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Analysis and Design of Diversity Schemes for
Ad Hoc Wireless Networks

Martin Haenggi, Senior Member, IEEE

Abstract—Diversity schemes permit efficient communication
over fading channels but are often hard to analyze and design in
networks with many nodes. For Rayleigh-fading channels, there
exists an interesting relationship between resistive circuits and
time and path diversity mechanisms in wireless ad hoc networks.
A resistor-like network element, the erristor, representing the nor-
malized noise-to-signal ratio, is introduced. Given an end-to-end
packet delivery probability, the logarithmic mapping from link
reception probabilities to erristor values greatly simplifies the
problems of power allocation and the selection of time and path
diversity schemes, which is illustrated in a number of examples.
We focus on transmission strategies with selection combining and
simple noncoherent “decode-and-forward” strategies, which is
motivated by their practicality. Thanks to its conceptual simplicity,
the formalism that is developed provides valuable insight into the
benefits of diversity mechanisms.

Index Terms—Ad hoc networks, diversity methods, Rayleigh
channels.

1. INTRODUCTION

N AD HOC wireless networks, energy and interference

considerations often necessitate multihop routing, where
nodes also act as routers, forwarding other nodes’ packets [1],
[2]. Routing schemes that were developed for wired networks
will perform suboptimally since they are based on virtually
error-free point-to-point links, thereby ignoring two funda-
mental properties of the wireless link: 1) the fragility of the
channel due to fading and interference [2], [3] and 2) the
inherent broadcast property of wireless transmissions.! Fading
can be an advantage if transmissions can be scheduled oppor-
tunistically [4], [5], and the broadcast property can be exploited
by transmission schemes that are based on the principle of
cooperative diversity [6], where nodes coordinate both direct
and relayed transmissions. Cooperative diversity is a form of
spatial diversity, which, in the case of static single-antenna
nodes, reduces to path diversity. The other promising strategy
(in the case of narrowband channels) against fading is time
diversity, which, for slow (nonergodic) fading channels and
relatively short packets, is mainly exploited in the form of
retransmissions.

For the analysis of multihop packets networks, a determin-
istic “disk model” is often used [7]-[15], where the radius for
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I'We assume that omnidirectional antennas are employed.

a successful transmission has a power-dependent deterministic
value, irrespective of the condition of the wireless channel.
Interference is commonly taken into account using the same
geometric disk abstraction. The stochastic nature of the fading
channel and, thus, the fact that the signal-to-noise-and-in-
terference ratio (SINR) is a random variable are neglected.
In general, the volatility of the channel cannot be ignored
in wireless networks [2], [3], and a rigorous assessment of
diversity benefits is not possible with a deterministic model.
The inaccuracy of the “prevalent all-or-nothing model,” as
the disk model is called in [16], has also been pointed out in
[17] and is easily demonstrated experimentally [18], [19]. To
overcome some of these limitations of the disk model, we em-
ploy a Rayleigh-fading link model that relates transmit power,
large-scale path loss, and the success of a transmission.

Based on this model, we present a simple yet powerful for-
malism that allows an efficient analysis and design of time and
path diversity strategies with selection combining for Rayleigh-
fading channels. In the analysis problem, the transmit power
levels are given and the end-to-end reliability pgg is to be de-
termined, whereas in the (more interesting) design problem,
we assume that the application dictates a certain end-to-end
reliability pp, and the question is how to choose the transmit
powers, the relays (paths), and the number of transmissions over
each link in order to minimize energy consumption and/or max-
imize network lifetime under the constraint ppg > Pp. We
focus on noncoherent “decode-and-forward” strategies, which
are, in contrast to coherent combining, straightforward to imple-
ment. Nonetheless, they exhibit greatly superior performance to
schemes without diversity, in particular at high SNR.

The rest of this paper is organized as follows. In Section II,
the link model is presented. Section III introduces the “erristor”
framework, where transmissions are characterized by a resistor-
like circuit element whose value equals the normalized noise-to-
signal ratio at the receiver, and discusses its use for multihop
routes and time diversity schemes. Section IV focuses on path
diversity schemes and presents several examples, and Section V
concludes the paper.

II. LINK MODEL

We assume a narrowband multipath channel, modeled as
a Rayleigh block fading channel [20] with an additive white
Gaussian noise (AWGN) process z. The received signal at time
k is yr = axx) + 2k, Where ay is the large-scale path loss
multiplied by the fading coefficient. The variance of the noise
process is denoted by Nj.

