unfeasible. Instead, two

different approaches are taken to tackle this problem: one is to derive bounds on the outage

probabilities of both macro users (MUs) and pico users (PUs), and the other is to approximate

the PHP using fitted Poisson cluster processes (PCPs). Both approaches have their own strengths

and weaknesses: the bounds derived using the first approach are tight and have closed-form

expressions that are easy to calculate, while the approximations using fitted point processes

provide a complete topology of the network deployments even though the resulting expressions

involve multiple integrals.

In Case 2, the traffic load can have significant spatial fluctuations and clusters of PBSs are

placed in hotspot regions. Under this scenario, the MBSs and the PBSs follow a PPP and an

independent Matern cluster process (MCP) [4], respectively. Thereby, the intra-tier dependence is

reflected by the MCP whose points exhibit clustering. For the user distribution, the user density

in the hotspot regions is higher than in the rest of the network, and thus the users in the whole

network form a Cox process [4]. Exact expressions of the interference and the outage probability

are derived. It is observed that the model with intra-tier dependence is a more promising and

practical HCN model than the HIP model for network deployments with hotspots.

In both cases, the expressions derived for the coverage probability are first conditioned on the

distance between a UE and its nearest serving BS. Second, we randomize the distance between

a UE and its nearest serving BS: for Case 1, we assume that an MU is uniformly distributed in

the exclusion region of its nearest MBS and that the distance between a PU and its nearest PBS

follows the Weibull distribution; for Case 2, both types of UEs are uniformly distributed in the

disks centered at the serving BS. We find the relationship between the radius of the exclusion

region and the parameter in the Weibull distribution and derive the outage probability, the per-

user capacity and the area spectral efficiency (ASE) for both cases. An important observation

is that both the per-user capacity and the ASE improve with smaller cells, but outage does

not. By comparing the random distance case with the fixed case, we find that the trend of the

outage curves are the same due to the same BS deployment. This observation indicates that the

analysis of the fixed case is not only more tractable but can still provide profound insights into
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the performance of HCNs.

D. Organization

The rest of the paper is organized as follows: Section II introduces the two network models

with inter-tier dependence (Case 1) and intra-tier dependence (Case 2), respectively. Section III

and IV present the analysis of the interference and the outage probabilities of both MUs and

PUs for the two cases conditioning on the distance between a UE and its nearest serving BS,

respectively. Section V explores three key performance metrics, namely the outage, the per-user

capacity, and the ASE, when the distance between a UE and its serving BS is random, and

Section VI offers the concluding remarks.

II. NETWORK MODEL

The transmit power is μm for each MBS and μp for each PBS. The power received by a

receiver located at z due to a transmitter at x is modeled as μhx�(x − z), where hx is the

power fading coefficient (square of the amplitude fading coefficient) associated with the channel

between x and z, and μ is either μm or μp. We assume that the fading coefficients are i.i.d.

exponential (Rayleigh fading) with E[h] = 1. �(x) = ‖x‖−α is the large-scale path loss model

with α > 2. We focus on an MU at a distance rm from the serving MBS in a random direction

and a PU at a distance rp from the serving PBS in a random direction. The signal-to-interference

ratio (SIR) threshold is denoted as θm for MUs and θp for PUs.

A. Two-tier HCN Model with Inter-tier Dependence (Case 1)

Consider a two-tier HCN with two types of BSs, i.e., MBSs overlaid with PBSs, shown in

Figure 1. The locations of the MBSs follow a homogeneous PPP Φm = {x1, x2, . . .} ⊂ R
2 of

density λm, and the potential locations of the PBSs follow another independent homogeneous

PPP Φ̃p = {y1, y2, . . .} ⊂ R
2 of density λ̃p. Each MBS has an exclusion region which is a

disk with radius D centered at the location of the MBS. Considering the critical issues of the

current HCNs, such as interference, resource utilization and cost, PBSs are only deployed outside

the exclusion regions to fill the coverage holes and thus provide better service to users, while

guaranteeing that PBSs will not generate an aggregate interference resulting in the outage of

macro users through designing the exclusion radius D. Under this setup, the PBSs form a point
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Fig. 1. The two-tier HCN model with inter-tier

dependence (Case 1). The squares are the MBSs

and the triangle is the typical MU at a distance rm

from its serving MBS in a random direction. The

big circles are the exclusion regions with radius D.

The small circles are the PBSs deployed outside the

exclusion regions and the ‘+’ is the typical PU at

a distance rp from its serving PBS in a random

direction.

Fig. 2. The two-tier HCN model with intra-tier

dependence (Case 2). The squares are the MBSs and

the triangle is the typical MU at a distance rm from

its serving MBS in a random direction. The dots are

the PBSs and the ‘+’ is the typical PU at a distance

rp from its serving PBS in a random direction.

process called the Poisson hole process, which is a Cox process and has been used for cognitive

networks [14]. We denote this process by Φp ⊂ Φ̃p and define it as follows.

Definition 1. (Poisson hole process, PHP [4, Example 3.7]) Let Φm be a PPP of intensity λm

and Φ̃p be a PPP of intensity λ̃p > λm. For each x ∈ Φm, remove all the points in Φ̃p

⋂
b(x,D),

where b(x,D) is a ball centered at x with radius D. Then, the remaining points of Φ̃p form the

Poisson hole process Φp. Its intensity is λp = λ̃p exp(−λmπD
2).

The radius D of the exclusion region is chosen as

D = ζrm

(
μp

μm

) 1
α

, (1)

where ζ is a design factor. It is intuitive why D is in this form since the radius D should

be proportional to the distance between the serving MBS and its user rm (rm < D) and the

transmission power of the PBSs μp, and inversely proportional to the transmission power of the
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MBSs μm. The path loss exponent should also be taken into account since it greatly affects the

interference. Adding a design parameter ζ is to make the formula of D more general, which

allows mimicking the concept of Cell Range Expansion (CRE), i.e., allowing a user to be served

by a cell with weaker received power [15]. For our model, we can control the offloading from the

macro to pico cells by adjusting the size of the exclusion region which determines the number

of PBSs that can be retained in the HCNs. When D is set relatively large, very few potential

PBSs will be retained and most users are served by the MBSs. Conversely, when D is small, the

PBSs will serve more users. The value of ζ is chosen to guarantee that PBSs will not generate

an aggregate interference resulting in the outage of macro users, and, conversely, the MBSs will

not generate an aggregate interference resulting in the outage of PUs since the minimum distance

between a MBS and a PU is D − rp.

