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Abstract

Since interference is the main performance-limiting factor in most wire-
less networks, it is crucial to characterize the interference statistics.
The two main determinants of the interference are the network geom-
etry (spatial distribution of concurrently transmitting nodes) and the
path loss law (signal attenuation with distance). For certain classes of
node distributions, most notably Poisson point processes, and attenu-
ation laws, closed-form results are available, for both the interference
itself as well as the signal-to-interference ratios, which determine the
network performance.

This monograph presents an overview of these results and gives an
introduction to the analytical techniques used in their derivation. The
node distribution models range from lattices to homogeneous and clus-
tered Poisson models to general motion-invariant ones. The analysis
of the more general models requires the use of Palm theory, in par-
ticular conditional probability generating functionals, which are briefly
introduced in the appendix.



1
Introduction

Due to the scarcity of the wireless spectrum, it is not possible in large
wireless networks to separate concurrent transmissions completely in
frequency. Some transmissions will necessarily occur at the same time
in the same frequency band, separated only in space, and the sig-
nals from many undesired or interfering transmitters are added to
the desired transmitter’s signal at a receiver. This interference can be
mitigated quite efficiently in systems with centralized control, where
a base station or access point can coordinate the channelization and
the power levels of the individual terminals, or where sophisticated
multi-user detection or interference cancellation schemes can be imple-
mented. However, many emerging classes of wireless systems, such as
ad hoc and sensor networks, mesh networks, cognitive networks, and
cellular networks with multihop coverage extensions, do not permit the
same level of centralized control but require a more distributed resource
allocation. For example, channel access schemes are typically based on
carrier sensing, and power control is performed on a pairwise rather
than a network-wide basis, if at all. In these networks, interference is
not tightly controllable and subject to considerable uncertainty. Con-
sequently, interference is the main performance-limiting factor in most
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emerging wireless networks, and the statistical characterization of the
interference power becomes critical.

In this monograph, we derive results for the interference statistics in
large wireless networks that are subject to one or several sources of ran-
domness, including the node distribution, the channel access scheme,
and the channel or fading states. There are two main factors that shape
the interference: First, since interfering signals are only separated in
space, the spatial distribution of the concurrently transmitting nodes;
second, since the amount of interference caused depends on the signal
attenuation with distance, the path loss law. The first factor consists of
two parts, the node distribution on the one hand and the channel access
scheme (MAC) on the other. It is their combination that determines the
distribution of transmitting nodes. For example, even if the nodes are
very randomly distributed, a good MAC scheme will ensure a certain
spacing between concurrent transmitters or, better, between receivers
and interferers; hence the distribution of the transmitters at any given
moment may be fairly regular. Since the performance of a network is
determined by the signal-to-interference-and-noise ratios (SINRs) or, in
the pure interference-limited case, by the signal-to-interference ratios
(SIRs), the SIR distributions are also derived, usually in the form of
outage probabilities P(SINR < θ), which correspond to the cumulative
distributions.

The exact characterization of the interference or SIRs for general
node distributions and MAC schemes is a very challenging problem.
Since our focus in this monograph is on analytical results and on the
underlying mathematical techniques, the network models are partly
chosen for their tractability, not necessarily because they are the most
realistic ones. The analytical methods are best illustrated when applied
to simple models, and the results derived will provide bounds for more
elaborate ones, in particular when the models considered are in some
sense extreme, such as lattice networks on one end and “completely
spatially irregular” networks (Poisson networks) on the other. Also,
general design principles and guidelines can be inferred more easily
from analytical results, and it is our hope the analytical techniques are
described in enough detail to enable the reader to apply them to other
types of networks.
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We restrict ourselves to the statistics of the (aggregate) interference
power when the sources of randomness include the node distribution,
the fading states of the channels, and the channel access scheme. We
will not be discussing the amplitude statistics of the interference, which
depend strongly on the type of signaling employed and may, condi-
tioned on the power, be well approximated by a Gaussian or not [22].
With Gaussian codebooks, the interference amplitude is certainly con-
ditionally Gaussian, and if it is treated as noise at the receiver, its
variance or power is the relevant statistic for the achievable link per-
formance. While not optimum in general, treating interference as noise
is, in fact, optimum in the Gaussian weak interference or noisy interfer-
ence regime [42]. In this regime, sophisticated multi-user detectors do
not perform better than simple single-user detectors, and the expected
value of log2(1 + SINR) is the actual (bandwidth-normalized) capacity.

This monograph is organized as follows:
Section 2 derives the interference for networks with deterministic node
placement, in particular lattices. Section 3 is devoted to Poisson net-
works, where the nodes are distributed as a Poisson point process
(PPP). The PPP model is by far the most popular, thanks to its ana-
lytical tractability. It lends itself for extended analyses, including the
impact of power control and spread-spectrum and interference cancel-
lation techniques, and the derivation of interference correlation coeffi-
cients. The following two sections provide generalizations to the Poisson
model. In Section 4, the interference properties in clustered Poisson
networks are studied, while Section 5 is devoted to general motion-
invariant node distributions.

Sections 2 and 3 only require a basic knowledge in probability, while
the results in Sections 4 and 5 were obtained using Palm theory, in
particular conditional probability generating functionals. The appendix
provides a brief introduction of the mathematical techniques used in
this monograph.

The results and analytical techniques derived in this monograph will
hopefully serve as guidelines for the design of large wireless systems
with random user locations. They provide answers to such questions as
how the interference statistics and outage probabilities are affected by
the user density and distribution, the path loss law, the fading statistics,
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and power control. In turn, given system constraints such as outage or
rate requirements, they permit the tuning of the network parameters
for optimum performance.

1.1 Interference Characterization

The main quantity of interest is the (cumulated) interference. Measured
at a point y ∈ R

d it is given by

I(y) =
∑
x∈T

Pxhx�(‖y − x‖), (1.1)

where T ⊂ R
d denotes the set of all transmitting nodes, Px the transmit

power of node x, hx the (power) fading coefficient, and � the path loss
function, assumed to depend only on the distance ‖y − x‖ from node x
to the point y.

In a large wireless system, the unknowns are T , hx, and perhaps
Px. The locations of the interfering nodes, together with the path loss
law, determine the interference to first order. The impact of fading is
smaller but certainly non-negligible, as we shall see. So, in essence, it is
the network geometry or, more precisely, the interference geometry, that
determines the distribution of the interference. The geometry consists of
the underlying node distribution that, together with the channel access
scheme, determines the locations of the interfering nodes, and the path
loss law, which determines the strength of the interfering power given
the distance.

The nodes may be arranged deterministically, for example in a lat-
tice, or in a random fashion, in which case the uncertainty in the nodes’
locations is usually represented by a stochastic point process Φ on R

2 or
R

3 or a subset thereof. Assuming that the point process is simple, i.e.,
there are no two nodes at the same position, we can write the point pro-
cess as a random set, Φ = {x1,x2, . . . ,xN}, where the (possibly random)
total number of nodes N may be finite or infinite. At any moment in
time, the MAC scheme selects a subset of nodes as transmitters. This
makes T in (1.1) and, in turn, the interference, time dependent. In
some cases, the interference is stationary, both in time and space, so
neither a time index nor a spatial location needs to be specified, and
we can simply talk about the distribution of the interference I.
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Throughout this monograph, unless otherwise specified, we will
assume unit transmit powers at all nodes and the fading to be iid
with E(h) = 1.

1.2 Signal-to-Interference-Plus-Noise Ratio and Outage

1.2.1 Definitions

The performance of a wireless network critically depends on the signal-
to-interference-plus-noise (SINR) levels at the receivers.

Definition 1.1(Signal-to-interference-plus noise ratio (SINR)).
The SINR for a receiver placed at the origin o in the two- or three-
dimensional Euclidean space is

SINR =
S

W + I
, (1.2)

where S is the desired signal power, W is the noise power, and I the
interference power given by (1.1).

For a fixed modulation and coding scheme and with interference
treated as noise, e.g., by using a simple linear receiver, a well accepted
model for packetized transmissions is that they succeed if the SINR
exceeds a certain threshold θ. So we define the success probability as
follows:

Definition 1.2 (Transmission success probability).

ps(θ) = P(SINR > θ). (1.3)

Its complement 1 − ps is the outage probability, which is the same as
the cumulative distribution function (CDF) of the SINR, and we may
express the achievable rate (with interference treated as noise) of a link
as

E log2(1 + SINR) = −
∫

log2(1 + x)dps(x),
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assuming that the interference amplitude is Gaussian. In the weak-
interference regime, this expression is the actual bandwidth-normalized
capacity [42].

1.2.2 Outage in Rayleigh Fading

In the case of Rayleigh fading, the desired signal power S is exponen-
tially distributed. Assuming ES = 1,

ps(θ) = P(S > θ(W + I)) = exp(−θW )︸ ︷︷ ︸
pW

s

·exp(−θI)︸ ︷︷ ︸
pI

s

,

which shows that the success probability is the product of two factors,
a noise term pWs � exp(−θW ) that does not depend on the interference,
and an interference term pIs � exp(−θI) that does not depend on the
noise. This allows a significant simplification of outage analyses since
the joint impact of noise and interference is captured by the product of
the success probabilities in the noiseless and the interference-free cases.
Moreover, since exp(−θI) is the Laplace transform of the interference
evaluated at θ, i.e.,

pIs(θ) = LI(s)
∣∣
s=θ, (1.4)

the interference component of the success probability can be calculated
by determining the Laplace transform of I, as was noted in [3, 31, 54].
It turns out that this is easier in many cases than determining the
distribution. In other words, the SIR distribution when S is Rayleigh
fading is known for more types of networks than the distribution of just
the interference itself.



2
Interference in Regular Networks

2.1 General Deterministic Networks

We would like to calculate the interference measured at the origin in
the presence of n interferers at distances ri > 0 that are active with
probability p independently of each other (ALOHA). The path loss law
is the standard power law (with normalized distances r) �(r) = r−α,
and the channels are subject to Rayleigh (amplitude) fading and thus
exponential power fading. Hence the power Pri received from inter-
ferer i, given that it is transmitting, is distributed exponentially with
mean r−α

i , i.e., the probability density function (PDF) of Pri is

fPri
(x) = rαi exp(−rαi x), x ≥ 0. (2.1)

The total interference is

In =
n∑
i=1

BiPri, (2.2)

where the random variables Bi are iid Bernoulli with parameter p.

134
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The Laplace transform of an exponential random variable with
mean 1/y is L(s) = y/(y + s), s ≥ 0, so we have

LIn(s) =
n∏
i=1

(
prαi
rαi + s

+ 1 − p
)

=
n∏
i=1

(
1 − p

1 + rαi /s

)
, s ≥ 0. (2.3)

If the number of nodes n is infinite, then the question whether In has
a proper or defective distribution needs to be addressed. By continuity
and monotonicity, LIn(s) converges for all sequences ri if s > 0, but
the corresponding distribution may be defective, i.e., P(I∞ =∞) = 1.
Thanks to the uniform convergence of (2.3), limit and product may be
interchanged, and it follows that (2.3) converges to some positive limit
for any s > 0 if and only if

∞∑
i=1

p

1 + rαi /s
<∞ (∀s > 0) ⇐⇒

∞∑
i=1

p

rαi
<∞.

This is the condition for I∞ to have a proper distribution. On the other
hand, if

∞∑
i=1

p

rαi
=∞,

the interference is infinite a.s.
For example, in the case of a one-dimensional (one-sided) grid

with ri = i, i ∈ N, and p > 0, the interference is finite a.s. for
α > 1 and infinite a.s. for α ≤ 1 since the Riemann zeta function
ζ(α) �

∑∞
i=1 i

−α =∞ for α = 1. In the two-dimensional case, α > 2 is
required for finite interference since

∑∞
i,k=1(i

2 + k2)−1 =∞.

2.2 One-Dimensional Lattices

2.2.1 Laplace Transform

For α = 2 and α = 4, the infinite one-sided one-dimensional grid ri = i,
i ∈ N, permits a closed-form expression of LI(s). For α = 2, following
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[33], we start by expressing the Laplace transform as

LI(s) =
∏∞
i=1(1 + (1 − p)s/i2)∏∞

i=1(1 + s/i2)
, s ≥ 0.