The transmission from node ¢ to node j is successful if the
SINR ~ is above a certain threshold © that is determined by
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the communication hardware and the modulation and coding
scheme [2].

With the assumptions above, the received power () is expo-
nentially distributed with mean Q = Pyd~%, where P, is pro-
portional to the transmit power,2 d = ||z; — z,||2 the distance
between transmitter and receiver, and « the large-scale path loss
exponent. [ is the interference power affecting the transmis-
sion, i.e., the sum of the received powers of all the undesired
transmitters.

The following theorem shows that for Rayleigh-fading net-
works, it is possible to analyze noise and interference separately.

Theorem 1: In a Rayleigh-fading network, the reception
probability p,, = P[y > 0] can be factorized into the reception
probability of a zero-interference network p’¥ and the reception
probability of a zero-noise network pl as follows:

k
ON, 1
Pr = exp (—Pdfa>- = (D
0% i=1 1+ @% (i—i’)
pN ~ d

Py

where d is the distance of the desired transmitter, d;, 1 < 7 < k
are the distances of the k interferers, and P; are their transmit
power levels.

Proof: Let Q¢ denote the received power from the desired
source and @Q;,i = 1,...,k, the received power from k in-
terferers. All the received powers are exponentially distributed,
ie., po,(q;) = 1/Q;e~"/9, where Q; denotes the average re-
ceived power Q, = P;d; “. Conditioned on I, the probability
of correct reception is simply an exponential, so we have

pr =Er[P[Qo > ©(I + No)|I]]
MME

Qo
o0 o0 © (Zle g+ No)
k
x [[ pa. (@) dgy - - dgi
i=1
from which (1) follows.? [ ]

This allows an independent analysis of the effect caused by
noise and the effect caused by interference. Since we are con-
cerned with the fundamental energy benefits of diversity, the
focus of this paper is the noise, i.e., on the first factor in (1).
Clearly, p! is invariant under (global) power scaling, so it does
not give an indication at which power levels to transmit. The re-
sults that are derived are directly applicable to the case of light

2This equation does not hold for very small distances. So, a more accurate
model would be Q = Py - (d/do) ==, valid for d > do, with P; as the average
value at the reference point dy, which should be in the far field of the transmit
antenna. At 916 MHz, for example, the near field may extend up to 3—4 ft (sev-
eral wavelengths).

3A similar calculation has been carried out in [21, Appendix] for a network
with spreading gain and equal transmit powers for all nodes.

traffic (pL — 1). For the heavy traffic case, a separate interfer-
ence analysis would have to be carried out, as in [22] and [23],
and the resultant p! would have to be multiplied by the p? de-
rived here.

In a zero-interference network, the reception probability over
a link of distance d at a transmit power Py, is given by

o Ny

pri=Plyy > O] =¢ Poa =, )

Solving for Py, we get for the necessary transmit power to
achieve p,.

_ d"ON,

Py = .
0 _lnpr

3)
Note that for « — oo, the fading model turns into a disk model.
For d < 1, the reception probability is one, for d > 1, it
is zero. Similarly, for the interference term in (1), if all the
interferers are further away than the desired transmitter, i.e.,
do < min{dy, ...,dy}, reception is guaranteed. Otherwise, re-
ception is impossible.

III. ERRISTOR REPRESENTATION
A. Connections Without Retransmission

Over an n-hop connection from node 0 to node n in an ad hoc
network, the reception probability (end-to-end reliability) is

n 1

ppp = ¢ @2zt % “)

where 7; denotes the mean SNR at receiver . Let R denote the
normalized average noise-to-signal ratio (NSR) at the receiver,
ie, R := 0/y. We get

—lnppe = Y Ri = Rior- (5)
=1

With pp the desired end-to-end reliability, the condition pgg >
pp translates into the condition that the sum or the series con-
nection* of the NSR values R; is at most Rp := — Inpp. So,
the individual R;’s can be replaced by an equivalent Ry.. For
a single link, we have

Rz—lnp,%z)prze_R. (6)

For probabilities close to 1 (or R < 1), the following first-order
approximations are accurate

N

R=1-p, T R<=p.:=1—RZp,. @)

This approximation shows that for small values, the NSR can
be considered equivalent to the packet loss probability. To em-
phasize this fact and the resistor-like series connection property
of the NSR, we denote R as an “erristor” and its value as its
“erristance.” It follows from (5) that over a multihop connection,
the noise accumulates and the packet loss probabilities simply
add up.