We assume that the MBSs and the PBSs share the same spectrum, and each of them has Nb

resource blocks (RBs) and serves one UE at most using one RB at a time. The users are assumed

to be distributed in the whole plane according to a homogeneous PPP with density λu. Under this

setup, the users located within distance D of an MBS get served by MBSs within that distance,

i.e., a fraction of κm = 1 − exp(−λmπD
2) of the users will be served by MBSs, and the rest

are served by PBSs. We denote Nmu and Npu as the number of UEs served by the typical MBS

and the typical PBS, respectively. Due to the fact that exclusion regions may overlap, an exact

calculation of the distribution of Nmu seems unfeasible. Thus, we approximate the distribution

of Nmu by the Poisson distribution with mean κmλu/λm, which is the mean of Nmu, denoted as

Nmu since the average number of UEs located in the Voronoi region of a MBS is λu/λm. For

the distribution of Npu (i.e., the number of UEs located in a Voronoi region formed by a PPP

with intensity Φ̃p), the probability generating function (PGF) is given by [16]

GNpu(z) ≈
(
1− λu(z − 1)

λ̃pK

)−K
. (2)

where K = 3.575, and the distribution is obtained from the derivatives of GNmu(z) at zero with

mean Npu = λu/λ̃p. Figure 3 and 4 verify the accuracy of the approximations for the distribution

of UEs when λm = 1.6× 10−5, λp = 8.0× 10−4, λu = 8.0× 10−4. We can see that for a smaller

D (say, D = 55), the approximation is as accurate as the simulation result while for a larger D

(say, D = 95), the distribution of Nmu can still be closely approximated.

Since Nmu and Npu are random variables, some MBSs or PBSs will be under-utilized and
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Fig. 3. The distributions of UEs for D=55. Fig. 4. The distributions of UEs for D=95.

some over-utilized. The number of the MBSs and PBSs that are using a given RB depends on

the coordination and interactions among the BSs which is out of the scope of this paper. For

simplicity, we assume that the RBs are uniformly and independently allocated to the UEs by

each MBS and PBS, and we use the approximation Pbusy,m ≈ min{Nb, Nmu}/Nb and Pbusy,p ≈
min{Nb, Npu}/Nb, representing the probability that a given subchannel is used by an MBS and a

PBS, respectively. In this case, the interfering MBSs (or potential PBSs, PBSs) using a certain RB

constitute a point process Φ′m (or Φ̃′p, Φ′p), which can be assumed to be an independent thinning

of the original process Φm (or Φ̃′p, Φ′p) with retaining probability Pbusy,m (or Pbusy,p) [17]. Thus,

the density of Φ′m (or Φ̃′p, Φ′p) will be λ′m = λmPbusy,m (or λ̃′p = λ̃pPbusy,p λ′p = λpPbusy,p), and

Φ′p ⊂ Φ̃′p. These two independently thinned point processes will prove useful in the subsequent

analysis.

B. Two-tier HCN Model with Intra-tier Dependence (Case 2)

Consider a two-tier HCN with two types of BSs: MBSs and PBSs, shown in Figure 2, where

the user density in those regions covered by PBSs (i.e., the hotspots) is higher than in the rest

of the network. The locations of the MBSs follow a homogeneous PPP Φm = {x1, x2, . . .} ⊂ R
2

of density λm, and the locations of the PBSs follow an independent Matern cluster process

(MCP) Φp = {y1, y2, . . .} ⊂ R
2 whose parent Poisson point process Φl has density λl. For the

user distribution, the population centers of radius R are assumed to be Poisson distributed and

covered using PBSs forming a MCP such that (on average) each PU can be served by its own
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PBS. Denoting the average number of points per cluster as c̄, the density of the PBSs is λp = λlc̄.

Since points in each cluster are uniformly distributed in the circle of radius R centered at its

parent point, the density of the active users, i.e., the PU density, in these population centers is

c̄/(πR2). The macro users (MUs) distributed in the rest of the network are served by their own

MBSs. To facilitate the calculation, we assume that each PBS serves one PU and each MBS

serves one MU in one resource block at a time, thus the densities of MUs and PUs are equal to

that of the MBSs and PBSs, respectively. Under this setup, the total UEs in the network form a

Cox process with density λm+λp that are clustered in hotspots and uniformly distributed in the

rest.

III. ANALYSIS OF THE TWO-TIER HCN MODEL WITH INTER-TIER DEPENDENCE

In this section, we use two different approaches to analyze the interference and outage

probability of the two-tier HCN model with inter-tier dependence (Case 1) conditioning on

the distance between a UE and its nearest serving BS. We first derive bounds on the outage

probabilities of both MUs and PUs, and then use the fitted PCP to approximate the PHP.

There are four types of interference: the interference from the MBSs to the MUs Imm, the

interference from the MBSs to the PUs Imp, the interference from the PBSs to the MUs Ipm,

and the interference from the PBSs to the PUs Ipp. Each of them can be defined as I(z) =∑
x∈Φ\{x0} μhx�(z−x) to represent the interference at z resulting from the interferers positioned

at the points of the process Φ (either Φm or Φp), where x0 is the serving BS, and μ is either

μm or μp, depending on which type of interference is considered. To calculate the interference

to the MUs, we condition on having a MU at the origin, the typical user, i.e., there is an extra

MBS, namely, the serving MBS, on the circle of radius rm centered at o, which yields the Palm

distribution for the MBSs. By Slivnyak’s theorem [4], this conditional distribution is the same

as the original one for the macro-tier in the region R
2 \ b(o, rm). For the pico-tier, however,

conditioning on a PBS at a certain location generally changes the distance distribution since

whether a PBS is deployed is determined by the locations of the MBSs. This is the reason why

only bounds or approximations through fitting the PCP can be obtained for the interference terms

involving the PBSs.
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A. Interference and Outage Analysis of MUs

The MUs suffer from two types of interference: Imm and Ipm. The typical MU accesses the

nearest MBS x0, assumed at distance rm. Since the fading is Rayleigh and the interfering MBSs

are distributed as a PPP, the Laplace transform of Imm is

LImm(s)=E
!x0

Φ′m,h

⎛⎝exp
⎛⎝−s ∑

x∈Φ′m
μmhx�(x)

⎞⎠⎞⎠
=E

!x0

Φ′m

( ∏
x∈Φm

1

1 + sμm�(x)

)
(a)
= exp

(
−λ′m

∫
R2\b(o,rm)

(
1− 1

1 + sμm�(x)

)
dx

)
(b)
= exp

{
−πλ′m

μmsδ

1−δ
r2−αm F (1, 1−δ; 2−δ;−μmsr

−α
m )

}
, (3)

where δ = 2/α, (a) follows from the probability generating functional (PGFL) of the PPP, which

states that E[
∏

x∈Φ f(x)] = exp(− ∫
R2(1− f(x))Λ(dx)) for f : R2 → [0, 1], and the integration

regions is R
2 \ b(o, rm) since the closest interferer is at least at a distance rm. F (x, y; z;w) is

the hypergeometric function [18], and (b) can be obtained with the help of equation (3.194.5)

in [18] and a change to polar coordinates.