This permits the application of Euler’s product formula

sin(πz) ≡ πz
∞∏
i=1

(
1 − z2/i2

)
, z ∈ C, (2.4)

for z = j
√

(1 − p)s (numerator) and z = j
√
s (denominator). For

example, the denominator product is
∞∏
i=1

(1 + s/i2) =
sin(πj

√
s)

πj
√
s

=
sinh(π

√
s)

π
√
s

, s ≥ 0,

and we obtain

LI(s) =
1√

1 − p ·
sinh(π

√
s(1 − p))

sinh(π
√
s)

, s ≥ 0. (2.5)

From the Bernoulli-l’Hôpital rule it follows that for p = 1, where all
interferers are always active,

LI(s) =
π
√
s

sinh(π
√
s)
, s ≥ 0. (2.6)

While the case p = 1 may seem artificial since (except for the node at
the origin) no nodes in the network are listening, this result will prove
useful when analyzing networks with TDMA scheduling.

For α = 4, we first rewrite (2.3) as

LI(s) =
∏∞
i=1(1 + (1 − p)s/i4)∏∞

i=1(1 + s/i4)
. (2.7)

The factorization of both numerator and denominator according to
(1 − z4/i4) = (1 − z2/i2)(1 + z2/i2) permits the use of Euler’s product
formula (2.4) with z =

√
±j((1 − p)s)1/4 (numerator) and z =

√
±js1/4

(denominator). The two resulting expressions are complex conjugates,
and |sin(

√
jx)|2 = cosh2(x/

√
2) − cos2(x/

√
2). Hence,

LI(s) =
cosh2 (σ(1 − p)1/4

)
− cos2

(
σ(1 − p)1/4

)
√

1 − p(cosh2σ − cos2σ)
, (2.8)
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where σ � πs1/4/
√

2. For p = 1, this simplifies to

LI(s) =
2σ2

cosh2σ − cos2σ
=

π2√s
cosh2

(
πs1/4√

2

)
− cos2

(
πs1/4√

2

) . (2.9)

2.2.2 Probability Densities

Next we would like to find an expression for the probability density
function (PDF) of I. Since a direct calculation does not seem possible,
we aim at finding a series expression.

For a finite number of nodes n, unit transmit powers, p = 1 (all
nodes transmit), and a general path loss exponent α, In is an n-stage
hypoexponential random variable with Laplace transform

LIn(s) =
n∏
i=1

iα

iα + s
, (2.10)

whose partial fraction expansion is given by

LIn(s) =
n∑
i=1

an,ii
α

iα + s
, where an,i �

n∏
k=1
k �=i

kα

kα − iα .

By inverse transformation of each term we obtain the PDF

fIn(x) =
n∑
i=1

an,ii
α exp(−iαx), x ≥ 0. (2.11)

Since the product-form (2.10) has the product
∏n
i=1 i

α in the numerator
(and no term in s), the residue coefficients an,i have the properties
that

∑n
i=1an,i = 1, n ∈ N, and

∑n
i=1an,ii

α = 0 for n > 1. It follows that
fIn(0) = 0 for n > 1. For n = 1, I1 follows an exponential distribution,
which implies fI1(0) = 1.

For two special cases, α = 2 and α = 4, we can derive the limiting
distribution limn→∞ fIn(x).
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Special case α = 2. Using Euler’s summation formula again,

1
a∞,i

= lim
x→i

∞∏
k=1
k �=i

(1 − x2/k2)

= lim
x→i

sin(πx)
πx(1 − (x/i)2)

= lim
x→i

π cos(πx)
π(1 − (x/i)2) − πx(2x/i2)

=
(−1)i+1

2
.

The PDF of the interference as n→∞ is thus

fI(x) =

{
2
∑∞

i=1(−1)i+1i2 exp(−i2x) if x > 0

0 if x = 0.
(2.12)

Figure 2.1 shows the densities fIn(x) for n = 2,5,12,∞. The mean
interference in the infinite case is E(I) =

∑∞
i=1 i

−2 = ζ(2) = π2/6. The
corresponding cumulative distribution function (CDF) for finite n is

FIn(x) =
n∑
i=1

an,i(1 − exp(−i2x)), x ≥ 0, (2.13)

and, for n→∞, since
∑n

i=1an,i = 1 for all n ∈ N,

FI(x) =

{
1 + 2

∑∞
i=1(−1)i exp(−i2x) if x > 0

0 if x ≤ 0.
(2.14)

Special case α = 4. Proceeding as for α = 2,

1
a∞,i

= lim
x→i

∞∏
k=1
k �=i

(1 − x4/k4)

= lim
x→i


 n∏
k=1
k �=i

(1 − i2/k2)
n∏
k=1
k �=i

(1 + i2/k2)
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Fig. 2.1 The dashed curves show the probability density fIn (x) from (2.11) for α = 2 and
n = 2 (left-most curve), n = 5, and n = 12, and the solid curve shows the limiting density
fI(x) from (2.12).

= lim
x→i

sin(πx)sinh(πx)
(πx)2(1 − (x/i)4)

= lim
x→i

π cos(πx)sinh(πx) − π sin(πx)cosh(πx)
2π2(1 − (x/i)4) − π2x(4x4/i4)

=
(−1)i+1 sinh(iπ)

4πi
.

Due to the sinh term, the coefficients a∞,i decay very quickly, and it
is sufficient to consider only the nearest three or even two interferers.
Considering only the nearest interferer yields approximately the right
tail of the density, but the probabilities of seeing little interference are
drastically different. This is essentially a diversity effect.

The probability density for the interference as n→∞ is thus

fI(x) =




4π
∞∑
i=1

(−1)i+1i

sinh(iπ)
i4 exp(−i4x) if x > 0

0 if x = 0.

(2.15)

Figure 2.2 shows the densities fIn(x) for n = 1,2,3,∞. The curve for
n = 3 is virtually indistinguishable from the limiting case. The mean
interference in the infinite case is E(I) =

∑∞
i=1 i

−4 = ζ(4) = π4/90.



140 Interference in Regular Networks

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

f n(x
)

Fig. 2.2 The dashed curves show the probability density fIn (x) from (2.11) for α = 4 and
n = 1,2,3, and the solid curve shows the limiting density fI(x) from (2.15).

2.3 Two-Dimensional Lattices

2.3.1 Square Lattice

Consider a network with nodes arranged in the integer lattice without
the origin Z

2 \ {o}. What is the interference measured at the origin
(without fading), or what is the mean interference (with fading)? The
lattice sum

I =
∑
x∈Z

2

x �=o

�(‖x‖)

does not have a closed-form expression. However, by grouping the nodes
into rings of increasing distances from the origin, we can give good
bounds. For example, take the four nearest nodes (distance 1), the four
next-nearest (distance

√
2), and then (square) rings of 8k nodes for

k = 2,3, . . .. Each node in ring k is at least at distance k and at most
at distance

√
2k, which yields the bounds

4�(1) + 4�(
√

2) +
∞∑
k=2

8k�(
√

2k) < I < 4�(1) + 4�(
√

2) +
∞∑
k=2

8k�(k).
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For �(r) = r−α,

4(1 + 2−α/2) + 8 · 2−α/2(ζ(α − 1) − 1)

< I < 4(1 + 2−α/2) + 8(ζ(α − 1) − 1). (2.16)

For α = 4, this is approximately 5.4 < I < 6.6. The correct value is right
in between, I = 6.037. A better lower bound is obtained if the average
distance to the nodes in ring k is upper bounded by k(1 +

√
2)/2. This

is an upper bound since

k(1 +
√

2)
2

≥ 1
2

(√
k2 + i2 +

√
k2 + (k − i)2

)
, ∀0 ≤ i ≤ k.

This gives the bound

I ≥ 4(1 + 2−α/2) + 8 ·
(

1 +
√

2
2

)−α

(ζ(α − 1) − 1). (2.17)

For α = 4, this is about 5.76. Claiming that the average node distance
in ring k is about k

√
5/4, obtained from an estimate of k along one

axis and k/2 along the other, gives the very good approximation

I ≈ 4(1 + 2−α/2) + 8 · (5/4)−α/2(ζ(α − 1) − 1). (2.18)

For α = 4, this gives I ≈ 5 + 8(4/5)2(ζ(3) − 1) = 6.034, which is very
accurate. Figure 2.3 shows the exact value of I as a function of α, plus
the bounds (2.16) and the approximation (2.18).

To obtain closed-form results (without the zeta function) we note
that

∞∑
k=3

k−α =
∫ ∞

2
�x�−αdx <

∫ ∞

2
x−αdx,

whereas
∞∑
k=3

k−α =
∫ ∞

3
�x�−αdx >

∫ ∞

3
x−αdx.

�x� and �x� denote the smallest integer larger than or equal to x and
the largest integer smaller than or equal to x, respectively. It follows
that

ζ(α) < 1 + 2−α +
∫ ∞

2
x−αdx = 1 + 2−αα + 1

α − 1
, α > 1,
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Fig. 2.3 The solid curve is the interference as a function of the path loss exponent α. The
dashed curves are the bounds (2.16), and the dash-dotted curve is the approximation (2.18),
which is very accurate for α > 3.

which, inserted in (2.16), yields the simple upper bound

I < 4
(

1 + 2−α/2 + 4 · 2−α α

α − 2

)
.

For α = 4, this is exactly 7.
If the integration starts at 5/2 instead of 2 or 3, a much improved

upper bound on the zeta function is obtained:

ζ(α) � 1 + 2−α +
(

2
5

)α−1 1
α − 1

.

To see that this is indeed an upper bound, let Uk, k = 3, . . . ,∞, be
uniformly randomly distributed over [k − 1/2,k + 1/2]. It follows from
the convexity of x−α and Jensen’s inequality that

I = 1 + 2−α +
∞∑
k=3

E(Uk)−α < 1 + 2−α +
∞∑
k=3

E(U−α
k ).

The sum in the upper bound is
∫∞
5/2x

−αdx.
This relatively simple expression upper bounds ζ(α) very tightly; it

is within 0.3% of the true value for all α > 1. Plugged into the upper
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bound in (2.16), this yields 6.64 for α = 4, so indeed it does not appre-
ciably weaken the bound.

In the case of the power law path loss, we may also use results on
lattice sums, see, e.g., [55], which typically involve the zeta and other
special functions, to express the interference. For the square integer
lattice,

I = 4ζ(α/2)β(α/2),

where

β(x) �
∞∑
i=1

(−1)i+1

(2i − 1)x

is the Dirichlet beta function. β(2) is Catalan’s constant K = 0.916.
So, for α = 4, I = 2π2K/3 ≈ 6.03. Whereas for other even-dimensional
square lattices, similar expressions are known, there are only approxi-
mations available for the three-dimensional case.

2.3.2 Triangular Lattices

A node deployment in a triangular lattice may make sense for a sen-
sor network. More importantly though, a triangular lattice may be a
good model for a CSMA-type network. Assume a high-density network,
with λ� 1 nodes per unit area, and a CSMA scheme with carrier sens-
ing radius 1. Under ideal operation, the transmitting nodes cannot be
denser than a triangular grid. Hence the interference in a triangular lat-
tice is an upper bound to the interference in a CSMA network. Again
we can partition the interferers to rings of increasing radii; in this case,
the rings are hexagons. The six nearest interferers (Ring 1) are at dis-
tance 1, the next twelve (Ring 2) at distances

√
3 or 2. Generally, in

ring k, the distances are at least
√

3k/2 and at most k (see Figure 2.4),
thus the cumulated interference from m rings is

6 +
m∑
k=2

6k · k−α < Im < 6 +
m∑
k=2

6k(
√

3k/2)−α, m > 1,
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Fig. 2.4 A triangular lattice with three hexagonal rings of nodes. Assuming unit nearest-
neighbor distances, the two circles indicate that the nodes in the second ring are at distance
at least

√
3 and at most 2. Generally, the distance to the nodes in the k-th ring is lower

bounded by
√

3k/2 and upper bounded by k. Ring k contains 6k nodes.

and, for m→∞,

6ζ(α − 1) < I < 6
(

1 +
(

2√
3

)α
(ζ(α − 1) − 1)

)
. (2.19)

2.4 Outage

As discussed in Section 1.2.2 (p. 133), the outage in Rayleigh fad-
ing follows directly from the Laplace transform. So, in all the trans-
forms derived, we obtain the (noise-free) success probability simply
by replacing s by the SINR threshold θ. The noise factor is pWs =
exp(−θW/(P�(r))), where P is the transmit power of the desired trans-
mitter and r is the distance of the link. So the interference factor pIs is
much more critical, and for notational simplicity, we henceforth drop
the superscript I in pIs.

As a sanity check, let us first consider the general case determin-
istic case (2.3) and let θ→∞. We obtain limθ→∞ ps(θ) = (1 − p)n, as
expected, since a transmission can only succeed if there is no active
interferer.