4In terms of the SNR values, this corresponds to a parallel connection, which
was pointed out in [24].
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Fig. 1. (a) Three-hop connection with link reception probabilities p1, p2,
and psz and the erristor circuit. (b) The erristor values are the normalized
noise-to-signal ratios R1, R>, and R3. R; = —Inp;.

The relationship between the transmit power and R is

Py = d*yN, = d (ZNO. ®)
Henceforth, P := d®/R denotes the normalized (by ©Ng)
transmit power.

Example 1: Fig. 1(a) shows an example with three links and
their reception probabilities. From (5), we know that a series of
hops translates into a series connection of erristors, hence, we
find the corresponding erristor network in Fig. 1(b). For pp =
90%, for example, the value of R; + Ry + R3 must be at most
Rp = —Inpp =~ 0.105. If all the power levels are equal, this
can be achieved by setting R; = R = R3 = 0.105/3 = 0.035.
A possible solution with unequal power is R; = Ry = 0.05
and R3 = 0.005. In this case, the probability after two links is
e70:05¢=0:95 ~ 90.5%, which is already close to 90%. Con-
sequently, a high amount of energy is consumed at the third
link to ensure packet reception with the required probability
e0-005 = 99 5%.

If the internode distances d; (between node 2 — 1 and node 7)
are given, a solution can be determined that ensures that all the
transmit power levels have the same value P. From (d§ + d$ +
d3)/P = —Inpp, we get

dy +ds + dg

P =
—Inpp

&)

For d; = 1, = 2, and pp = 90%, for example, we get P =~ 14-
9.5 =133 and R; =~ 0.0075, Ry = 0.03, and R3 ~ 0.0677. [J

B. Connections With Time Diversity (Retransmissions)

In general, with n transmissions over the same link at NSR
levels R; and selection combining, the total reception proba-
bility is

n

pnzl—H(l—e_Ri).

i=1

(10)

To derive a general rule for the simplification of these expres-
sions, we apply the following theorem.
Theorem 2: For (x1,22,...,7,) € (RF)™
1-[[a-e) 2 IInm

i=1

(11)

with equality if and only if []\_, z; = 0.
The proof is presented in the Appendix.

R12,]
0 1 Pai 2 o Roi =12
o————©0 [ ] .—E’—q
P p— » Ry, 1®
01 P, 22 —1
Fig. 2. (Left) A two-hop connection with two transmissions over the second

hop. (Right) Corresponding erristor circuit.

So, erristors connected in series behave like regular resistors,
whereas the values of erristors connected in parallel (retrans-
missions) have to be multiplied. Due to the bound (11), the re-
sultant end-to-end reliability will be slightly higher than the one
specified.

Example 2: Consider the simple example in Fig. 2. A packet
is transmitted with reception probability pp; over the first hop
and transmitted twice over the second hop, with probabilities
p12,1 and pis o, respectively. The end-to-end reliability of the
connection is pgg = po1 - (1 — (1 — p12,1)(1 — p12,2)). Let
pp = 90%. How to allocate the transmit powers?

For the second link, we have p12 = 1 — (1 — p121)(1 —
pi122) = 1 — (1 — e7Fi21)(1 — ¢~R122). From Theorem
2, e Frz1Ri22 j5 3 Jower bound for pis, and for Ry < 1
and Ry < 1, the bound is tight. Thus, we may replace Ri2 1
and Ri22 by Ro = Ri2,1R12,2. In the erristor diagram,
the two transmissions are illustrated by a parallel connec-
tion (see Fig. 2). From Ry + Ry < Rp = 0.1, a possible
choice is Rl = R2 = 0.05 and R1271 = R1272 = \/5/10
Thanks to the retransmission, node 2 consumes less than
half the energy of node 1, assuming the distances are the
same. An allocation where both nodes use the same power is
Rl = \/ﬁ/5 -2 = 0098, and R1271 = R1272 = 2R1 This
way, node 1 benefits from node 2’s retransmission and uses
almost only half the power. O