Since the PBSs are least at distance D from the MBSs, Ipm is stochastically dominated1 by

the interference Îpm caused by the points in Φ̃′p except those that are within distance D from

the desired MBS. Denoting the disk centered at the location of the serving MBS with radius D

as Hm and letting HCm = R
2 \ Hm, we obtain the Laplace transform of Îpm using a modified

path loss law �̃(x) = �(x)1x∈HCm as

LÎpm
(s)=EΦ̃′p,h

⎛⎝exp

⎛⎝−s∑
x∈Φ̃′p

μphx�̃(x)

⎞⎠⎞⎠
=exp

(
−λ̃′p
∫
R2

1− 1

1 + sμp�̃(x)
dx

)

=exp

(
−λ̃′p
∫
HCm

sμp�(x)

1 + sμp�(x)
dx

)

1A random variable A stochastically dominates a random variable B if P(A > x) ≥ P(B > x) for all x, or, equivalently,

FA(x) ≤ FB(x) for cumulative distribution functions FA(x) and FB(x).
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=exp

{
−λ̃′p
(

π2δ

sin(πδ)
μδ
ps

δ−πD2Am(s,D)

)}
, (4)

where

Am(s,D)=
1

πD2

∫
Hm

(
1− 1

1 + sμp�(|x|)
)
dx

=
1

πD2

∫ 2π

0

∫ rmcosϕ+
√

D2−r2msin2ϕ

0

rdrdϕ

1+s−1μ−1p rα
. (5)

With Rayleigh fading, the transmission success probability of the MU is the Laplace transform

evaluated at s = θmμ
−1
m rαm. Since the MBSs and the potential PBSs are distributed according to

two independent PPPs, Imm and Îpm are independent. Note that if Nb < Nm, some MUs will

not be served (i.e., blocked), and their outage probability will be 1. Therefore, an upper bound

for the outage probability εsm of MUs who are actually served by the MBS is given by

εsm < 1− LImm(θmμ
−1
m rαm)LÎpm

(θmμ
−1
m rαm). (6)

When α = 4, the above bound can be simplified to

εsm<1−exp

{
−π
√

θmr
2
m

(
λ′marctan

√
θm+λ̃′p

(
π

2

√
μp

μm

− D2

√
θmr2m

Am(θmμ
−1
m r4m, D)

))}
. (7)

Although the point process of the PBSs is not a PPP but a Poisson hole process (see Def.

1 in Section II), independent thinning of Φ̃′p outside the exclusion regions with probability

exp(−λmπD
2) yields a good approximation on Ipm, since the higher-order statistics of the point

processes, which govern the interaction between the nodes, become less relevant further away

from the receiver [19]. Hence,

εsm ≈ 1− LImm(θmμ
−1
m rαm)LĨpm

(θmμ
−1
m rαm), (8)

where the Laplace transform of the approximation Ĩpm is

LĨpm
(s)=exp

{
−λ′p
(

π2δ

sin(πδ)
μδ
ps

δ−πD2Am(s,D)

)}
. (9)

When α = 4, the approximation (8) can be simplified to

εsm≈1−exp

{
−π
√
θmr

2
m

(
λ′marctan

√
θm+λ′p

(
π

2

√
μp

μm

− D2

√
θmr2m

Am(θmμ
−1
m r4m, D)

))}
. (10)

Since we focus on the typical user, for the MBS considered, there is at least one user. So

Nmu in the typical user’s cell is larger by 1 compared to the Nmu of the typical MBS. Thus, the

calculation of the outage probability of MU should be conditioned on Nmu ≥ 1, i.e., Pr(Nmu ≥
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1) = 1− Pr(Nmu = 0) = 1− e−Nmu and Pr(Nmu = i|Nmu ≥ 1) = Pr(Nmu = i)/Pr(Nmu ≥ 1).

Finally, the outage probability of an arbitrary MU can be derived as

εm=
∞∑
i=1

(
min{Nb, i}

i
εsm+1−min{Nb, i}

i

)
Pr(Nmu= i)

Pr(Nmu≥1)
. (11)

B. Interference and Outage Analysis of PUs

Similar to the interference to the MUs, the PU also experiences two types of interference:

Imp and Ipp. First, we consider the interference Imp. The typical PU accesses the nearest PBS,

assumed at distance rp. Denoting as Hp the disk centered at the location of the serving PBS

with radius D and letting HCp = R
2 \ Hp, we have

LImp(s)=exp

{
−λ′m
(

π2δ

sin(πδ)
μδ
ms

δ−πD2Ap(s,D)

)}
, (12)

where

Ap(s,D)=
1

πD2

∫ 2π

0

∫ rpcosϕ+
√

D2−r2psin2ϕ

0

rdrdϕ

1+s−1μ−1m rα
. (13)

Now let us consider the interference Ipp from the other PBSs. Letting Îpp be the interference

caused by the points in Φ̃′p except those that are within the distance rp from the typical PU, Ipp

is stochastically dominated by Îpp, and its Laplace transform is

LÎpp
(s)= exp

(
−πλ̃′p

∫ ∞

r2p

1

1 + s−1μ−1p rα/2
dr

)

=exp

(
−πλ̃′p

μpsδ

1− δ
r2−αp F (1, 1−δ; 2−δ;−μpsr

−α
p )

)
. (14)

The success transmission probability of PUs is the Laplace transform evaluated at s = θpμ
−1
p rαp .

Since Imp and Îpp are independent, an upper bound for the outage probability εsp of PUs that

actually have a serving PBS can be obtained as

εsp < 1− LImp(θpμ
−1
p rαp )LÎpp

(θpμ
−1
p rαp ). (15)

When α = 4, the above bound can be simplified to

εsp<1−exp

{
−π√θpr

2
p

(
λ′parctan

√
θp+λ′m

(
π

2

√
μm

μp

− D2√
θpr

2
p

Ap(θpμ
−1
p r4p, D)

))}
. (16)

Similar to the MU, the outage probability of an arbitrary PU can be derived as

εp=
∞∑
i=1

(
min{Nb, i}

i
εsp+1−min{Nb, i}

i

)
Pr(Npu= i)

Pr(Npu>0)
, (17)

where Pr(Npu>0)=1−Pr(Npu=0)=1−(1+ λu

λ̃pK
)−K .
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Fig. 5. Comparison of the PHP (left) and TCP (right). For the PHP, λm = 25, λ̃p = 150, μm = 1, μp = 0.05,

rm = 0.04, rp = 0.01, ζ = 5, α = 4, D = 0.0946. For the TCP, λl = 45.4734, c̄ = 1.634, σ2 = 0.0023.