2.4.1 ALOHA in One-Dimensional Line Networks

The success probabilities for ALOHA for one-sided line networks follow
immediately from the corresponding Laplace transforms. From (2.5) it
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follows that for α = 2,

ps(θ) =
1√

1 − p ·
sinh(π

√
θ(1 − p))

sinh(π
√
θ)

, (2.20)

and for α = 4, it follows from (2.8),

ps(θ) =
cosh2 (σ(1 − p)1/4

)
− cos2

(
σ(1 − p)1/4

)
√

1 − p(cosh2σ − cos2σ)
, (2.21)

where σ � πθ1/4/
√

2.

2.4.2 TDMA in One-Dimensional Line Networks

Here we assume that interferers are scheduled in an m-phase TDMA
fashion. In a one-sided line network, this means that nodes 1,1 + m,1 +
2m,. . . transmit in slot 1, nodes 2,2 + m,2 + 2m,. . . transmit in slot
2, and so on, until slot m in which the nodes in mN transmit. After
that, the first set of nodes transmits again. In terms of interference,
this means that the network is stretched by a factor m, i.e., all the
distances are increased by m, and the interference from each node is
now

∑∞
i=1 �(im) instead of just summing over �(i). For the power law

path loss model, this means all powers are reduced by mα. But this is
equivalent to reducing the SIR threshold θ by the same factor! So we
can simply take the Laplace transforms for p = 1, (2.6) and (2.9), and
replace s by θm−α instead of by θ to obtain the success probabilities
for TDMA.

For α = 2, we obtain from (2.6),

ps(θ) =
σ

sinhσ
, where σ � π

√
θ

m
, (2.22)

and for α = 4, from (2.9),

ps(θ) =
2σ2

cosh2σ − cos2σ
, where σ � πθ1/4

√
2m

. (2.23)

Since θ enters these expressions only through θ1/α and m-phase TDMA
reduces the threshold by mα, the exponents for m cancel, and the
parameter σ is simply inversely proportional to m.
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...

T
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4 3 2 1 1 2 3 4

...

Fig. 2.5 Line network node arrangement for which the success probabilities in the two-sided
case are the squares of the success probabilities in the one-dimensional case. The receiver is
placed at the origin, and the desired transmitter is at unit distance above. The dark nodes
are the ones that are transmitting in the even time slots of a two-phase TDMA channel
access scheme.

2.4.3 Two-Sided Line Networks

The Laplace transforms and success probabilities we have derived are
for one-dimensional line networks. If the distances to the interferers are
symmetric, the success probabilities can simply be squared to get the
results for the two-sided line networks. For example, if the arrangement
is as shown in Figure 2.5, this is the case.



3
Interference in Poisson Networks

In this section we focus on networks whose nodes are distributed as a
homogeneous Poisson point process (PPP) (see Section A.1.2). Among
all stochastic node distribution models, the PPP and the closely related
binomial point process (see Section A.1.1), where a fixed number of
nodes is uniformly randomly placed in a certain area, are by far the
most popular; they are used in certainly more than 95%, perhaps 99% of
the analytical work on wireless network characterization. The complete
spatial randomness or independence property makes the PPP easy to
analyze. From the practical side, the PPP model is often justified by
claiming that it is suitable when large numbers of nodes are dropped
from aircraft (in sensor networks), or when nodes move around inde-
pendently and uniformly in a certain area.

While interference characterization in large wireless systems is a
relatively new topic, a similar type of noise, the so-called shot noise,
has been the subject of investigation for more than a century already.
We start our discussion by drawing parallels between shot noise and
interference.

147
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3.1 Shot Noise

If the nodes in the network are distributed according to a stochastic
point process, the interference function stated in (1.1), can be viewed
as a random field or, more specifically, as a shot noise process. In one
dimension, a basic shot noise process is described as

I(t) =
∞∑
i=1

g(t − xi) =
∑
x∈Φ

g(t − x), (3.1)

where Φ = {xi}∞i=1 is a stationary Poisson process on R and g(x) is the
impulse response. Traditionally, shot noise is measured in time, i.e., the
points in the PPP are time instants. To model interference in a (one-
dimensional) wireless network, we replace the time axis by the spatial
axis and the impulse response g(x) with the path loss function �(‖x‖).
This spatial impulse response is two-sided and even, since the wireless
signals are assumed to spread equally in both directions. This way, (3.1)
becomes the expression for the interference in a one-dimensional net-
work whose (transmitting) nodes are distributed as a Poisson process,
with unit transmit powers and no fading.

A generalized shot noise process permits the incorporation of a
stochastic impulse response and multi-dimensional point processes:

I(y) =
∞∑

x∈Φ

Kxg(y − x), (3.2)

where the coefficients Kx are iid random variables that can be used to
model fading. Putting Kg(x) = h�(‖x‖) shows that (1.1) is a special
case of (3.2).

Shot noise processes have been studied at least dating back to
Campbell in 1909 [6, 7], who characterized their mean and variance,
more fully by Schottky in 1918 [41], while Rice [39] and later Gilbert
and Pollak [15] performed extensive investigations on their distribu-
tion. Since the path loss law �(·) is typically a power law, power law
shot noise is most relevant in the context of wireless networks. It was
considered by Lowen and Teich in 1990 [32]. In particular, they showed
that it does not converge to a normal distribution as the intensity of the
point process increases, in contrast to exponentially decaying impulse
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responses. Heinrich and Schmidt studied normal convergence of shot
noise processes in detail in [25].

3.2 Interference Distribution

In this section we would like to characterize the total interference power
measured at the origin, given by

I = I(o) �
∑
x∈Φ

hx�(‖x‖), (3.3)

where Φ is a point process of interferers on R
d. In this case of a uniform

(or homogeneous) PPP, it does not matter where the interference is
measured; due to Slivnyak’s theorem (Theorem A.5) it could even be
measured at a point of the process as long as its contribution to I from
that point is not considered. In all other cases, however, it does, since
the interference seen by a typical point of the point process differs from
the interference seen at an arbitrary point of the plane (see Section A.2
on Palm distributions in the appendix).

For channel access, ALOHA is a natural match for the PPP, since
ALOHA maintains the distributional properties of the PPP: If all nodes
form a PPP of intensity λ and transmit independently with probabil-
ity p, the set of transmitters forms a PPP of intensity pλ. This follows
from the (independent) thinning property of the PPP, see Section A.1.2
in the appendix. This implies that if I(λ) is the interference in a PPP
of intensity λ where all nodes transmit, I(pλ) is the interference in the
same network when ALOHA with probability p is used. Further, due to
the superposition property of the PPP, the interference is proportional
to λ, or pλ.

3.2.1 Mean Interference

We start the discussion with a brief derivation of the mean interference.
From Campbell’s theorem (Theorem A.2), we have

E(I) =
∑
x∈Φ

hx�(‖x‖) = λE(h)
∫

Rd

�(‖x‖)dx

= λcdd

∫ ∞

0
�(r)rd−1dr,
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where cd = |b(o,1)| is the volume of the d-dimensional unit ball. The
fading distribution does not matter, as long as E(h) = 1. For �(r) = r−α,

E(I) = λcdd

∫ ∞

0
rd−α−1 =

λcdd

d − αr
d−α

∣∣∣∞
0
. (3.4)

This diverges for α < d due to the upper integration bound, i.e., the
cumulated interference from the large number of distance nodes. For
α > d, it diverges due to the lower bound, which is a consequence of the
path loss law and the property of the PPP that nodes can be arbitrarily
close. For α = d, both the lower and upper bounds cause problems.

For finite networks, α < d guarantees a finite mean, but in the infi-
nite case it results in infinite interference a.s. On the other hand, for
α > d, the interference is finite a.s. even for infinite networks since the
Laplace transform is non-degenerate, as we will show.

In practice, the path loss is bounded, which can be modeled by, e.g.,
�(r) = min(1, r−α). In this case, the mean exists for α > d. For finite
two-dimensional networks of radius ρ > 1,

E(Iρ) = λ

(
π +

2π
α − 2

(
1 − ρ2−α)) .

This simple calculation gives some guideline on how large to choose
the network area in a simulation, where the behavior of an infinite
network is to be explored. If the mean interference in the simulation
area (outside radius 1) should match the theoretical mean in an infinite
network up to a factor 1 − ε, we have

1 − ρ2−α > 1 − ε =⇒ ρ > ε−1/(α−2). (3.5)

For example, if ε = 10−3 and α = 2.5, the radius has to be at least 106.
For values of α smaller than 2.1, the network can hardly be simulated
exactly. On the other hand, for α = 4, a radius of only 32 is sufficient
to get within 0.1%. More details on the complexity of simulating PPPs
can be found in [50]. The paper also describes how to add a correction
term to the interference if the simulation area cannot be chosen large
enough to yield the desired accuracy.
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3.2.2 Interference Distribution Without Fading

In this subsection we focus on the case of two-dimensional networks
and assume there is no fading, i.e., hx ≡ 1 in (3.3), and our goal is to
find the characteristic function of the interference and from there, if
possible, the distribution.

We follow a basic yet powerful technique as it was used, for example,
in [43]. It consists of two steps:

1. Consider first a finite network, say on a disk of radius a cen-
tered at the origin, and condition on having a fixed number
of nodes in this finite area. The nodes’ locations are then iid.

2. Then de-condition on the (Poisson) number of nodes and let
the disk radius go to infinity.

Step 1. Consider the interference from the nodes located within distance
a of the origin:

Ia =
∑

x∈Φ∩b(o,a)
�(‖x‖). (3.6)

For the path loss law �(x), it is assumed that it is strictly monotonically
decreasing (invertible), and that limx→∞ �(x) = 0. In the limit a→∞,
Ia = I. Let FIa be the characteristic function (Fourier transform) of Ia,
i.e.,

FIa(ω) � E(ejωIa). (3.7)

Conditioning on having k nodes in the disk of radius a,

FIa(ω) = E
(
E(ejωIa | Φ(b(o,a)) = k)

)
. (3.8)

Given that there are k points in b(o,a), these points are iid uniformly
distributed on the disk with radial density

fR(r) =

{
2r
a2 if 0 ≤ r ≤ a
0 otherwise,

(3.9)

and the characteristic function is the product of the k individual char-
acteristic functions:

E(ejωIa | Φ(b(o,a)) = k) =
(∫ a

0

2r
a2 exp(jω�(r))dr

)k
. (3.10)
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Step 2. The probability of finding k nodes in b(o,a) is given by the
Poisson distribution, hence:

FIa(ω) =
∞∑
k=0

exp(−λπa2)(λπa2)k

k!
E(ejωIa | Φ(b(o,a)) = k). (3.11)

Inserting (3.10), summing over k, and interpreting the sum as the Tay-
lor expansion of the exponential function, we obtain

FIa(ω) = exp
(
λπa2

(
−1 +

∫ a

0

2r
a2 exp(jω�(r))dr

))
. (3.12)

Integration by parts, substituting r→ �−1(x), where �−1 is the inverse
of �, and letting a→∞ yields

lim
a→∞

a2
(
−1 +

∫ a

0

2r
a2 exp(jω�(r))dr

)
=
∫ ∞

0
(�−1(x))2jωejωxdx,

so that

FI(ω) = exp
(
jλπω

∫ ∞

0
(�−1(x))2ejωxdx

)
. (3.13)

To get more concrete results, we need to specify the path loss law. For
the standard power law �(r) = r−α, we obtain

FI(ω) = exp
(
jλπω

∫ ∞

0
x−2/αejωxdx

)
. (3.14)

For α ≤ 2, the integral diverges, indicating that the interference is infi-
nite almost surely. For α > 2,

FI(ω) = exp
(
−λπΓ(1 − 2/α)ω2/αe−jπ/α

)
, ω ≥ 0. (3.15)

The values for negative ω are determined by the symmetry condition
F∗
I (−ω) = FI(ω). For α = 4,

FI(ω) = exp
(
−λπ3/2 exp(−jπ/4)

√
ω
)
. (3.16)

This case is of particular interest, since it is the only one where a
closed-form expression for the density exists:

fI(x) =
πλ

2x3/2 exp
(
−π

3λ2

4x

)
. (3.17)
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This is the so-called Lévy distribution, which can also be viewed as
an inverse gamma distribution, or as the inverse Gaussian distribution
with infinite mean. For other values of α, the densities may be expressed
in an infinite series [43, Equation (22)].