For n transmissions with the same power level R, the dif-
ference between the precise probability value 1 — (1 — e~ F)"
and the lower bound e~ %" is plotted in Fig. 3. The erristance
threshold where the bound is within 1% is R = 0.236 forn = 2
and R = 0.375 for n = 4. Thus, for R < 1/4(p > 78%), the
bound is sufficiently tight for all practical purposes. For values
R > 1, the bound is loose, and the multiplication would not
make sense, since the overall erristance increases, although, of
course, even a retransmission with low power still leads to an
improvement in the total link reception probability. However,
for R £ 1/2, a single transmission outperforms splitting the
power into two transmissions. For two transmissions at NSR
2R, the reception probability is p, = 1 — (1 — e~2%)2, whereas
for a single transmission at NSR R, we get p/. = ¢~ . The two
probabilities are equal for

R=In2—In (\/3 - 1) ~ 0.48. (12)

So, for R Z 1/2, the reception probability is higher for a
single transmission at NSR R. From a practical point of view, re-
ception probabilities lower than 37% may not be worth spending
energy at the receiver. By excluding erristances greater than one,
this is taken into account, and, at the same time, the validity of
the multiplication property is preserved.
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Fig. 3. Difference between the exact probability and the lower bound for n =
2,4,6,8,10 transmissions with equal erristance RR.
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Fig. 4. (a) Network that exploits path diversity and (b) its erristor circuit.

IV. PATH DIVERSITY
A. Transmissions Over Independent Paths

With the addition and multiplication property of the erristors,
we have all the ingredients to analyze and design path diversity
schemes.

Example 3: Fig. 4 displays an example of a network, where
path independence is guaranteed even when the channels have a
long coherence time. By conventional analysis, the end-to-end
reception probability is
peg = (1= (1= e7M1em ) (1 = ¢~ o))

(1= (1 — e~ Rrae=Raay (1 — g=Fa1)) - (13)
How to choose the I2;;’s to guarantee prg > pp = 95%? The
equivalent erristance [Fig. 4(b)] is Riot = (Ro1 + R12)Ro2 +
(Ra3 + R34)Ray, and pgg = e~ Ftet, For pp = 95%, we have
Riot ~ 0.05. Thanks to the symmetry, (Ro; + R12)Ro2 =
(R23 + R34)R24 = 0.025 is a solution; hence, we may set
nearest-neighbor hops to R;_1; = 0.05 and Rpo = Roy =
0.25. Note that the value for the two longer hops is five times
bigger, which means that the necessary transmit powers are
comparable if the nodes have equal distances and the path loss
exponent is between 2 and 3. So, the diversity scheme and the
power allocation guarantee ppg = ¢ %% =~ 95.1% > pp.
The conventional analysis (13) yields pgg =~ 95.8% which is,
as expected, slightly larger. The formalism also permits a rapid

0 Roa 2 Ros 4

— —

— ]
—d— 3
[  —— s m— { —
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— —
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Ro R3;

Fig. 5. Erristor circuit for example 3 (see Fig. 4) including implicit
transmissions. Implicit erristors are shaded gray.

reallocation of resources, if necessary. Assume node 3 runs out
of energy. With R34 — o0, we see immediately that Rs3 be-
comes useless, and the only path in the lower half of the dia-
gram will be the one with Ry4. What value does RR24 need to
have to ensure pp? Without changing the other erristances, we
find R24 = 0.025. O
The total normalized energy consumption (per packet) at each

node can easily be determined

m e

E;, = 2 14

; 7o (14)

where m is the number of outgoing paths from node 7.

B. Implicit Transmissions

In example 2 (Fig. 2), if node 2 listens to the transmission
from node 0 to node 1, then this implicit transmission has to
be modeled by an additional erristor for an accurate analysis.
This implicit erristor is free in terms of transmit power (but still
requires power to receive the packet); it represents the benefit
from the wireless medium, often denoted as the wireless multi-
cast advantage [2], [25].