C. Approximation by Poisson Cluster Process

The PHP behaves like a PCP to some extent, since the exclusion regions in our model force

nodes to concentrate in other parts, making the whole node distribution appear clustered. The

PHP is a Cox process, which is known to be overdispersed, i.e., var Φ(B) ≥ EΦ(B). Based on

this, in this section, we provide another approach to approximate the outage performance of both

types of users: since the PHP is not very tractable, we approximate it with a PCP by matching

first- and second-order statistics. In particular, we focus on the Thomas cluster process (TCP).

Figure 5 illustrates a PHP and a TCP with the same first- and second-order statistics. It is easy

to observe that both processes are very different from the PPP.

1) Fitting a Poisson Cluster Process: The first-order statistic is the intensity, so

λp = λ̃p exp(−λmπD
2) = λlc̄, (18)

where λp is the intensity of the PBSs; λl is the density of parent points of the cluster process, and

c̄ is the average number of points in a cluster. For motion-invariant processes, the second-order

statistics are fully described by the pair correlation function g(r) [4]. For the TCP with variance

σ2, the g-function is [4, Section 6.4]

gT(r) = 1 +
1

4πλlσ2
exp

(
− r2

4σ2

)
, (19)

where λl and σ are obtained using curve-fitting and c̄ is then determined using (18).
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Fig. 6. Pair correlation function. λm = 1.6 × 10−5, λ̃p = 8.0 × 10−4, rm = 40, rp = 10, μm = 1, μp = 0.05,

α = 4.

TABLE I. The fitting results for different design factors ζ

ζ 3 3.5 4 4.5 5 5.5

D 56.74 66.20 75.66 85.12 94.57 104.03

Thomas

λl 6.00× 10−4 3.10× 10−4 1.93× 10−4 1.19× 10−4 7.53× 10−5 5.44× 10−5

σ2 876.40 1220.3 1469.4 1828.4 2241.1 2509.3

c̄ 1.130 2.062 3.098 4.672 6.755 8.512

To illustrate the fitting, we set λm = 1.6× 10−5, λ̃p = 8.0× 10−4, rm = 40, rp = 10, μm = 1,

μp = 0.05, α = 4. By using the nlinfit function (nonlinear least-squares fit) in Matlab, we fit the

g-function of the TCP to that of the PHP for different ζ , and the fitting results are listed in Table

I. It can be seen that the cluster radius R increases as D increases, which means the clustering

behavior is increasingly prominent as the exclusion region becomes larger (as expected). Figure

6 shows the g-functions of the PHP and TCP obtained by simulations for ζ = 3, 5, 7. The results

show that the PHP can be closely approximated by the TCP.

2) Outage Analysis Using Poisson Cluster Process: Since the PHP can be closely approxi-

mated by a fitted PCP, the interference in the Poisson hole networks can be approximated by that

in Poisson cluster networks. Therefore, the interference caused by Φ′p can be approximated by

the independent thinning of the fitted PCP which keeps the density of the parent point process

and independently thins every cluster with retaining probability Pbusy,p. Let c̄′ = c̄Pbusy,p and

LIpm,PCP
(s) be the Laplace transform of the interference from the independent thinning of a PCP
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at the typical MU located at the origin. According to [4, Cor. 4.13], we have

LIpm,PCP
(s) = exp

{
−λl

∫
R2

[1− exp(−c̄′ν(s, y))]dy
}
, (20)

where

ν(s, y) =

∫
R2

f(x)

1 + (sμp�̃(x− y))−1
dx, (21)

and f(x) is the PDF of the node distribution around the parent point. For the TCP,

f(x) =
1

2πσ2
exp

{
−‖x‖

2

2σ2

}
. (22)

Thus the outage probability of MUs that are actually served by the MBS can be approximated

as

εsm ≈ 1− LImm(θmμ
−1
m rαm)LIpm,PCP

(θmμ
−1
m rαm). (23)

and then we can obtain the outage probability of an arbitrary MU with the same expression as

Eq. (11).

Let LIpp,PCP
(s) be the Laplace transform of the interference from the independent thinning of

a PCP at the typical PU located at the origin. Since the typical PU is served by the nearest PBS

located at (rp, 0), there is no PBS in the disk region centered at the origin with radius rp. Thus,

by denoting the modified path loss law �̃(x) = �(x)1‖x‖>rp and according to Eq. (34) in [20],

we have

LIpp,PCP
(s) = exp

{
−λl

∫
R2

[1− exp(−c̄′ν(s, y))]dy
}∫

R2

exp(−c̄′ν(s, y))f(y)dy, (24)

where

ν(s, y) =

∫
R2

f(x)

1 + (�̃(x− y)sμp)−1
dx. (25)

Thus, the outage probability of PUs that are actually served by the PBS can be obtained as

εsp ≈ 1− LImp(θpμ
−1
p rαp )LIpp,PCP

(θpμ
−1
p rαp ). (26)

and then we can obtain the outage probability of an arbitrary PU with the same expression as

Eq. (17).

Figure 7 illustrates the outage probabilities of MUs and PUs, where λm = 1.6× 10−5, λ̃p =

8.0 × 10−4, λu = 0.8 × 10−4, μm = 1, μp = 0.05, rm = 40, rp = 10, α = 4, Nb = 30, and

ζ = 3. It can be seen that under the condition of fixed serving distance, the bounds derived for

the outage probability of both types of UEs are tight, and the approximation using the fitted

TCP is good.
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Fig. 7. Outage probabilities of MUs and PUs.

IV. ANALYSIS OF TWO-TIER HCN MODEL WITH INTRA-TIER DEPENDENCE

In this section, we first analyze the aggregate interference to both MUs and PUs, including

the intra-tier interference and the inter-tier interference, and then give the outage probability for

both types of UEs.

Similar to the model with inter-tier dependence, there are also four types of interference, i.e.,

the interference from the MBSs to the MUs Imm, the interference from the MBSs to the PUs

Imp, the interference from the PBSs to the MUs Ipm, and the interference from the PBSs to

the PUs Ipp. To calculate the interference to the MUs (or PUs), we also condition on having a

typical MU (or PU) at the origin.