The characteristic function (3.15) indicates that the interference dis-
tribution is a stable distribution with characteristic exponent 2/α < 1,
drift 0, skew parameter β = 1, and dispersion λπΓ(1 − 2/α)cos(π/α).
See Section A.3 for an introduction to stable random variables, in par-
ticular (A.14); many more details are given in [40]. The corresponding
Laplace transform is (see (A.15))

LI(s) = exp(−λπΓ(1 − 2/α)s2/α). (3.18)

Stable distributions with characteristic exponents less than one do
not have any finite moments. In particular, the mean interference
diverges, which is due to the singularity of the path loss law at
the origin. This also follows immediately from the fact that E(I) =
− d

ds log(LI(s))|s=0 = lims→∞ cs2/α−1 =∞. In fact, even when only the
nearest interferer, at distance R1, is considered, the mean E(I) does
not exist: For α ≥ 2,

E(I1) = E(R−α
1 ) =

∫ ∞

0
2πλx1−α exp(−λx2)dx =∞.

The method of conditioning on a fixed number of nodes, using the
iid property of the node locations, and de-conditioning with respect to
the Poisson distribution is applicable to many other problems.

3.2.3 Interference Distribution with Fading

Here we derive the interference as given in (3.3) for Rayleigh fading.
We pursue two separate approaches.

De-conditioning on deterministic network. A first approach,
which has been used in [33], is to use the Laplace transform for gen-
eral deterministic networks (2.3) and de-condition on the distances of
the nodes from the origin. In the one-dimensional case, the n smallest
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distances from the origin 0 ≤ R1 ≤ R2 ≤ . . . ≤ Rn are governed by the
joint distribution

f(R1,...,Rn)(r1, . . . , rn) = (2λ)n exp(−2λrn)1K(r1, . . . , rn),

where K = {(r1, . . . , rn) | 0 ≤ r1 ≤ r2 ≤ . . . ≤ rn} is the order cone or
hyperoctant in R

n, and 1K is the indicator function (see, e.g., [20,
Corollary 2]). The factor two stems from the fact that the network
extends over the whole real line R, so the point process of distances
from the origin {|xi|} has density two.

For α = 2, (2.3) is now the conditional Laplace transform

Lc
In(s) = E(exp(−sIn) | R1 = r1, . . . ,Rn = rn)

=
n∏
i=1

r2i
r2i + s

, s ≥ 0.

The superscript c indicates conditioning. Integrating with respect to
the joint density yields the de-conditioned Laplace transform

LIn(s) =
∫
K
λn exp(−2λrn)

n∏
i=1

r2i
r2i + s

dr1 · · ·drn

=
(2λ)n+1

n!

∫ ∞

0
exp(−2λr)

(
r −
√
sarctan(r/

√
s)
)ndr, (3.19)

where the second line is obtained using induction and partial integra-
tion [33]. For all n ∈ N, LIn(0) = 1, and it can be shown that the limit
limn→∞LIn(s) exists for all s. So, by continuity, the distribution of
the interference I∞ is not defective. Similarly, it can be shown that in
the two-dimensional case with α = 2, the interference distribution is
defective, i.e., P(I∞ =∞) = 1.

For α = 4 in the two-dimensional case, the squared distances from
the origin form again a homogeneous PPP, this time of intensity λπ. So,
merely by changing 2λ to πλ in (3.19), we obtain the Laplace transform
of the interference caused by the first n interferers in two-dimensional
networks for α = 4. Figure 3.1 shows the Laplace transforms for the
one- and two-dimensional cases. It can be seen that the transforms
converge quickly.
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Fig. 3.1 Laplace transform LIn (s) for the one-dimensional (left) and two-dimensional
(right) cases. n = 1,2,5,100. The curve for n = 1 is the top curve.

While these are useful results, they are not closed-form; in par-
ticular, it does not seem possible to find an explicit expression for the
limiting Laplace transform for n→∞ from (3.19). Thus we will pursue
a different approach to find the Laplace transform of the interference
in an infinite network.

Using the probability generating functional. As mentioned in
Section 3.1, researchers have found an analogy to shot noise processes
to analyze the distributional properties of I(x) [26, 32, 39].

Here we are using this insight to derive the Laplace transform of the
interference. First we map the d-dimensional PPP onto R

+ by letting
Φ � {ri = ‖xi‖} be the distances of the points of a d-dimensional uni-
form PPP of intensity λ. Per the mapping theorem (Theorem A.1,
see also [30]), Φ is an inhomogeneous PPP with intensity function
λ′(r) = λcddr

d−1, where cd = |b(o,1)| is the volume of the d-dimensional
unit ball. Considering the interference as a shot noise process (3.1), we
can identify the path loss law �(r) = hrr

−α for iid h with the impulse
response of the shot noise process. We would like to calculate the
Laplace transform

LI(s) � E[e−sI ] = E

[
exp

(
−s

∑
r∈Φ

hrr−α
)]
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of the interference. The expectation is to be taken over both the point
process and the fading. Due to the independence of the fading,

LI(s) = EΦ

[∏
r∈Φ

Eh

[
exp

(
−shrr−α

)]]
.

This is a probability generating functional (see Definition A.5) with
v(r) = Eexp(−shrr−α), so we have from (A.3)

LI(s) = exp
{
− Eh

(∫ ∞

0
(1 − exp(−shr−α))λ′(r)dr︸ ︷︷ ︸

A

)}
,

where we flipped the order of integration and expectation. First we
calculate the integral:

A = λcd

∫ ∞

0

(
1 − exp(−shr−α)

)
drd−1dr

= λcd

∫ ∞

0

(
1 − exp(−shr−1/δ)

)
dr (subst. r← rd)

= λcd

∫ ∞

0

(
1 − exp(−sh/x)

)
δxδ−1dx (subst. x← r1/δ),

where δ � d/α. To calculate this integral, we note that it is the expected
value

E[((X/sh)−1)δ]

of an exponential random variable X with mean 1. Since E(Xp) =
Γ(1 + p) by the definition of the gamma function,

Γ(p) �
∫ ∞

0
tp−1e−tdt,

it follows that

E[((X/sh)−1)δ] = (sh)δΓ(1 − δ).

So, with A = λcd(hs)δΓ(1 − δ), we obtain

LI(s) = exp
(
− λcdE[hδ]Γ(1 − δ)sδ

)
. (3.20)
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The only difference to (3.18) is the additional term E(hδ), which
accounts for the fading. For non-unit transmit powers Pt, s is simply
replaced by Pts, i.e., the transmit powers enters the Laplace transform
through an additional factor P δt in the exponential. Note that (3.20) is
only valid for δ < 1. So:

• For α ≤ d, we have I =∞ a.s. This is a consequence of the
cumulated interference from the many far transmitters whose
signal powers do not decay fast enough to keep the interfer-
ence power finite. For a finite network, the interference would
be finite.

• For α > d we have I <∞ a.s. but E(I) =∞ due to the sin-
gularity of the path loss law at the origin. Even if we consider
only the nearest interferer, E(I) is infinite. If a bounded path
loss law is used, all moments exist.

In the case of Rayleigh fading, E(hδ) = Γ(1 + δ), using the properties
of the gamma function, we obtain the closed-form result

LI(s) = exp
(
− λcdsδ

πδ

sin(πδ)

)
. (3.21)

As in the non-fading case, the interference has a stable distribution
with characteristic exponent δ, drift 0, and skew parameter β = 1; the
dispersion here is λcdE(hδ)Γ(1 − δ)cos(δπ/2), see Section A.3.

As shown in (3.17), for δ = 1/2, the PDF and CDF exist. With
Γ(3/2) =

√
π/2, the Lévy PDF is in the two-dimensional case (α = 4)

fI(x) =
λ

4

(π
x

)3/2
exp

(
−π

4λ2

16x

)
, (3.22)

and the CDF is

FI(x) = 1 − erf
(
π2λ

4
√
x

)
, (3.23)

where erf(x) = 2
∫ x
0 exp(−t2)dt/

√
π is the standard error function.
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For general δ, the probability density of the interference can be
expressed as [32]

fI(x) =
1
πx

∞∑
i=1

(−1)i+1Γ(1 + iδ)sin(πiδ)
i!

·
(
λcdΓ(1 − δ)E(hδ)

xδ

)i
.

(3.24)
From this series it is apparent that as x→∞, the term for i = 1
becomes dominant, and

fI(x) ∼
1

πxδ+1λcdΓ(1 + δ)Γ(1 − δ)sin(πδ)︸ ︷︷ ︸
πδ

E(hδ)

∼ λcdδE(hδ)x−(1+δ), x→∞. (3.25)

In the non-fading case, we may use the distribution of the distances
to the n-th nearest neighbor to generalize this result to the behavior of
the tail probability for the n-th interferer. The CCDF of the distance
to the n-th nearest neighbor Rn is [19]

P(Rn > r) =
n−1∑
k=0

(λcdrd)k

k!
exp(−λcdrd) =

Γ(n,λcdrd)
Γ(n)

,

where Γ(·, ·) is the upper incomplete gamma function. So, with In =
R−α
n ,

P(In < x) =
n−1∑
k=0

(λcdx−δ)k

k!
exp(−λcdx−δ) =

Γ(n,λcdx−δ)
Γ(n)

. (3.26)

For the tail probability we need the CCDF, obtained by summing
from n to ∞ instead of 0 to n − 1. For x→∞, the dominant term will
be the one for k = n. Since exp(−x−δ) ∼ 1 − x−δ,

P(In > x) ∼ (1 − λcdx−δ)
(λcdx−δ)n

n!

∼ 1
n!

(λcd)nx−nδ, x→∞. (3.27)

Plugging in n = 1 and taking the derivative, it is confirmed that this is
consistent with (3.25).

These results on the tail probabilities imply that E(Ipn) exists for
p < nδ. For example, if interference-canceling techniques are used and
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the interference from the k nearest interferers can be canceled, we need
k > α in two-dimensional networks to have a finite second moment.

With fading, we can infer from (3.24) that a factor (E(hδ))n has to
be added.

The fact that the fading distribution only enters the Laplace trans-
form (3.20) through its δ-th moment may appear surprising at first. It
is, however, an instance of a result by Gilbert and Pollak [15] (see also
[32]) who have shown that in the one-dimensional case, an ensemble
of stochastic response functions, in our case hx−α, has an equivalent
deterministic impulse response function �eq(x) = cx−α satisfying

Eh|{x : hx−α > y}| = |{x : cx−α > y}| ∀y.

To find c, we note that the LHS is E(h1/α)x−1/α, and the RHS is
c1/αx−1/α. So c = (E(h1/α))α. So, replacing �(r) = r−α by �eq(r) =
(E(h1/α))αr−α gives the correct first-order statistics for the interference
with fading process h in the one-dimensional case. In d dimensions, the
LHS is cdE(hδ)x−δ, and the RHS is cdcδx−δ, and the equivalent deter-
ministic path loss law is

�eq(r) = (E(hδ))1/δr−α.

As an example, plugging in this deterministic path loss law in (3.14)
yields the correct expression for the Laplace transform for the fad-
ing case (3.20), since x−δ in (3.14) is replaced by (x/c)−δ, which pro-
duces the factor E(hδ) as desired. The equivalence only holds up to the
mean, but since these distributions do not have any finite moments, the
Laplace transforms for the cases with stochastic fading and with the
equivalent deterministic path loss law are identical. As we can see from
the series expression of the probability density (3.24), the complete
density cannot be derived using the equivalent path loss law.

In [26] the amplitude distribution of the interference was stud-
ied; they show that if each interfering signal is spherically symmetric,
the interference amplitude has a symmetric Lévy-stable distribution
(skew 0) with characteristic exponent 4/α. This is consistent with our
result for the interference power, since the amplitude decays with dis-
tance to the power α/2. They also analyzed the convergence properties
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to stable distribution as the number of nodes increases, and they con-
sidered lognormal fading (shadowing).

3.3 SIR Distribution and Outage

As mentioned in the introduction, the Laplace transform is exactly
the distribution of the SIR if the power from the desired transmitters
S is exponentially distributed (Rayleigh fading). So while closed-form
expressions for the interference itself do not exist, they are available in
certain cases for the SIR.