Example 2 (Continued): Assume pp = 99%, s0 Ryt =
0.01. This is achieved by setting Ro; = 0.005 and Ri2; =
Ri2, = 0.07. However, since there is an implicit transmis-
sion from O to 2, there is an erristor in parallel with a value
of Ry, = Ro1(do2/do1)® (the superscript i indicates an im-
plicit transmission). Assuming dogs = 2dp; and a = 3, we get

io = 0.04, Rioy = 0.01 - 0.04, and prr ~ 99.96%, which is
much better than the target of 99%. So we can reduce Ry; to a
value that guarantees (Rg; +0.005) Ro; - 8 = 0.01. Solving the
resulting quadratic equation yields Ro; = 1/30, which corre-
sponds to less than 1/6 of the original power. O

For large path loss exponents and/or small transmit power
levels, the benefit to listeners that are farther away than the in-
tended receiver becomes small, since the implicit erristances
will be close to one or even above. However, if the implicit re-
ceiver is closer than the intended one or if the transmit power
is relatively high, it is worthwhile having the nodes awake and
listening.

Example 3 (Continued): In example 3 (Fig. 4), there is an
implicit transmission from node 2 to node 3 when node 2 is
transmitting to node 4. If node 3 ignores this transmission, then
the previous analysis was correct. If it takes advantage of that
information, we have to add another erristor R§3, as shown in

Fig. 5. Analogously, R}, models the implicit transmission 01

. . . . -

that occurs due to the explicit transmission 02.
Assuming equal distances between neighboring nodes,
01 = 27 “Rpg and Ry3 = 27 “Ryy. For a = 2 and using the
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Fig. 6. (a) Simple cooperative scheme and (b) the corresponding erristor
circuit. Node C is relaying a packet from node 0 to assist node 0. The distances
0C and C1 are d = 1/ cos ¢.

same values as before, R; ;_1 = 0.05, and Rpz = Ry = 0.25,
we find R{; = Ri; = 0.0625 and

1 1 1)\ 1
Rmt:2( + )-—z0.027 (15)

20 16 ' 20) 4
resulting in ppg =~ 97.3%, which is larger than the target of
95%. Considering that 1/16 < 1, we may try to omit the

explicit transmission 01 completely, which results in Ryt =
(1/16+1/20)/2 ~ 0.056 and pgg = 94.4%. A slight decrease
of Ry2 and Ra4 by 10% each brings prg to 95.2%. O

The next example demonstrates how the erristor formalism
transforms complex logarithmic relationships into simple poly-
nomial ones, which are analytically tractable.

Example 4. A Simple Cooperative Scheme: In Fig. 6, a situ-
ation is shown where node 0 wants to transmit to node 1, and
the cooperative node C may help as a relay. From the erristor
circuit, it can be seen that there is no explicit transmission from
0 to C. The goal is to determine which transmission strategy
minimizes the total transmit energy Fio¢ given a certain total
erristance Riqt.

Let D := (d/2)%. With Ryoy = Ro1(R)+Rc1) and Rj - =
DRoy,we get Riot = R01(R01D+R01) and Bt = 20/R01+
d*/Re1 = 2°(Ryt + DRGY).

Strategy A—Equal Received Power: A possible strategy is to
have C' transmit at a power level that makes the received power

at node 1 equal to that from the direct transmission 0_1), i.e.,
Rc1 = Ry =: R. Ry simplifies to Ry = R*(1 + D) and,

thus, R = y/(Rtot)/(1 + D). Inserting this expression into the
transmit energy Fiot = (2%)/(R)(1 + D) yields

2a(1 4 D)3/2
Vv Rtot '

Strategy B—Equal Transmit Power: Here, we assume that
both node 0 and C use the same transmit power. With R :=
Ro1 and Rcp = R(i)c = RD, we have R, = 2DR? and

Ed = (16)

-1
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Fig.7. Visualization of the regions in the (D, Ryt ) plane where the different
strategies are optimum. Note that the curves D /8 and (1 4 D)? intersect at the

points (v/5 — 2, (v/3 — 1)?) and (1, 8).

R = /(Rot)/(2D). The total energy consumption is simply
Eiot = 2-2%/R, or, as a function of Ry

2D
EB =201,/ = (17)
Rtot
The energy consumption ratio of strategies A and B is
. EB,  2v2D (18)
"7 EBS, T Dy

p=1forD=1and D =+5—-2~0.236.ForvV5—-2 < D <
1, strategy A is preferable (p > 1). The maximum p, however,
is only (4/9)v/6 ~ 1.089, occurring at D = 1/2. So, strategy
A is at most 8.9% better.