A. Interference and Outage Analysis of MUs

The MUs suffer from two types of interference: Imm and Ipm. The typical MU accesses

the nearest MBS x0, assumed at distance rm. Since the fading is Rayleigh and the MBSs are

distributed as a PPP, the Laplace transform of Imm is

LImm(s)=exp

{
−πλm

μmsδ

1−δ
r2−αm F (1, 1−δ; 2−δ;−μmsr

−α
m )

}
. (27)

Let LIpm(s) be the Laplace transform of the interference from a MCP to the typical MU located

at the origin. According to [4, Cor. 4.13], we have

LIpm(s) = exp

{
−λl

∫
R2

[1− exp(−c̄ν(s, y))]dy
}
, (28)
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where ν(s, y) =
∫
R2

f(x)
1+(sμp�(x−y))−1dx, and f(x) is the PDF of the node distribution around the

parent point. For the MCP,

f(x) =

⎧⎨⎩ 1
πR2 , ‖x‖ < R

0, otherwise.
(29)

With Rayleigh fading, the transmission success probability of the MU is the Laplace transform

evaluated at s = θmμ
−1
m rαm. Since Φm and Φp are independent, Imm and Ipm are independent.

Therefore, the outage probability of the MU is

εm = 1− LImm(θmμ
−1
m rαm)LIpm(θmμ

−1
m rαm). (30)

B. Interference and Outage Analysis of PUs

The PUs also experience two types of interference, i.e., Imp and Ipp. First, we consider the

interference from the other PBSs Ipp. Let LIpp(s) be the Laplace transform of the interference

from a MCP at the typical PU located at the origin. Since the typical PU is served by the nearest

PBS located at (rp, 0), there is no PBS in the disk centered at the origin with radius rp. Thus,

using the modified path loss law �̃(x) = �(x)1‖x‖>rp and according to Eq. (34) in [20], we have

LIpp(s) = exp

{
−λl

∫
R2

[1− exp(−c̄ν(s, y))]dy
}
×
∫
R2

exp(−c̄ν(s, y))f(y)dy, (31)

where ν(s, y) =
∫
R2

f(x)

1+(�̃(x−y)sμp)−1
dx.

Now let us consider the interference from the MBSs Imp. Let LImp(s) be the Laplace transform

of the interference from a PPP at the typical PU located at the origin and we have LImp(s) =

exp
(
−λm

π2δ
sin(πδ)

μδ
ms

δ
)

. The success probability of PUs is the Laplace transform evaluated at

s = θpμ
−1
p rαp . Since Imp and Ipp are independent, the outage probability of the PU is

εp = 1− LImp(θpμ
−1
p rαp )LIpp(θpμ

−1
p rαp ). (32)

C. Comparison with the Two-tier HIP Model

Compared with the two-tier HIP model, i.e., the MBSs and PBSs follow two mutually inde-

pendent homogeneous PPPs with the same densities λm and λp, respectively, the only difference

from our proposed model is that the PBSs are distributed as a homogeneous PPP. Under the

same user distribution, in order to make this comparison relatively fair, we assume that at least

one PBS is located in each hotspot region and hence model the PBSs in the two-tier HIP model

as the superposition of Φl and another independent homogeneous PPP Φ
′
p with density λl(c̄−1).
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Fig. 8. The outage probability of MUs. Fig. 9. The outage probability of PUs.

First, the outage probability of the MU can be easily obtained as

εm = 1− exp

{
−πλm

θmδ

1− δ
r2mFm − π2δθδm

sin(πδ)
r2mλp

(
μp

μm

)δ
}
. (33)

Then, for those PUs that actually have a serving PBS, the outage probability is

εsp = 1− exp

{
− π2δθδp
sin(πδ)

r2pλm

(
μm

μp

)δ

− πλp
θpδ

1− δ
r2pFp

}
, (34)

and the outage probability of the PU not served (i.e. blocked) is 1. Since Φp =Φl+Φ′p, there

are Np=
λl(c̄−1)
λl+λm

+1 PBSs on average in each hotspot region to serve the c̄(1+ λlπR
2) PUs (i.e.,

the mean number of points in a disk, where the second term reflects the extra points due to the

overlap). Thus, the outage probability of an arbitrary PU can be derived as

εp =
Np

c̄(1 + λlπR2)
εsp + 1− Np

c̄(1 + λlπR2)
, (35)

Note that for the HIP model, as c̄ increases, the number of PUs that are actually served will

decrease until when c̄→∞, the proportion of the served PUs reaches the maximum of λl/((λl+

λm)(1 + λlπR
2)).

Figure 8 and 9 illustrate the outage probabilities of MUs and PUs, respectively, for different

path loss exponents α, where λm = λl = 8 × 10−6, μm = 1, μp = 0.05, rm = 40, rp = 10,

α = 4, c̄ = 20, R=(π(λm + λl))
−1/2. The simulation result matches the analytical result well,

thus corroborating the accuracy of our theoretical analysis. We can observe that for both MUs

and PUs, the model with larger α has better outage performance due to the fast attenuation of the

interference signals. For the MU, the outage performance of the proposed model with intra-tier
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dependence is superior to that of the two-tier HIP model; while for the PU, significant gains

are obtained by the proposed model when θp is small and the outage probability of the two-tier

HIP model starts from about 0.66, which is consistent with the theoretical analysis in Section

IV-C due to the parameter settings in the simulations2. When θp is larger than about 15dB, the

outage performance of the proposed model suffers much more serious deterioration than the

independent model due to the greater interference caused by the clustering behavior among the

PBSs even though the proposed model can serve more users (but, actually, most of them suffer

from outage), leading to the inferior outage performance than the independent model.

V. RANDOMIZING THE DISTANCE BETWEEN A UE AND ITS SERVING BS

The above results are all based on the condition that the distance between a UE and its nearest

serving BS is fixed. In order to make the results more general and complete, we consider here

the fact that the distance between a UE and its nearest serving BS is random and give the

outage performance for the proposed two models with dependence. Based on the analysis of the

outage, we also derive the per-user capacity and the ASE. Due to the inter-tier and intra-tier

dependence, it is hard to obtain the accurate distance distribution between the UE and its serving

BS. Therefore, we make some assumptions and approximations on the distance distribution in

the following analysis.