For a transmitter–receiver distance r, the received signal power S
is exponential with mean r−α. The success probability ps(θ) = P(S >
Iθ) = Eexp(−Iθrα) is the Laplace transform of the interference evalu-
ated at s = θrα. So, in a d-dimensional interference-limited networks
whose nodes are distributed as a uniform PPP of intensity λ with
ALOHA channel access with probability p, the outage probability for
Rayleigh fading desired signal strength S follows from (3.20), replacing
s by θrα:

ps(θ) = exp
(
− pλcdrdE(hδ)Γ(1 − δ)θδ

)
. (3.28)

Here we have used the fact that ALOHA channel access performs inde-
pendent thinning of the PPP, which results in a PPP of lower intensity.
While S needs to be Rayleigh, the interferers’ channels may be subject
to a different type of fading (or no fading), all that matters is E(hδ).
For Rayleigh fading interferers, we obtain from (3.21)

ps(θ) = exp
(
−pλcdrd

πδ

sin(πδ)
θδ
)
. (3.29)

This result has been derived in [3, 54].
Since the nearest-neighbor distance scales as λ−1/d, this shows that

nearest-neighbor communication is always possible with constant suc-
cess probability, irrespective of the network density.

If the received signal strength from the desired transmitter is
not Rayleigh fading, there are no known closed-form expressions for
the outage. If the fading random variables have a square integrable
density, an integral expression for the success probability is given
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in [4, Proposition 2.2]. Bounds on the outage probability have been
derived in [49, 51] in the context of the so-called transmission capac-
ity, defined to be the maximum transmitter density given an outage
constraint for transmissions to a receiver at fixed distance.

3.4 Extremal Behavior

When analyzing the outage probabilities of nearest-neighbor transmis-
sion or the benefits of interference cancellation, it is necessary to relate
the power from the strongest interferer to the total interference. This
strongest “interferer” may be the desired transmitter or the one to be
canceled. Here we derive the extreme value statistics for the maximum
interference in two-dimensional networks. As in Section 3.2.2, we start
by putting k nodes uniformly iid on a disk of radius a. For the power
path loss law, without fading, the power at the origin from each node,
R−α, is distributed as

P(R−α < x) = 1 − 1
a2x

−2/α, x ≥ a−α.

Let δ � 2/α. Let Mk be the maximum of the k interference powers and
FMk

(x) its CDF:

FMk
(x) =

(
1 − 1

a2x
−δ
)k

, x ≥ a−α.

Since the CCDF decays like x−δ, the asymptotic extremal distribu-
tion FM∞ is a Fréchet distribution, which has the shape exp(−x−δ),
up to a possible shift and dilatation (see, e.g., [18, Theorem 6.2]). This
means that there are sequences of shift parameters ak and dilatation
parameters bk, such that

lim
k→∞

FMk
(ak + bkx) = exp(−x−δ).

The standard Fréchet distribution on the right side is the limit
limk→∞(1 − x−δ/k)k. So ak and bk are given by the identity

FMk
(ak + bkx) ≡

(
1 − x−δ

k

)k
,
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from which we find ak ≡ 0, bk = (k/a2)1/δ. Hence

FMk
(x) ∼ exp(−(k/a2)x−δ) as k→∞. (3.30)

If we let k and a2 go to infinity such that the density λ = k/(πa2) stays
constant, we have

FM∞(x) = exp(−λπx−δ). (3.31)

In this limiting case, the nodes form a PPP on R
2, so we should be

able to get the same result by simply calculating the interference R−α
1

from the nearest interferer, assumed at distance R1. Indeed, P(R1 <

r) = 1 − exp(−λπr2), from which (3.31) follows immediately.
Rewriting the CDF in (3.30) in terms of the rescaled variables

xk−1/δ such that the right side becomes independent of k shows that
Mk = Θ(k1/δ). Since δ < 1, k1/δ � k for large k, so the sum is not pro-
portional to k, which is consistent with the fact that the mean diverges.
We have found in Section 3.2 that the distribution of the sum of all
interferers is a Lévy-stable distribution with the same power-law tail
as the Fréchet distribution, which shows that the maximum and the
sum are of the same order. This implies, in turn, that if the power
from the nearest transmitter is the desired signal, the SIR converges
to a non-zero constant as k→∞. This fact has been exploited in, for
example, in [16] to derive the capacity scaling law for ad hoc networks
with mobile nodes. It hinges, however, critically on the homogeneity of
the path loss law.

The situation is the same in the presence of fading — as long as the
expectation of the fading random variable is finite, which is generally
the case. Then the heavy tail of the interference distribution can only
be due to the singularity of the path loss law.

3.5 Power Control

We introduce the notion of perceived transmit power P , which is the
transmit power multiplied by the fading coefficient. Previously, we did
not consider power control but fading, so we had P = h. With neither
fading nor power control, P ≡ 1. With power control and no fading,
P is just the transmit power Pt, and with power control and fading,
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P = hPt. We assume that the power control schemes will result in the
perceived transmit powers Pi to be iid across the transmitters, which
allows us to use the result (3.20) from the previous section since for
the interference it does not matter if the randomness is due to fading
or power control, or the combination of both. The main change is to
replace E(hδ) by E(P δ); hence our task in this section is mainly the
determination of this δ-th moment.

We focus on pairwise power control between a transmitter and its
receiver; in particular, we consider the case where each node trans-
mits to its nearest neighbor, assumed at distance R1. As it would not
make sense to have all nodes in the network transmit, we introduce
an ALOHA parameter p to obtain a thinned PPP of intensity λp of
transmitters. This changes (3.20) slightly to

LI(s) = exp
(
− pλcdE(P δ)Γ(1 − δ)sδ

)
.

3.5.1 Channel Inversion Without Fading

In this case, nodes compensate for the large-scale path loss by channel
inversion. The transmit power Pt = P = Rα1 is Weibull distributed

P(P ≤ x) = 1 − exp
(
− λcdxδ

)
with the moments

E(Pm) =
Γ(1 + m/δ)

(λcd)m/δ
.

One might argue that instead of λ, λ(1 − p) should be used as the
relevant density for the nearest-neighbor distance since this is the den-
sity of the non-transmitting nodes. This would require a simple change
in the network density. However, ALOHA is an uncoordinated MAC
scheme, so it is not possible for a transmitter to know when its intended
receiver will be available to actually receive. Since E(P δ) = 1/(λcd) we
obtain from (3.20)

LI(s) = exp
(
− pΓ(1 − δ)sδ

)
, (3.32)

which is independent of the network density! So, no matter how dense
we make the network, if the transmitters talk to their nearest neighbors
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and compensate for the path loss so that their signal arrives with unit
power, the interference distribution does not change. This is of course
not a coincidence: If nodes are ordered according to their distances
Ri from a given point, {Rdi } forms a homogeneous PPP of intensity
λcd [20, Corollary 2]. So the mean distance to the first node R1 is
1/(λcd)1/d. The transmit power is proportional to Rα1 , so P δ = Rd1,
which is proportional to 1/(λcd).

Compared to the case without power control, where we assumed unit
transmit power, the mean power here is E(P ) = Γ(1 + 1/δ)/(λcd)1/δ.
If we compensate for the change in mean transmit power, the power
distribution is

P(P ≤ x) = 1 − exp
(
− (Γ(1 + 1/δ)x)δ

)
,

and the Laplace transform takes the form

LI(s) = exp
(
− pλcdΓ(1 + 1/δ)−δΓ(1 − δ)sδ

)
. (3.33)

Comparing the resulting interference with the interference in Rayleigh
fading (without power control), we note that the coefficients Γ(1 + δ) >
Γ(1 + 1/δ)−δ for δ < 1 and that the ratio diverges as δ→ 0 since
limδ→0 Γ(1 + 1/δ)−δ = 0. This indicates that power control causes
less interference than Rayleigh fading would, and that the difference
increases with increasing path loss exponent α (for a fixed number of
dimensions d).

While the power levels are spatially iid, it cannot be assumed that
they are also temporally iid, since the distance to a node’s nearest
neighbor is unlikely to change from time slot to time slot. The temporal
correlation structure depends on the level of mobility and the length of
a communication session between two nodes.

3.5.2 Power Control and Fading

Compensation for large-scale path loss. If the channel is Rayleigh fading
but the transmitters only compensate for the large-scale path loss to the
nearest receiver, each interferer’s power is the product of the Weibull
random variable Rα1 and an exponential random variable h, P = Rα1h.
Generally, the product of two independent random variables X and Y
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with distributions FX(x) and FY (x), respectively, is distributed as

FXY (z) = EY (FX(z/Y )) = EX(FY (z/X)).

In this case, the product distribution is

FP (x) =
∫ ∞

0
(1 − exp(x/r))λcdδrδ−1 exp(−λcdrδ)dr. (3.34)

This integral can be expressed using the infinite series [35]

FP (x) =(λcd)1/δx
∞∑
k=0

Γ
(
1 − 1

δ (k + 1)
)

(k + 1)!
(−(λcd)1/δx)k

+ λcdx
δ

∞∑
k=0

Γ(1 − δ(k + 1))
(k + 1)!

(−λcdxδ)k, (3.35)

which exhibits a striking symmetry between the two parts in this
expression. This representation is only valid if 1/δ /∈ N since the gamma
function diverges for negative integers.

The moment E(P δ) is easy to find:

E(P δ) = E((Rα1 )δhδ) = E(Rd1)E(hδ) =
1
λcd

Γ(1 + δ). (3.36)

With this, we obtain

LI(s) = exp
(
− pΓ(1 + δ)Γ(1 − δ)sδ

)
, (3.37)

and, for the case where the transmit powers are normalized to 1,

LI(s) = exp
(
−pλcd

Γ(1 + δ)
Γ(1 + 1/δ)δ

Γ(1 − δ)sδ
)
. (3.38)

Compensation for path loss and fading. If the transmitters have the
complete channel information, including the fading realization, they
can compensate for the complete path loss. The iid process governing
the interference power is Rα1h2/h1, where h1 is the fading coefficient of
the channel to the transmitter’s destination and h2 is the coefficient of
the channel to the point where interference is measured, see Figure 3.2.
Let H � h2/h1. In Rayleigh fading,

FH(x) =
x

x + 1
.
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R1

α

h1 T R

h2

h1
Pt=

Fig. 3.2 Illustration for the case where power control is used to compensate for large-scale
path loss and fading. Interference is measured at the location of the star. The transmitter T
transmits at power Pt = Rα

1 /h1 to compensate for its channel to its receiver R. The channel
from T to the location of the star is subject to fading with coefficient h2, so the perceived
power is Rα

1 h2/h1.

With P = Rαh2/h1,

FP (x) =
∫ ∞

0

1 − exp(−λcd(x/y)δ)
(y + 1)2

dy. (3.39)

The δ-moment is of H is

E(Hδ) = E(hδ2) E(h−δ
1 ) = Γ(1 + δ)Γ(1 − δ),

from which

E(P δ) =
Γ(1 + δ)Γ(1 − δ)

λcd
,

and

LI(s) = exp
(
− pΓ(1 + δ)Γ(1 − δ)2sδ

)
(3.40)

follow.
In Figure 3.3, the values of E(P δ) are shown for the different cases.

It can be seen that full channel inversion has the most drastic impact
on the interference. Note that in this case, normalization by the mean
power is not possible, since E(1/h1) =∞.

A detailed discussion of the impact of power control to compensate
for path loss and fading can be found in [49].
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Fig. 3.3 δ-th Moment of perceived transmission power P for four cases of power control
((3.32), (3.33), (3.37), (3.40)). The curves are normalized to λcd = 1.

3.5.3 Impact on Outage Probabilities

Until now, we have only studied the effect of power control on the
interference, and the conclusion is that power control in networks with
fading usually increases the interference. In contrast, power control
leads to an improvement of the channel to the intended receiver. These
two effects need to be traded off against each other. This trade-off was
studied in [28] for the scenario where each transmitter has its intended
receiver at a fixed distance, and power control is used to compensate
for the fading. They found that fractional power control is optimum,
where the transmit power is chosen in proportion to h−1/2, rather than
complete channel inversion, i.e., transmitting at power h−1. Fractional
power control offers a better trade-off between improving the own link
versus causing more interference to the other users. It also has the
advantage that the mean transmit power E(h−1/2) is finite; it is equal
to
√
π. [51] considered the case where the intended receiver is located

uniformly on an annulus.
Here we discuss the effect of large-scale power control on the outage

probability in the case of nearest-neighbor communication. Without
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power control and R being the distance to the nearest neighbor, a
transmitter succeeds with probability

p̄s(θ) = ER

(
exp(−pλcdRdΓ(1 + δ)Γ(1 − δ)θδ)

)
=

1
1 + pΓ(1 + δ)Γ(1 − δ)θδ . (3.41)

This confirms that irrespective of the network density, each node can
transmit to its nearest neighbor with constant success probability. With
large-scale power control (inverting the large-scale path loss), each
transmitter has the same success probability (from (3.37))

ppc
s (θ) = exp

(
− pΓ(1 + δ)Γ(1 − δ)θδ

)
, (3.42)

which is slightly lower. Essentially, what power control does is to com-
pensate for the distance to the nearest neighbor, which is the same as
replacing Rd by its expectation. From Jensen’s inequality follows that

ppc
s (θ) = exp(−cE(Rd)) < p̄s = E(exp(−cRd)), c > 0.