To get a complete view, we also discuss the case of a direct
one-hop transmission and an explicit two-hop scheme without
a direct path from O to 1. For the one-hop case, we have Egh¢ =
2%/ Ryot, and for the two-hop case (assuming equal transmit
powers), there are two erristors in series with value Ryot/2 and,
thus, E&%° = 4d® /Ry, = 4DE28e.

The one-hop strategy is better if 4D > 1, or, in terms of the
actual distance d,d > 2'=2/®. So, for a = 2 and for d > 2,
one-hop is always better, even for « — oo, which is easily ex-
plained, since node C' is then not closer than node 1. As a func-
tion of the angle ¢ = arccos(1/d), the condition for one-hop
to be better is expressed as ¢ > arccos(2%/*~1). For @ — oo,
the critical angle is ¢ = /3 (corresponding to an equilateral
triangle 0C1), as expected.

The last step is the comparison of these simple schemes with
the cooperative strategies A and B. First, we note that B always
outperforms the two-hop scheme, since it exploits “free” infor-
mation that is transmitted over the direct path. The tournament
between A and one-hop is won by A if Rio¢ < (14 D)~3, and
B wins against one-hop if Riot < (8/D). The resulting divi-
sion of the (D, Ry t)-plane in the different strategies is shown
in Fig. 7. Since Rt_oi is related to the SNR, Fig. 7 suggests that
cooperation is beneficial at high SNR and relatively small dis-
tances D, in agreement with intuition. O

Example 5. Virtual Antenna Arrays: Several nodes that are
close may cooperate and act as a virtual antenna array, ex-
ploiting spatial diversity. The performance of such arrays was
analyzed in [26] from an information-theoretic perspective.
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Fig. 8. (a) Virtual antenna scheme and (b) its erristor circuit.
Here, not assuming any form of lower-layer coordination within
the cluster, we apply the erristor formalism to compare these
schemes with conventional multihop routing. Fig. 8 shows the
erristor diagram of a simple scenario with two nodes assisting
each other at the source, in the middle, and at the destination.
So, instead of individual nodes, we have clusters of two nodes
at positions 0, 1, and 2. It is assumed that the intracluster
distances are much smaller than the intercluster distances d/2.
When the source node in cluster 0 is transmitting to cluster 1,
his peer will receive that packet with probability (almost) one
since R{, < Roi. In the next time slot, this peer node will
transmit the same packet to cluster 1. Hence, the same packet
is delivered over four different paths. Similarly, cluster 1 relays
the packet to cluster 2 over four paths. In the case that the actual
destination node itself in cluster 2 does not correctly receive the
packet, an additional short intracluster transmission is required,
whose energy is neglected in the following analysis.

We assume Rjy; = Ri5 := R. For the diversity scheme, with

30 < R, we get Rioy = 2R* and

e (8] (2

For comparison, for a four-hop connection with hops of length
d/4, we have Ryot = 4R’ and

d\* 4 AN
El, =4 <Z> o= PR <§> Rt (0)

The ratio between the two energies is

19)

E t 7 3
B, =2 R @1
Hence, the diversity scheme is more efficient for
—4a47 —4a+7
Riot <2750 or pp > exp (—2 3 ) @

This curve is plotted in Fig. 9(a). Substantial energy gains are
possible for high pp [see Fig. 9(b)]. When the path loss expo-
nent increases by one, the energy gain decreases by 3 dB.

09+ Diversity scheme

is more efficient.
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Fig. 9. (a) Region in the (a,pp) plane where the diversity scheme
outperforms conventional multihop routing. (b) Energy gain as a function of
the end-to-end probability.

This diversity scheme can be generalized to clusters of size
. . 2
m that transmit over n hops. In this case, R¢,s = nR™ and

1

AN n O\ m?
Eio = = :
v (3) (7)

For the multihop scheme with mn hops,5 Ryt = mnR’ and

(23)

d \“ mn
E . = — . 24
tot = M7 (mn) Riot 24
The ratio is
FEig -1y 1 _
L T (25)

/
Etot

from which we see that the energy gain is maximized for m = 2
(except for a« = 2, where m = 3 performs slightly better)
and increases almost linearly in n. We conclude that for high
pp and « not too big, the diversity scheme clearly outperforms
conventional multihop routing. O

SThis comparison is fair both in terms of the number of nodes involved and
in the delay, since the total number of transmissions is mn for both schemes.
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Fig. 10. (Top) Six nodes of a two-level leap-frog scheme. Every nodes listens
to the transmissions of the two previous nodes. (Bottom) A conservative
simplified erristor circuit.