A. Case 1: with Inter-Tier Dependence

In this case, the exclusion radius D is given and we assume the MUs are uniformly distributed

in the circle centered at the serving MBS with the radius D, i.e., the distance rm from the MU

to its nearest serving MBS is distributed as frm(t) =
2t
D21t≤D. As for the PU, when D = 0, the

distance rp from the PU to the serving PBS follows the Rayleigh distribution; and when D →∞,

there is no PBS and all UEs are served by the MBS. In view of the fact that Rayleigh distribution

is a special case of Weibull distribution, we use the Weibull distribution to approximate the

distribution of the distance between a PU and its nearest serving PBS for D 
= 0, i.e., we

assume that frp(t) =
k
ν

(
t
ν

)k−1
e−(t/ν)

k
1t≥0 [21], through adjusting the parameters k and ν for

different D. Figure 10 gives the comparison between the approximation and the simulation

2From (35), the proportion of the PUs that are actually served is Np

c̄(1+λlπR2)
= λl+λm/c̄

(λm+2λl)
. When c̄ = 20 and λl = λm,

εp = 0.35εsp + 0.65.
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Fig. 10. Comparison between the approximation and

the actual distance distribution for D = 95, λm =

1.6×10−5 and λ̃p = 8.0×10−4. The approximated

distance distribution of the MU is frm(t) =
2t
D2 1t≤D

with Erm = 2
3D and that of the PU is a Weibull

distribution with parameter k = 1.93, ν = 20.61

and mean Erp = νΓ(1 + 1/k).

Fig. 11. The fitting parameters of Weibull distri-

bution for the distance distribution of PU with

λm = 1.6× 10−5 and λ̃p = 8.0× 10−4.

results concerning the distance distributions of both MUs and PUs, and the results show that

the distance distribution of the MU and that of the PU can be closely approximated by frm(t)

and frp(t), respectively. Figure 11 shows the relationship between the parameters of the Weibull

distribution and the exclusion radius D.

1) MU: Since frm(t) =
2t
D21t≤D, the upper bound and approximation of the outage probability

can be expressed as

εsm<1−
∫ D

0

LImm(θmμ
−1
m tα)LÎpm

(θmμ
−1
m tα)

2t

D2
dt, (36)

εsm≈1−
∫ D

0

LImm(θmμ
−1
m tα)LĨpm

(θmμ
−1
m tα)

2t

D2
dt. (37)

When α = 4, the above bound and approximation can be simplified to

εsm<1−
1

D2

∫ D2

0

exp

(
−π
√
θmt

(
λ′marctan

√
θm+λ̃′p

(
π

2

√
μp

μm

− D2

√
θmt

Am(θmμ
−1
m t2, D)

)))
dt, (38)

εsm≈1−1
D2

∫ D2

0

exp

(
−π
√

θmt

(
λ′marctan

√
θm+λ′p

(
π

2

√
μp

μm

− D2

√
θmt

Am(θmμ
−1
m t2, D)

)))
dt. (39)
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When the PHP is approximated by the PCP, the outage probability of an MU can be derived as

εsm≈ 1−
∫ D

0

LImm(θmμ
−1
m tα)LIpm,PCP

(θmμ
−1
m tα)

2t

D2
dt

≈ 1− 1

D2

∫ D2

0

LImm(θmμ
−1
m tα/2)LIpm,PCP

(θmμ
−1
m tα/2)dt. (40)

Thus, the outage probability of an arbitrary MU can be obtained using Eq. (11).

2) PU: we have obtained that the Laplace transform of interference Imp is

LImp(s)=exp

{
−λ′m
(

π2δ

sin(πδ)
μδ
ms

δ−πD2Ap(s,D)

)}
, (41)

when rp ≤ D

Ap(s,D)=
1

πD2

∫ 2π

0

∫ rpcosϕ+
√

D2−r2psin2ϕ

0

rdrdϕ

1+s−1μ−1m rα
, (42)

and when rp > D

Ap(s,D)=
2

πD2

∫ arcsin D
rp

0

∫ rpcosϕ+
√

D2−r2psin2ϕ

rpcosϕ−
√

D2−r2psin2ϕ

rdrdϕ

1+s−1μ−1m rα
. (43)

Since frp(t)=
k
ν

(
t
ν

)k−1
e−(t/ν)

k
1t≥0, the upper bound of the outage probability can be expressed

as

εsp<1−
∫ ∞

0

LImp(θpμ
−1
p tα)LÎpp

(θpμ
−1
p tα)

k

ν

(
t

ν

)k−1
e−(

t
ν
)kdt. (44)

When α = 4, the above bound can be simplified as

εsp<1−
∫ ∞

0

exp

(
−π√θpν

2t2/k

(̃
λ′parctan

√
θp+λ′m

(
π

2

√
μm

μp

−D
2Ap(θpμ

−1
p ν4t4/k,D)√

θpν
2t2/k

))
−t
)
dt. (45)

When the PHP is approximated by a PCP, the outage probability can be obtained as

εsp≈1−
∫ ∞

0

LImp(θpμ
−1
p ναtα/k)LIpp,PCP

(θpμ
−1
p ναtα/k)e−tdt. (46)

Thus, the outage probability of an arbitrary PU can be obtained using Eq. (17).

3) Per-user Capacity and ASE: According to our network model, we know that Np PBSs

serve Npu PUs and each MBS serves Nmu MUs on average in a macrocell. Letting κp = 1−κm

denote the fraction of the PUs of the total UEs, where κm = 1 − exp(−λmπD
2), the per-user

capacity for a fixed-rate transmission based on the SIR threshold of the MU and PU, respectively,

are

cm =
1

Nb

(1− εm) log2(1 + θm), (47)
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Fig. 12. Case 1: Model with inter-tier dependence for random serving distance.

cp =
1

Nb

(1− εp) log2(1 + θp). (48)

Thus, the overall per-user capacity cu is given by

cu =κmcm + κpcp

=
κm

Nb

(1−εm) log2(1+θm)+
κp

Nb

(1−εp) log2(1+θp). (49)

Finally, the ASE of the model with inter-tier dependence can be defined as [22]

ASE = λm
Nmu

Nb

(1− εm) log2(1 + θm) + λp
Npu

Nb

(1− εp) log2(1 + θp). (50)

In the following, we give some numerical results of the outage probability for MU and PU,

the per-user capacity, and the area spectral efficiency for Case 1 with random serving distance,

where the default parameters are set as λm = 1.6 × 10−5, λ̃p = 8.0 × 10−4, λu = 8.0 × 10−4,

μm = 1, μp = 0.05, α = 4, Nb = 50, D = 55.