In the low-outage regime, for small values of p or θ, the difference is
small; it reaches 3–5% around success probabilities of 70%, and the
gap increases further at higher outage rates. So while power control
is slightly harmful from this point of view, it has the big advantage
of a fixed success probability. Without power control, there is a sig-
nificant variance in the success probabilities ps(θ,R). This variance is
(obviously) zero for ps ↑ 1 and ps ↓ 0, and it reaches a maximum of 0.09
when pΓ(1 + δ)Γ(1 − δ)θδ equals the golden ratio (1 +

√
5)/2. At that

value, p̄s ≈ 38% and ppc
s ≈ 20%. A standard deviation of 0.3 shows that

the success rates for many transmitters will be lower than ppc
s if there

is no power control.

3.6 Spread-Spectrum Communication

With spread-spectrum communications, the effective interference can
be reduced by a factor M that is commonly called the processing
gain or spreading factor. Two common types of spreading are direct-
sequence spread-spectrum (DS-SS) and frequency-hopping spread-
spectrum (FH-SS). Interestingly, as discussed in [1], the effects of these
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techniques on the interference and outage are quite different, although
they both require an M -fold increase in system bandwidth.

With DS-SS, all transmitting nodes still cause interference, but the
interference is scaled by a factor M . The outage in Rayleigh fading is
affected by a reduction of the SIR threshold θ by a factor of M since

pDS
s (θ,M) = E(e−θI/M ) = ps(θ/M).

So, from (3.29), we see that

DH-SS:
logps(θ/M)

logps(θ)
= M−δ.

On the other hand, with FH-SS, the density of interferers is reduced
by a factor of M , which implies

FH-SS:
logpFH

s (θ)
logps(θ)

= M−1.

Since δ < 1, the benefit of FH-SS is larger; the difference is more drastic
for small δ, i.e., if the path loss exponent is large relative to the number
of network dimensions. More details are available in [1].

3.7 CSMA and Interference Cancellation

3.7.1 CSMA

Channel access schemes that are based on carrier sensing aim at upper
bounding the interference at a receiver by prohibiting nearby nodes
to transmit. The effect of CSMA-type MAC schemes on the interfer-
ence can be investigated by calculating the residual interference that
stems from the transmitters outside the receiver’s carrier sensing range.
Assuming a carrier sensing range of ρ, we obtain the Laplace transform
of the residual interference using a modified path loss law

�̃(r) = r−α1r>ρ,

and following the same steps as in the calculation of the entire inter-
ference. In the non-fading case,

LI(s) = exp
{
− λcd(sδγ(1 − δ,sρ−α) − ρd(1 − exp(−sρ−α)))

}
,

(3.43)
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where γ(a,z) =
∫ z
0 exp(−t)ta−1dt is the lower incomplete gamma func-

tion. Since γ(a,z) < Γ(a) for finite z, this is larger than the Laplace
transform of the complete interference, as expected. For ρ > 0, the mean
and variance are finite and given by

E(I) = − d
ds

log(LI(s))
∣∣
s=0 =

λcdd

α − dρ
d−α. (3.44)

var(I) =
d2

ds2
log(LI(s))

∣∣
s=0 =

λcdd

2α − dρ
d−2α. (3.45)

These results follow from the fact that

lim
s→0

γ(1 − δ,sρ−α)
s1−δ =

ρd−α

1 − δ .

In the fading case,

LI(s) =

exp
{
− λcd(sδEh(hδγ(1 − δ,shρ−α)) − ρdEh(1 − exp(−shρ−α)))

}
.

The expectation of the term with the incomplete gamma function can
be evaluated numerically, or bounds can be used. In Rayleigh fading,
the expectation of the exponential part is ρds/(s + ρα), and for δ = 1/2,

Eh(hδγ(1 − δ,shc)) =
π

2
− arctan

(
1√
sc

)
+
√
sc

sc + 1
.

Hence for Rayleigh fading and δ = 1/2,

LI(s) =

exp

{
−λcd

√
s

(
π

2
− arctan

( 1√
sρ−α

)
+

√
sρ−α

sρ−α + 1

)
+
λcdρ

ds

s + ρα

}
,

(3.46)

which confirms that the interference does not have a heavy tail for
ρ > 0.

Interpreting LI(θ) as the success probability in Rayleigh fading,
the impact of CSMA on the outage can be quantified. Figure 3.4 shows
the success probability for ρ = 1/2,1,2 and ALOHA, for comparison.
Strictly speaking, this formula is only an approximation, since the set
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Fig. 3.4 Success probabilities ps(θ) = LI(θ) from (3.46) for ALOHA (dashed curve) and
CSMA with guard zone radii ρ = 1/2,1,2 for a two-dimensional network with α = 4 (δ =
1/2) and λ = 1/20. The curve with the highest success probability is the one where ρ = 2.

of transmitters no longer form a PPP under the CSMA model. Instead,
it forms a hard-core point process [45], where a minimum distance is
imposed between the transmitters. For relatively small guard zones,
using the PPP as a model yields rather accurate results since the
“distortion” in the point process outside the guard zone is minimal.
The mean E(I) is the same as in the non-fading case, and the vari-
ance is twice as large. So Rayleigh fading doubles the variance in the
interference.

CSMA-type MACs essentially create a guard zone around the
receiver. This helps this particular receiver, but it also reduces the
number of concurrent transmissions that are possible in the network,
i.e., the spatial reuse. This trade-off is investigated in detail in [24].
Here we just note that a guard zone of radius ρ reduces the density
of transmitters by a thinning factor exp(−λcdρd). One way to quantify
the spatial density of successful transmissions is to multiply the density
of transmitters with the success probability. For the parameters in Fig-
ure 3.4, the thinning factors are 96%, 85%, and 53% for ρ = 1/2,1,2,
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respectively. For ρ = 1, the product of success probability and density
of transmitters is higher than in the ALOHA case as soon as θ > 0
dB. Generally, the optimum width of the guard zone depends on the
reliability and energy efficiency requirements.

In [37], the authors analyzed the performance of CSMA in dense
802.11 networks. They used a Matern-type hard-core process to model
the impact of CSMA on the node distribution.

3.7.2 Interference Cancellation

Multi-user receivers can achieve significantly higher performance in
wireless networks. Successive interference cancellation (SIC) is a par-
ticularly appealing technique when the received powers from the users
differ greatly [47, 38]. In a large wireless network, one can expect sub-
stantial benefits if the interference from one or a few of the strongest
interferers can be canceled. A similar effect as in CSMA can be
achieved, albeit without the reduction in transmitter density. We have
previously derived an expression for the distribution of the interfer-
ence from each individual interferer (3.26); however, using this result
in the present context is complicated by the fact that the distance dis-
tributions are not independent. The tail probabilities of the individual
interference powers (3.27) tell us how heavy the tail remains if a certain
number of nearby interferers are canceled, but again this does not help
with analyzing the outage probabilities.

The Laplace transforms of the interference from the nearest n trans-
mitters is given in (3.19) for Rayleigh fading and δ = 1/2. Let ps(θ,I),
I ⊂ N, be the success probability if the i-th nearest interferers, i ∈ I,
are present and active. From ps(θ, [n]) = LIn(θ) we define as the n-th
interferer’s contribution to the outage

ps(θ,{n}) � ps(θ, [n])
ps(θ, [n − 1])

.

and the success probability when the k nearest interferers are canceled,

ps(θ,N \ [k]) � ps(θ,N)
ps(θ, [k])

.

Using (3.19), these probabilities can easily be found numerically. Fig-
ure 3.5 (left) shows the success probabilities for k = 0 (no SIC) and



3.7 CSMA and Interference Cancellation 173

−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ [dB]

p s(θ
)

no SIC
with SIC, k=1,2,3

−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ [dB]

p s(θ
)

ALOHA
CSMA with λ π rho2=[1, 2, 3]

Fig. 3.5 Left: Success probabilities ps(θ) from (3.19) without SIC (dashed curve) and with
SIC of the nearest 1,2, and 3 interferers canceled for a two-dimensional network with α = 4
(δ = 1/2) and λ = 1/10. The curve with the highest success probability is the one where
the nearest 3 interferers are canceled. Right: For comparison, the success probabilities for
CSMA with sensing radii ρ chosen such that the mean number of interferers inside that
radius is 1,2,3. So, on average, CSMA removes 1, 2, or 3 interferers.

k = 1,2,3. It can be seen that canceling just the first interferer has a
drastic impact. If instead of the k nearest interferers the k strongest
ones (including fading) were canceled, the SIC gain would be slightly
larger even.

A different route was taken in [48], where the transmission capacity
framework was employed to investigate the effect of SIC on the out-
age probabilities. Instead of determining the benefits of canceling the
k nearest interferers, they defined a cancellation radius ρk �

√
k/(λπ)

(two-dimensional network) and assumed that all interferers within this
radius are canceled. The model then more closely resembles the CSMA
model with a guard zone ρ. They showed that the benefits are signif-
icant already for small k if spread-spectrum techniques are used, but
that cancellation needs to be almost perfect; if it is imperfect, i.e., if
the residual interference εIk from the k suppressed interferers, the gains
are substantially smaller even if ε� 1.

In Figure 3.5 (right), for comparison, the success probabilities for
CSMA with guard zone radii ρk for k = 1,2,3 such that on average
1, 2, or 3 interferers are blocked, are shown. These curves show good
agreement with the ones for SIC. The difference stems from the fact
that with SIC, there may still be interferers relatively close, while with
CSMA, it is not guaranteed that any interferer is muted at all.
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3.8 Interference Correlation

From the previous section we observe that the interference distribu-
tion in a Poisson network does not depend on the spatial location due
to the stationarity of the PPP. Even though the interference distribu-
tion is identical on the entire plane (in the two-dimensional case), the
interference is not independent across the plane. This is because the
interference is caused by common randomness, namely the point pro-
cess Φ. The spatial and temporal correlation of the interference is often
ignored in the literature, or removed by the assumption that a new
realization of the point process is drawn in each time slot [46]. This is
clearly not the case in practical networks, and thus there is a need to
analyze the correlation structure of the interference if the point process
realization does not change. This is the topic of this section.

Since each node in a wireless network uses a MAC protocol to decide
whether to transmit or receive, the transmitting set in time slot k,
denoted as Φk, changes with time k but is always a subset of Φ; as
a consequence, the interference becomes correlated over time because
of the common randomness Φ. In this section we consider ALOHA
as the MAC protocol in which each node transmits with probability
p and receive with 1 − p independently of other nodes. We observe
that ALOHA as a MAC protocol introduces no correlations since the
transmitters are independently chosen in space and time. Nevertheless
the presence of the common randomness Φ causes the interference to
be temporally correlated.

When �(x) = ‖x‖−α the interference is heavy-tailed with parame-
ter 2/α. As mentioned earlier the average interference and the higher
moments are not finite since an interfering transmitter can be very close
to the origin (where the interference is calculated). The correlation coef-
ficient cannot be defined when the moments are not finite. Hence we
use a bounded path loss model and calculate the spatio-temporal cor-
relation coefficient for �(x) = ‖x‖−α as a limiting case.

�(x) is assumed to have the following properties:

(1) Depends only on ‖x‖.
(2) Monotonically decreases with ‖x‖.
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(3) Integrable: ∫ ∞

0
x�(x)dx <∞. (3.47)

For example, a valid path loss model is given by

�ε(x) =
1

ε + ‖x‖α , ε ∈ (0,∞), α > 2. (3.48)

The standard singular path loss model �(x) = ‖x‖−α is obtained by
taking the limit limε→0 �ε(x). Since in ALOHA, each node makes an
independent decision to transmit at every time instant, the set of trans-
mitters at a time instant is a thinned version of the original PPP Φ,
and the resulting transmitter process at time instant k, Φk, is again a
PPP. This can be easily verified by considering the void probability:
For any bounded set B ⊂ R

2, we have

P(Φk(B) = 0) = E

∏
x∈Φ∩B

1(x not a transmitter at time k)

(a)
=

∏
x∈Φ∩B

P(x not a transmitter at time k)

= E[(1 − p)Φ(B)]
(b)
= exp(−λp|B|).