Example 6. Long Line Networks with Equidistant Nodes:
Consider a long line network with equidistant nodes of distance
d = 1, with the source at the left end and the destination at the
right end. Every node transmits once but listens to the trans-
missions of m of its left neighbors, resulting in m — 1 implicit
transmissions. The corresponding erristor circuit for m = 2
is shown in Fig. 10. Due to the long chain of dependencies,
such a leap-frog schemes¢ is difficult to analyze; we, therefore,
simplify it by attaching the implicit transmission to node n + 1
rather than node n (Fig. 10). This yields an upper bound on
the erristance, since the accumulated erristance at node n is
certainly smaller than at node n + 1. The per-hop erristance R
is then

R= R1 . 2aR1 - 3aR1 ..t mo‘Rl = Rgn(m')o‘ (26)
The choice m = |R] Y | ensures that nodes do not listen to
transmissions with low reliability. The benefit compared with
conventional multihop routing is

Ry

= R ()

7 27)

which is enormous, in particular at high SNR (low R,), as it is
illustrated in Fig. 11 for Ry = [10_3, 0]. As 2% Ry is larger than
one, the benefit predicted from the erristor framework vanishes,
whereas a more accurate analysis based on actual probabilities
would still yield a gain. If the receive energy is taking into ac-
count, however, it may not be worthwhile to spend energy on
listening to remote transmitters, since the incremental gain may
be comparatively small. Therefore, we only consider transmit-
ters with erristances smaller than one, and we limit m to 5. [

Finally, to demonstrate the applicability of the erristor con-
cept to random networks, let us consider line networks with uni-
formly random node distribution.

Example 7. Random Line Networks: For long line networks
with uniformly random distribution, the internode distances Dy,
are exponentially distributed and independent identically dis-
tributed (i.i.d.), and without loss of generality, we assume unit
mean. For unit transmit power (P = 1), the erristance equals
Dy, and its pdf is

1
pr(r) = eXp(—ri) =~
ar

(28)

This name is borrowed from analog RLC filter design.

Diversity gain

10

Fig. 11. Diversity gain from listening to m transmissions as a function of the
single-transmission erristance Ry for o« = 2,3,4,5.m = min{5, LR;I/QJ 1.

The mean of R is the ath moment of an exponential random
variable (RV), so we have E[R] = I'(a+1) or, if « is an integer,
E[R] = a!. For P # 1, this is to be divided by P.

For a two-neighbor cooperative scheme (m = 2), the ex-
pected per-hop erristance is Ry = E[D§(D; + D2)%], and in
general, with transmit power P, we have

m m 7 @
R, =E|][[Ri| =E Hl< Dk>
j=1 j=1P k=1

(29)

Since Dy, isi.i.d., this can be simplified to sums and products of
higher moments of Dy, which were determined above. Fig. 12
shows the gain Ry/R,, form = 2 and m = 3. The gain in-
creases with P! and it is seen that the higher the path loss
exponent, the higher the SNR has to be in order to get a benefit.

The minimum P necessary to see a benefit can be derived ana-
lytically. For « = m = 2, e.g., we find (E[D*]+2E[D?]E[ D]+
E[D?)?)/P? < E[D?]/P, or 40/P? < 2/P, which holds for
P > 20, in accordance with Fig. 12(a). O

V. CONCLUDING REMARKS

The erristor formalism permits the mapping of unwieldy
probability expressions into a simple circuit-like framework,
which greatly simplifies the analysis and design of transmit
schemes that are based on selection combining with time
diversity, path diversity, or a combination thereof. The wireless
multicast advantage is incorporated by implicit erristors. The
erristor circuit is topologically equivalent to the network graph
and can, therefore, be drawn in a straightforward manner.
Resource (re)allocation problems can effortlessly be solved
by simple arithmetic, which makes a real-time implementa-
tion possible. A series of examples demonstrated not only
the capabilities of this analysis and design tool, but also the
huge gain that is possible from diversity-based communication
strategies, in particular when high reliabilities are required.
With more complex combining techniques, such as maximum
ratio combining, this gain could be improved even further.
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Fig. 12. Diversity gain for random networks as a function of the normalized
transmit power P for o« = 2,3.4,5.(a) m = 2. (b) m = 3.