Figure 12 illustrates the outage probabilities of MUs and PUs for the inter-tier dependence

model with random distance between the UE and its nearest serving BS and different exclusion

radii D. We can observe that for the more general case (i.e., random serving distance), the bounds

derived for the outage probability of both types of UEs are quite tight and the approximation

using the fitted TCP matches the simulation result very well, especially for smaller D (say,

D = 55), which verifies that the PCP can model the PHP accurately and a good estimate of the
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Fig. 13. Case 1: per-user capacity versus user thresh-

old, where θm = θp = θ.

Fig. 14. Case 1: area spectral efficiency versus user

density.

interference can be obtained. Comparing Figure 12(a) with Figure 12(b), we find that the radius

of the exclusion region affects the performance of the MUs more strongly than that of the PUs.

This is because, the exclusion radius has a direct effect on the number of UEs accessing the

MBS while the quality of service (QoS) of the UEs, i.e., the outage performance, is limited by

the available resources.

Figure 13 shows the relationship between the per-user capacity and the user threshold (θm=

θp = θ) for different number of RBs Nb and user densities λu. We observe that models with

a smaller λu have higher per-user capacity due to the sufficient available resources relative to

the user density and smaller interference resulting from the smaller probability that a given

subchannel is occupied. In addition, as Nb increases, the per-user capacity decreases since the

available spectrum is fixed, then the more Nb is, the less spectrum resource is allocated to each

UE.

Figure 14 depicts how the ASE changes with the user density λu for different λ̃p and Nb

when θm = θp = 5dB. It is seen that the ASE increases with the density of potential PBSs

and the user density but decreases with Nb, which indicates that a good ASE comes from the

proper matching between the network deployment as well as resource allocation and the user

density (i.e., the traffic demand), and small cells improves the ASE. Although increasing Nb can

reduce the probability that a given subchannel is occupied and further the interference from both

MBSs and PBSs, the ASE contributed by the reduction of the interference can not compensate
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with the loss caused by the reduction of the bandwidth obtained by each UE. By comparing

Figure 13 with Figure 14, we find that the ASE improves with the increasing of the user density,

while the per-user capacity does not. Since picocell is not capacity-limited, i.e., λu/λp � Nb,

the density of the interfering sources λpmin(λu/λp, Nb)/Nb only depends on λu and Nb. So as

λu increases, the density of the interferers increases, causing more interference to each UE and

reducing the per-user capacity, but, conversely, the number of UEs served is increasing, which

leads to the increase of the ASE finally.

B. Case 2: with Intra-Tier Dependence

From the description of the proposed model with intra-tier dependence, the average coverage

area of each MBS or each cluster of PBSs is 1/(λl + λm), and since there are c̄ PBSs in one

cluster on average, the average coverage area of each PBS is 1
c̄(λl+λm)

. The coverage regions

of the MBS and PBS are approximated by circular regions and the corresponding radii are

Dm = 1/
√

π(λl+λm) and Dp = Dm/
√
c̄, respectively. We assume that the MU is uniformly

distributed in the circle centered at the serving MBS with the radius Dm and the PU is uniformly

distributed in the circle centered at the serving PBS with the radius Dp. Though simple and

inaccurate to some extent, the assumptions can reflect the stochastic behavior of the distance

between a UE and its serving BS and the UE aggregation behavior.

1) MU: Since the MU is uniformly distributed in the circle centered at the serving MBS with

the radius Dm, the outage probability can be obtained as

εm =1−
∫ Dm

0

LImm(θmμ
−1
m tα)LIpm(θmμ

−1
m tα)

2t

D2
m

dt

=1− 1

D2
m

∫ D2
m

0

LImm(θmμ
−1
m tα/2)LIpm(θmμ

−1
m tα/2)dt. (51)

2) PU: The outage probability of a PU is

εp=1− 1

D2
p

∫ D2
p

0

LImp(θpμ
−1
p tα/2)LIpp(θpμ

−1
p tα/2)dt. (52)

3) Per-user Capacity and ASE: According to the descriptions of the model, since the densities

of MUs and PUs are equal to that of MBSs and PBSs, respectively, and the PUs are concentrated

in the densely populated regions, the MUs take the proportion κm = λm

λm+λp
of the total UEs and

the proportion of PUs is κp = 1−κm. Then, we obtain the per-user capacity of the MU and PU
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for a fixed-rate transmission based on the SIR threshold, respectively, as follows,

cm = (1− εm) log2(1 + θm), (53)

cp = (1− εp) log2(1 + θp). (54)

Thus, the overall per-user capacity cu is given by

cu =κmcm + κpcp

=
λm(1−εm) log2(1+θm) + λp(1−εp) log2(1+θp)

λm + λp

. (55)

Finally, the area spectral efficiency (ASE) of the proposed model with intra-tier dependence

can be defined as

ASE=λm(1−εm) log2(1+θm)+λp(1−εp) log2(1+θp). (56)

4) Comparison with the Two-tier HIP Model: First, the outage probability of the MU can be

easily obtained as

εm =1−
∫ Dm

0

exp

(
−πλm

∫ ∞

t2

1

1 + θ−1m t−αrα/2
dr − π2δ

sin(πδ)
θδmt

2λp(μp/μm)
δ

)
2t

D2
m

dt

=1− 1

D2
m

1− e−πλm
θmδ
1−δ

D2
mFm− π2δ

sin(πδ)
θδmλp(μp/μm)δD2

m

πλm
θmδ
1−δFm + π2δ

sin(πδ)
θδmλp(μp/μm)δ

, (57)

and the outage probability of the PU is

εsp=1−
∫ Dp

0

exp

(
− π2δ

sin(πδ)
θδpt

2λm(μm/μp)
δ − πλp

∫ ∞

t2

1

1 + θ−1p t−αrα/2
dr

)
2t

D2
p

dt

=1− 1

D2
p

1− e−πλp
θpδ

1−δ
D2

pFp− π2δ
sin(πδ)

θδpλm(μm/μp)δD2
p

πλp
θpδ

1−δFp +
π2δ

sin(πδ)
θδpλm(μm/μp)δ

. (58)

where Fm = F (1, 1− δ; 2− δ;−θm) and Fp = F (1, 1− δ; 2− δ;−θp). When α = 4, the above

results can be simplified to

εm=1− 1− e
−π√θmD2

m

(
λmarctan

√
θm+

π
2
λp

√
μp
μm

)

π
√
θmD2

m

(
λmarctan

√
θm+

π
2
λp

√
μp

μm

) . (59)

Then, for those PUs that actually have a serving PBS, the outage probability is

εsp=1− 1− e
−π
√

θpD2
p

(
λparctan

√
θp+

π
2
λm

√
μm
μp

)

π
√
θpD2

p

(
λparctan

√
θp+

π
2
λm

√
μm

μp

) . (60)
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Fig. 15. Case 2: Model with intra-tier dependence for random serving distance.