(a) follows since each node decides to not transmit independently from
each other. Since Φ is a PPP, Φ(B) is a Poisson random variable with
mean λ|B|, (b) follows from the moment generating function of the
Poisson random variable. From the above we see that the void prob-
ability of the transmitting process at time k is exp(−pλ|B|), which
corresponds to that of a PPP. We also observe that Φk has density
pλ which is intuitive. The interference at time instant k and (spatial)
location z is given by

Ik(z) =
∑
x∈Φ

1(x ∈ Φk)hxz(k)�(x − z). (3.49)

We assume that the fading is independent across time (block fading)
and space.
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3.8.1 Spatio-Temporal Correlation of the Interference

We calculate the correlation coefficient of the random variables, Ik(u)
and Il(v),k �= l,u �= v. In order to calculate the joint moments of the
random variables, the joint Laplace transform of the random variables
Ik(u) and Il(v) will be used.

Theorem 3.1. The joint Laplace transform of Ik(u) and Il(v), k �= l, is

L(s1,s2) = exp
(
−λ

∫
R2

[1 − ξ(s1,u − x)ξ(s2,v − x)]dx
)
,

where

ξ(s,x) = 1 − p + pLh(s�(x)),

and Lh denotes the Laplace transform of the fading process.

Proof. The interference at time k and location u ∈ R
2 is given by

Ik(u) =
∑
x∈Φk

hxu(k)�(x − u),

and the interference at v ∈ R
2 at time l is

Il(v) =
∑
y∈Φl

hyv(l)�(y − v).

So the joint Laplace transform is

L(s1,s2) = Eexp


−s1 ∑

x∈Φk

hxu(k)�(x − u) − s2
∑
y∈Φl

hyv(l)�(y − v)


 .

Rewriting this as a product,

L(s1,s2) = E

∏
x∈Φ

exp(−s11(x ∈ Φk)hxu(k)�(x − u))

× exp(−s21(x ∈ Φl)hxv(l)�(x − v)).
Since in ALOHA each node decides to transmit independently of other
nodes and across time, taking the expectation with respect to ALOHA,

L(s1,s2) = E

∏
x∈Φ

[1 − p + pexp(−s1hxu(k)�(x − u))]

× [1 − p + pexp(−s2hxv(l)�(x − v))].
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Since fading is assumed to be independent across time and space, mov-
ing the expectation with respect to fading inside we get

L(s1,s2) = E

∏
x∈Φ

[1 − p + pLh(s1�(x − u))][1 − p + pLh(s2�(x − v))]

= E

∏
x∈Φ

ξ(s1,x − u)ξ(s2,x − v)

(c)
= exp(−λ

∫
R2

[1 − ξ(s1,x − u)ξ(s2,x − v)]dx).

The last step follows from the PGFL of the PPP (A.3).

The above proof can be generalized to obtain the joint Laplace
transform of the m random variables {Ik1(u1), . . . , Ikm(um)}, k1 �=
k2, . . . , �= km and u1 �= u2, . . . , �= um:

LIK(s1, . . . ,sm) = exp

(
−λ

∫
R2

[
1 −

m∏
i=1

ξ(si,x − ui)
]

dx

)
.

In the above theorem, we have considered the interference at two dif-
ferent time slots and at different spatial locations.

By a similar approach as in the theorem above, the joint Laplace
transform of the random variables Ik(u) and Ik(v), i.e., interference at
the same time instant but at different locations can be shown to be

LI(u)I(k)(s1,s2) = exp
(
−λ

∫
R2

[1 − Lh(s1�(x − u))Lh(s2�(x − v))]dx
)
.

(3.50)
The mean of the interference is

EIk(u) = − ∂

∂s1
L(s1,0)

∣∣∣
s1=0

= − ∂

∂s1
exp

(
−λ

∫
R2

[1 − ξ(s1,x − u)ξ(0,x − v)]dx
)∣∣∣

s1=0

= λp

∫
R2

∂

∂s1
Lh(s1�(x − u))dx

∣∣∣
s1=0

= pλE[h]
∫

R2
�(x − u)dx

= pλ

∫
R2
�(x)dx, (3.51)
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since E[h] = 1. The second moment of the interference is

E[Ik(u)2] =
∂2

∂2s1
L(s1,0)

∣∣∣
s1=0

,

and by simple algebraic manipulations, the second moment

E[Ik(u)2] = pE[h2]λ
∫

R2
�2(x)dx

+p2
E[h]2λ2

∫
R2

∫
R2
�(x)�(y)dxdy. (3.52)

is obtained. When the path loss is given by �ε(x) and the fading is
Rayleigh, we can use the above theorem to obtain the Laplace transform
of the interference as

LIΦ(s) = exp
(
−πλps(ε + s)δ−1 πδ

sin(πδ)

)
,

where δ = 2/α.
The mean and the variance do not depend on either the position or

the time index. When the fading follows a Nakagami-m distribution and
the path loss model is given by �ε(x), the variance of the interference
follows from (3.51) and (3.52) and is given by

var[Ik(u)] =
pλπ

ε2−δ
πδ

sin(πδ)
(1 − δ)(1 + m−1).

We observe that the variance is maximum, when the fading is Rayleigh
and the minimum exactly half of the maximum when there is no fading
(i.e., m =∞). As expected, the mean and the variance diverge when
ε = 0. The mean of the product of Ik(u) and Il(v) at times k and l, k �= l,
which is required for the calculation of the correlation coefficient, is

E[Ik(u)Il(v)] =
∂2

∂s2∂s1
L(s1,s2)

∣∣∣
(s1,s2)=(0,0)

= p2λ

∫
R2
�(x − u)�(x − v)dx + λ2p2

(∫
R2
�(x)dx

)2

.

Lemma 3.2. The spatio-temporal correlation coefficient of the inter-
ferences Ik(u) and Il(v), k �= l, for ALOHA and path loss functions �(x)
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satisfying (3.47) is

ζ(u,v) =
p
∫

R2 �(x)�(x − ‖u − v‖)dx
E[h2]

∫
R2 �2(x)dx

. (3.53)

Proof. Since Ik(u) and Il(v) are identically distributed, we have

ζ(u,v) =
E[Ik(u)Il(v)] − E[Ik(u)]2

E[Ik(u)2] − E[Ik(u)]2
.

By substituting for the above quantities we have

ζ(u,v) =
p
∫

R2 �(x − u)�(x − v)dx
E[h2]

∫
R2 �2(x)dx

(a)
=

p
∫

R2 �(x)�(x − ‖u − v‖)dx
E[h2]

∫
R2 �2(x)dx

, (3.54)

where (a) follows by substituting y = x − u and the fact that �(x)
depends only on ‖x‖.

We observe that the correlation coefficient does not depend on k

and l and is equal for any two time instants. From (3.50) we obtain the
following lemma on the spatial correlation:

Lemma 3.3. The spatial correlation coefficient of the interference, i.e.,
the correlation coefficient of Ik(u) and Ik(v), u �= v is

ζs(u,v) =

∫
R2 �(x)�(x − ‖u − v‖)dx

E[h2]
∫

R2 �2(x)dx
. (3.55)

By setting ‖u − v‖ = 0 in Lemma 3.2, we obtain the temporal correla-
tion coefficient:

Lemma 3.4. The temporal correlation coefficient for ALOHA is

ζt =
p

E[h2]
, (3.56)

independent of �(x). When the fading is Nakagami-m, the correlation
coefficient is ζt = pm

m+1 . In particular, for m = 1 (Rayleigh fading), the
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temporal correlation coefficient is p/2 and for m→∞ (no fading), it
is p.

Hence the correlation increases with increasing m, i.e., fading decreases
correlation which is intuitive. Note that in the above derivation,∫

R2 �
2(x)dx is not defined when �(x) = ‖x‖−α, but we can use �ε(x)

and take ε→ 0. We now find the correlation for the singular path loss
model as a limit of �ε(x).

Lemma 3.5. Let the path loss model be given by �ε(x) = 1/(ε +
‖x‖α). When u �= v, correlation is

lim
ε→0

ζs(u,v) = 0.

Proof. We have

ζs = lim
ε→0

∫
R2 �ε(x − u)�ε(x − v)dx

E[h2]
∫

R2 �2ε (x)dx

(a)
= lim

ε→0

p
∫

R2
1

1+‖x−uε−1/α‖α
1

1+‖x−vε−1/α‖α dx

E[h2]
∫

R2

(
1

1+‖x‖α

)2
dx

= 0,

where (a) follows from a change of variables.

The correlation coefficient being 0 is an artifact of the singular path
loss model. When the path loss is ‖x‖−α, the correlation coefficient is
determined by the first-order statistics, which are dominated by the
interference in an a-neighborhood of u,v, a > 0. See Figure 3.6. For
a < ‖u − v‖/2, the interferences Iau and Iav are independent.

Even when ζ(u,v) = 0, Ik(u) and Il(v) are not independent. Indeed
the joint Laplace transform obtained in Theorem 3.1 does not factorize
for the singular path loss model. In Figure 3.7, the spatial correlation
is plotted as a function of ‖u − v‖ for different ε.
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Fig. 3.6 For any two points u and v, choose a < ‖u − v‖/2. Then the locations of the nodes
in b(u,a) and b(v,a) are independent. Since the interference is dominated by the nearest
interferers when the path loss is singular, Ia

u and Ia
v are independent, causing the correlation

to be zero.
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Fig. 3.7 Normalized spatial correlation ζ(u,v)/p versus ‖u − v‖, when the path loss model
is given by 
ε(x), λ = 1 and α = 4. We observe that ζs(u,v) → 0, u �= v, for ε → 0 (from
[14] c© 2009 IEEE).

3.8.2 Temporal Correlation of Link Outages

In the standard analyses of retransmissions in a wireless ad hoc system,
the link failures are assumed to be uncorrelated across time. But this
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is not so, since the interference is temporally correlated. We now pro-
vide the conditional probability of link formation assuming a successful
transmission.

We assume that a transmitter at the origin has a destination located
at z ∈ R

2. Let Ak denote the event that the origin is able to connect
to its destination z at time instant k, i.e.,

SIR =
hoz(k)�(z)
Ik(z)

> θ.

For simplicity we shall assume the fading is Rayleigh (similar methods
can be used for Nakagami-m). We now provide the joint probability of
success P(Ak,Al), k �= l. We have

P(Ak,Al)

= P(hoz(k) > θzIk(z),hoz(l) > θzIl(z))

(a)
= E [exp(−θzIk(z))exp(−θzIl(z))]

= E

[
exp

(
−θz

∑
x∈Φ

�(x)[1(x ∈ Φk)hxz(k) + 1(x ∈ Φl)hxz(l)]

)]

(b)
= E

[∏
x∈Φ

(
p

1 + θz�(x)
+ 1 − p

)2
]

(c)
= exp

(
−λ

∫
R2

1 −
(

p

1 + θz�(x)
+ 1 − p

)2

dx

)
, (3.57)

where θz = θ/�(z). (a) follows from the independence of hoz(k) and
hoz(l), k �= l, (b) follows by taking the average with respect to
hxz(k), hxz(l) and ALOHA, (c) follows from the probability generating
functional of the PPP. Similarly, we have

P(Al) = exp
(
−λ

∫
R2

1 −
(

p

1 + θz�(x)
+ 1 − p

)
dx
)
.

Hence the conditional probability is

P(Ak | Al) = exp

(
−λ

∫
R2

pθz�(x)
1 + θz�(x)

−
(

pθz�(x)
1 + θz�(x)

)2

dx

)
.
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The ratio of conditional and the unconditional probability is given by

P(Ak | Al)
P(Al)

=
P(Ak,Al)
P(Al)2

= exp

(
λp2

∫
R2

(
θz�(x)

1 + θz�(x)

)2

dx

)
.

> 1. (3.58)

When �(x) = ‖x‖−α, we have

P(Ak | Al)
P(Al)

= exp
(
p2λπ‖z‖2(1 − δ) πδ

sin(πδ)
θδ
)
,

where δ = 2/α. In Figures 3.8 and 3.9, we plot the conditional and the
unconditional link success probabilities versus the ALOHA parameter,
p and z, respectively.
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Fig. 3.8 P(Ak | Al) and P(Al) versus the ALOHA parameter p. λ = 1, 
(x) = ‖x‖−4, z = 0.5,
θ = 1 (from [14] c© 2009 IEEE).