Further, the formalism is useful for educational purposes,
since the multiplication property of parallel erristors impres-
sively demonstrates the benefits of diversity schemes, and the
series connection shows how the noise and, in turn, the packet
loss probability accumulate over multiple hops.

The simple multinomial expressions for end-to-end erris-
tances also lend themselves to a sensitivity analysis, i.e., the
determination of the sensitivity of the total erristance to the
individual erristances J R0t /OR;. This permits the allocation
of power where it has the most impact.

Erristor circuits are relatives of both electronic circuits and
signal flow graphs (SFGs), but some important differences
should be pointed out. The analogy to electronic resistive
circuits only holds for serial elements; the multiplication of

parallel erristors does not have a counterpart in electric circuits.
Further, the erristor diagram is directed, it requires information
about the direction of the transmission, i.e., who is transmitting
and who is receiving. To make this clear, an arrow could be
used as in SFGs to indicate direction. This would also add
timing information to the diagram, since it would indicate a
natural sequence of the transmissions.

Compared with SFGs, the way series and parallel branches
are treated is different. In an SFG, transmittances of serially
connected branches are multiplied and parallel branches result
in addition, whereas in the erristor diagram, serial branches are
added and parallel branches are multiplied. If instead of NSRs,
SNRs were used, the multiplication of serial branches would
hold for both graphs, but k£ parallel branches would have to
be treated like parallel resistors, yielding the harmonic mean
divided by k. Further, the topology of the SNR-based circuit
would no longer be identical to the original ad hoc network.

APPENDIX
PROOF OF THEOREM 2

Proof: In the inequality [see (11)]

n
1-T[a-e) > e I

i=1

(30)

it is easy to see that equality holds (both sides are equal to 1) if
one of the z; is zero. It remains to show that f,,(-) : R" — R

n

falwr, s, oag) = 1= [ = e — e~ Ihem @1

=1

is positive if all x; are positive. We note that f goes to zero if
Vi,z; — oo. Hence, f is positive for positive x; if its partial
derivatives 0f /Ox; are positive at zero and have at most one
zero for positive x;. Since the function is symmetric in all z;, it
is sufficient to consider only one partial derivative. An inductive
technique is employed, discussing the case n = 2 first.
Consider

g2(z) = folz,y)=e T+e ¥V —e TV —e ™ (32)
forafixedy > 0. Fory = 0, g2(z) = 0, and for y > 0, we note
that g(0) = 0 and lim,_,~ g(z) = ¢~ ¥ > 0. Since

§@) = L= e e o geri)

= = 33
. (33)
there exists a single local extremum z for y > 0 at
1
i= m(—2 ). (34)
y—1 1—e¥

Asy > (1 —e¥)fory > 0,wefindZ > 0fory > 1 and
z < 0for 0 < y < 1. For y = 1, no solution exists, and for
y = 0,¢'(z) = 0. Since ¢’(0) = —1+e ¥ +y > 0,itis
clear that the extremum is a maximum. So, we have g(0) = 0,
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and for 0 < y < 1, g(«) is monotonically increasing, whereas
for y > 1, it is monotonically increasing up to z, and then
monotonically decreasing to e~ ¥ > 0. Hence, g(x) > 0 for
x > 0, and we have proven the theorem for n = 2.

Now, assuming it is true for n — 1, we prove the induction
step.

For the general function g, (z) := f(z,z9,...,z,) with
fixed z; > 0 for ¢ > 1, we note that g,,(0) = 0 and

lim =1 — H(l _ 6—$i) Z 0. (35)
i=2
With Q := ]}, z;, we get
gn(z) =e7" | - H(l — e + QeI (36)
i=2
Evaluation at x = 0 yields
g0 =Q-JJ(1-e)
i=2
>1-e - ]]J(1-e)
1=2
= foo1(z2,23,...,2n)
20 (37)

where we have made use of the induction. Again, equality holds
for Q = 0 only. Solving g/, (Z) = 0 yields the single extremum

aih <n;;2<1Q— >) |

We already established in (37) that the numerator is greater than
(or equal to) the denominator in the logarithm, so, analogously
to (34), we find that 7 < Ofor0 < @ < landZ > 0for @ > 1.
Again, no solution for @ = 1 and ¢'(z) = 0 for Q = 0. |

(38)

T =
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