Thus, the outage probability of an arbitrary PU can be obtained using Eq. (35).

For the per-user capacity, we have cm=(1−εm) log2(1+θm) for the MU and cp=(1−εp) log2(1+
θp) for the PU, respectively. Thus, the per-user capacity for the two-tier HIP model is

cu=
λm(1−εm) log2(1+θm)+λp(1−εp) log2(1+θp)

λm + λp

. (61)

Finally, the ASE for the two-tier HIP model is defined as

ASE = λm(1− εm) log2(1 + θm) +
λpNp

c̄(1 + λlπR2)
(1− εsp) log2(1 + θp). (62)

In the following, we give some numerical results of the outage probability for MUs and PUs,

the per-user capacity, and the area spectral efficiency for Case 2 with random serving distance,

where λm = λl = 8 × 10−6, μm = 1, μp = 0.05, α = 4, c̄ = 20, R= (π(λm + λl))
−1/2. As a

baseline, we also provide the performance of the two-tier HIP model with the same densities

of the MBSs and the PBSs, and the same user distribution to show the effect of the intra-tier

dependence on different performance metrics.

Figure 15 illustrates the outage probabilities of MUs and PUs for the intra-tier dependence

model with random serving distance, respectively, where λm = λl = 8×10−6, μm = 1, μp = 0.05,

c̄ = 20, R=(π(λm+λl))
−1/2. We can see that the simulation result matches the analytical result

well, corroborating the accuracy of our theoretical analysis. As in the fixed-distance case, it can

be observed that the model with larger α has lower outage due to the fast attenuations of the
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Fig. 16. Case 2: per-user capacity versus user thresh-

old, where θm = θp = θ.

Fig. 17. Case 2: area spectral efficiency versus

hotspot area fraction. For the two-tier HIP model,

θm = θp = 5dB.

interference signals. When α = 4, for both the MU and PU, the outage performance of the

proposed model with intra-tier dependence is superior than that of the two-tier HIP model.

Figure 16 shows the relationship between the per-user capacity and the user threshold (θm=

θp = θ) for different average numbers of PBSs per cluster c̄. We can observe that for both

models, i.e., the proposed model and the two-tier HIP model, the model with larger c̄ has higher

per-user capacity. This is because larger c̄ means larger number of PBSs per cluster, reducing

the distance between the PU and its serving PBS and thus increasing the desired signal strength,

even though the interference from the PBSs may increase slightly at the same time. Therefore,

both the MU and PU have smaller outage probability and further increase the per-user capacity.

Furthermore, for each case of c̄, the proposed model has higher per-user capacity than the two-

tier HIP model since there are not enough PBSs for the many users in hotspot region when the

PBSs are distributed as a PPP, which indicates that the model with intra-tier dependence is a

more appropriate model than the two-tier HIP model for the HCNs where the traffic demand

exhibits high spatial fluctuations.

Figure 17 depicts how the ASE changes with the hotspot area fraction for different thresholds

of both MUs and PUs. We set λm+λl=1.6×10−5, then changing λl can be viewed as changing

the ratio of the hotspot area to the whole network, i.e., the hotspot area fraction. It is seen

that the ASE increases with λl. This is because, as λl increases, the hotspot area take more
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proportion in the network and the capacity provided by the PBSs increases, leading to the rise

of the ASE. When λl = 1.6× 10−5, i.e., the HCN degrades into a single-tier network only with

the PBSs deployed, all curves reach the peak, which indicates that putting a cluster of small cells

at some location in the network may indeed deteriorate the outage due to the greater interference,

but it will increase the ASE (which is related to the per-user capacity). From the comparison

between the proposed model and the HIP model for θm = θp = 5dB, we find that the two

models have the same trend and basically maintain a fixed gap, which indicates that the HIP

model underestimates the ASE of a HCN with hotspot regions and the Poisson cluster process

is more appropriate for modeling the network where traffic demand has high spatial fluctuations.

Besides, the effect of the PU threshold θp on the ASE becomes more noticeable as λl increases

while the MU threshold θm is not, because the increase of λl leads to more PBSs and less MBSs

deployed, hence leading the PBSs to be the main provider of the network capacity.

VI. CONCLUSION

In this paper, we proposed two HCN models with dependence: one is a two-tier HCN model

with inter-tier dependence (Case 1), and the other is a two-tier HCN model with intra-tier

dependence (Case 2). For Case 1, the MBS and the PBS deployments follow a PPP and a PHP

(i.e., a Cox process), respectively, and the users are distributed in the whole plane according

to another PPP. Due to the repulsion between the MBS tier and the PBS tier, the interference

in the HCN is hard to analyze exactly. Thus, under this setup and conditioning on a fixed

serving distance, we first bounded the outage probabilities of both MUs and PUs, and then

used a fitted TCP to approximate the PHP. The results indicated that the bounds derived are

very tight to the simulation curve and the approximations using the fitted TCPs coincide quite

exactly with the simulation curve, thus providing useful approximations for a practical network

model where an exact calculation of the interference is unfeasible. For Case 2, the MBSs and

the PBSs follow a PPP and an independent MCP, respectively, while the users follow a Cox

process where the user density in hotspots covered by PBSs is higher than in the rest of the

network. Explicit expressions of the interference and the outage probability were derived with

fixed serving distance, and the results indicated that the theoretical curves match the simulation

results extremely well, corroborating the accuracy of the theoretical analysis.

To make the analysis more general and complete, we randomized the serving distance and
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derived the outage performance, the per-user capacity, and the ASE for both cases. Results

showed that the trends of the outage with random and fixed distances are the same, which

means the more tractable analysis with fixed serving distance can be used to analyze and design

the future HCNs sufficiently. Since the BS deployment is not changed, the PHP can still be

approximated by the fitted TCP closely no matter whether the serving distance is fixed or not.

More importantly, for case 1, the bounds and approximations with random serving distance

are more tight and accurate to the simulation results than that with fixed serving distance. The

comparisons between the model with intra-tier dependence (case 2) and the HIP model turn out

that the HIP model underestimates the per-user capacity and the ASE by a factor of 1.5 to 2,

which reveals that for a HCN with hotspot regions, ignoring the depends between the tiers (i.e.,

using the HIP model), leads to overly pessimistic results with significant errors. Notably, our

work provides insight into the design and analysis of more practical HCN models, and the two

models proposed provide good tradeoffs among the accuracy, tractability and practicability.
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