184 Interference in Poisson Networks

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

α=4, λ =1, θ=1, z=0.5

Unconditional: P(A
l
)

Conditional: P(A
k
|A

l
)

Conditional:P(A
k
|A

l
c)

Fig. 3.9 P(Ak | Al) and P(Al) versus the distance z. λ = 1, 
(x) = ‖x‖−4, p = 0.5, θ = 1.

We make the following observations:

(1) The link formation is correlated across time (see (3.58)).
(2) If a transmission succeeds at a time instant k, there is a

higher probability that a transmission succeeds at a time
instant l.

(3) From (3.58), we also have P(Ack|Acl ) > P(Acl ). So a link in out-
age is always more likely to be in outage; hence the retrans-
mission strategy should reduce the rate of transmission or
change the density of transmitters rather than retransmit
“blindly”.

(4) P(Ak|Al)
P(Al)

always increases with θ,λ,p, and ‖z‖. The increase
in λ and p is because of the larger transmit set due to which
the probability of the same subset of nodes transmitting at
different times increases, thereby causing more correlation.
When θ is large, the outage is a result of the interfering
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transmissions caused by a larger number of nodes. Hence
by a similar reasoning as above, the correlation increases.

(5) From Figure 3.10 it follows that P(Ak|Al)
P(Al)

increases with p as

evaluated. In the same figure, P(Ac
k|Al)

P(Ac
k) is plotted as a function

of p, and we observe that it decreases with p.



4
Interference in Poisson Cluster Networks

In the previous section we have analyzed the interference when the
underlying transmitter set is a PPP. While this may be the case for
certain networks, it is much more likely that the node distribution is
not “completely spatially random” (CSR), i.e., that nodes are either
clustered or more regularly distributed. Moreover, even if the complete
set of nodes constitutes a PPP, the subset of active nodes may not
be homogeneously Poisson. Instead, the transmitting node set may be
clustered or regularly arranged (see Section 2).

The clustering of transmitting nodes may be due to geographical
factors; for example, in a social gathering, people tend to cluster into
small groups, or in a battlefield, the soldiers move in small groups in a
coordinated fashion, or in a down-town region, wireless nodes are clus-
tered in buildings, or in a cognitive network, the active cognitive users
tend to be clustered. The clustering may also be “artificially” induced
by MAC protocols. We denote the former as geographical clustering
and the latter as logical clustering. See Figure 4.1. Also the benefits of
randomly arranged transmissions as compared to clustered transmis-
sions are not a priori clear. In this section we analyze the interference
and outage properties when the transmitters are clustered as a Poisson

186



187

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 4.1 (Left) Thomas cluster process with parameters λp = 1, c̄ = 5, and σ = 0.2. The
crosses indicate the parent points. (Right) PPP with the same intensity λ = 5 for comparison
(from [13] c© 2009 IEEE).

cluster process and analyze the benefits of clustering over random trans-
missions.

System Model. The location of transmitting nodes is modeled as
a stationary and isotropic Poisson cluster process [45] Φ on R

2. We
assume that the intended transmitter (a part of the transmit point
process Φ) is located at the origin, and its receiver (where we mea-
sure the interference) is located at z with ‖z‖ = R. The receiver is not
considered a part of the process.1 See Figure 4.2.

Each transmitter is assumed to transmit at unit power and the
power received by a receiver located at z due to a transmitter at x is
modeled as hx�(x − z), where hx is the power fading coefficient associ-
ated with the channel between the nodes x and z, assumed to be inde-
pendent and exponentially distributed (Rayleigh fading). We assume
that the path loss model �(x) : R

2 \ {o} → R
+ is a continuous, pos-

itive, non-increasing function of ‖x‖. The interference at point z is

1 If the receivers were a part of the process, we would lose the notion of the common distance
that information travelled and it is not a priori clear how to choose the transmit–receive
pairs.
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R

Fig. 4.2 Illustration of the system model for a Matern cluster process. The small black dots
represent the transmitters, which form a Matern cluster process Φ. We condition on the
event that there is a node of Φ at the origin which we denote as the intended transmitter.
The receiver (denoted by a square) for the transmitter at the origin is at a distance R and
is not a part of the process Φ. Conditioning the existence of a point at the origin leads to a
cluster around the origin (denoted by a bold circle). The cluster at the origin need not be
centered around the origin.

given by

IΦ(z) =
∑

x∈Φ\{o}
hx�(x − z). (4.1)

We focus on Matern cluster processes and Thomas cluster processes,
which belong to the class of the Neyman–Scott cluster processes. The
cluster process consists of a parent PPP Φp = {x1,x2, . . .} of density λp.
The clusters are of the form Nxi = Ni + xi for each xi ∈ Φp. The Ni

are a family of identical, independently distributed point sets, and also
independent of the parent process. Since all the clusters are identically
distributed, we can talk about a representative cluster with the same
distribution as that of the clusters of the process. This representative
cluster is denoted by No.

In the Matern and Thomas cluster processes, the number of points
in the representative cluster is Poisson distributed with mean c̄. The
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daughter points of the representative cluster No are scattered indepen-
dently and with a identical spatial distribution

Fcl(A) =
∫
A
fcl(x)dx, A ⊂ R

2,

around the origin. For the Matern cluster process each point is uni-
formly distributed in a ball of radius a around the origin. So the density
function fcl(x) is given by

fcl(x) =

{
1
πa2 , ‖x‖ ≤ a
0 otherwise.

(4.2)

In the Thomas cluster process, each point is scattered using a sym-
metric normal distribution with variance σ2 around the origin. So the
density function fcl(x) is given by

fcl(x) =
1

2πσ2 exp
(
−‖x‖

2

2σ2

)
.

The complete process Φ is given by

Φ =
⋃

x∈Φp

Nx,

and the PGFL is (see (A.4))

G[ν] � E

[∏
x∈Φ

ν(x)

]

= exp
(
−λp

∫
Rd

1 −M
(∫

Rd

ν(x + y)fcl(x)dx
))

,

where M(z) = exp(c̄(z − 1)). The second-order product density of the
Matern and the Thomas cluster processes [45, Section 5.3] is

ρ(2)(z) = λpc̄
2[(fcl ∗ fcl)(z) + λp]. (4.3)

See Section A.1.3 and [45, Section 5.3] for a detailed description of
clustered point processes.
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4.1 Interference Characterization

In this section, we will derive the statistical characteristics of the inter-
ference when the transmitters are distributed as a PCP. As shall be
evident in the next section, we will derive the interference properties
conditioning on a transmitter being at the origin (the desired transmit-
ter). Differently from the PPP, placing an additional transmitter at the
origin (even though it does not contribute to the interference) makes
the distribution of the interference non-stationary, i.e., the interference
IΦ(z) distribution depends on z. The average interference (conditioned
on the event that there is a point of the process at the origin) is

E
!o[IΦ(z)] = E

!o

[∑
x∈Φ

hx�(x − z)
]

= E[h]λ
∫

R2
�(x − z)K2(dx), (4.4)

where K2 is the second-order moment measure (A.8) and E
!o is the

expectation with respect to the reduced Palm measure. Equivalently,
by the relation (A.9), we have

E
!o[IΦ(z)] =

E[h]
λ

∫
R2
�(x − z)ρ(2)(x)dx. (4.5)

Example: Thomas Cluster Process. In this case, from [45, p. 160],

ρ(2)(x)
λ2 = 1 +

1
4πλpσ2 exp

(−‖x‖2
4σ2

)
,

where λ = λpc̄. We obtain

E
!o[IΦ(z)] = EIPoi (λ) +

c̄E[h]
4πσ2

∫
R2
�(x − z)exp

(
−‖x‖2
4σ2

)
dx. (4.6)

EIPoi (λ) is the average interference when the nodes are distributed
as a PPP with intensity λ. EIPoi (λ) is finite only when �(x) is bounded
at the origin. The above expression also shows that the mean inter-
ference is indeed larger than for the PPP, and that E

!o[IΦ(z)]→ EIPoi

when ‖z‖ →∞, which is intuitive since the effect of the cluster at the
origin vanishes as ‖z‖ increases. We now derive the conditional Laplace
transform of the interference. First we show that it can be expressed
using the conditional PGFL of Φ.
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Lemma 4.1. The conditional Laplace transform of the interference at
z can be expressed as

L!o
IΦ(z)(s) = G̃[Lh(s�(· − z))],

where G̃ is the conditional PGFL2 (A.13) of the transmitter point pro-
cess Φ.

Proof. We have

L!o
IΦ(z)(s) = E

!o exp

(
−s

∑
x∈Φ

hx�(x − z)
)

= E
!o

[∏
x∈Φ

exp(−shx�(x − z))
]

(a)
= E

!o

[∏
x∈Φ

Lh(s�(x − z))
]
, (4.7)

where (a) follows from the independence of hx and the result follows
from the definition of the conditional PGFL (A.13).

Since the reduced Palm measure of the PCP is not stationary [45,
p. 158], it follows from Lemma 4.1 that the interference distribution
depends on the location z. We now derive the conditional PGFL of
the Matern and the Thomas PCPs, which is required to obtain the
conditional Laplace transform of the interference. The basic tool for the
proof is the description of the reduced Palm measure in Theorem A.6.
In a loose sense, Theorem A.6 indicates that conditioning the existence
of a node at the origin is “almost” like placing an independent cluster
at the origin. We also use the fact that each cluster of the Matern
or Thomas is a non-stationary Poisson point process with intensity
λ(x) = c̄fcl(x) (since the number of nodes in each cluster is a Poisson
random variable with mean c̄) and hence Slivnyak’s Theorem A.5 can
be applied to an individual cluster.

2 See p. 235 in the appendix for an explanation of the dot “·” notation.
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Theorem 4.2. Let 0 ≤ v(x) ≤ 1. The conditional probability generat-
ing functional of the Thomas and Matern cluster processes is

G̃[v] = G[v]
∫

R2
Gcl[v(· − y)]fcl(y)dy,

where

Gcl[v] = exp
(
−c̄

[
1 −

∫
R2
v(x)fcl(x)dx

])

is the PGFL of the representative cluster.

Proof. Let Yx = Y + x. From Theorem A.6, we have

Ω̃!o(Y ) =
1
c̄
E

(∑
x∈No

1Yx(No \ {x})
)
. (4.8)

Let Ω() denote the probability distribution of the representative cluster.
Using the Campbell–Mecke theorem [45, p. 119], we get

Ω̃!o(Y ) =
1
c̄

∫
R2

∫
N
1Yx(No)Ω!x(dNo)c̄Fcl(dx)

=
∫

R2

∫
N
1Yx(No)Ω!x(dNo)fcl(x)dx, (4.9)

where N denotes the set of finite and simple sequences on R
2 (see p. 227

in the appendix).
Since the representative cluster is a PPP, by Slivnyak’s theorem we

have Ω!x(.) = Ω(.). Hence

Ω̃!o(Y ) =
∫

R2

∫
N
1Yx(No)Ω(dNo)fcl(x)dx

=
∫

R2
Ω(Yx)fcl(x)dx. (4.10)
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For notational convenience let ψ denote No and let ψy = ψ + y. Using
Theorem A.5, we have

G̃[v] =
∫

N

∫
N

∏
x∈φ∪ψ

v(x)P(dφ)Ω̃!o(dψ)

=
∫

N

∏
x∈φ

v(x)P(dφ)
∫

N

∏
x∈ψ

v(x)Ω̃!o(dψ)

= G[v]
∫

N

∏
x∈ψ

v(x)Ω̃!o(dψ) (4.11)

(a)
= G[v]

∫
N

∏
x∈ψ

v(x)
∫

R2
Ω(dψy)fcl(y)dy

= G[v]
∫

R2

∫
N

∏
x∈ψ

v(x)Ω(dψy)fcl(y)dy

= G[v]
∫

R2

∫
N

∏
x∈ψ

v(x − y)Ω(dψ)fcl(y)dy

(b)
= G[v]

∫
R2
Gcl[v(· − y)]fcl(y)dy.

(a) follows from (4.10), and (b) follows from the definition of G(.).

The above result can be interpreted as follows: The Palm measure
of the clustered process is the independent superposition of the original
process and a cluster at the origin which is randomly translated by an
amount drawn from the density fcl(y). Hence the resultant conditional
PGFL is the product of the PGFL of the clustered process and the
PGFL of the representative cluster shifted by y and averaged by the
density fcl(y). In Matern and Thomas cluster processes, the number
of nodes in each cluster is a Poisson random variable with mean c̄. If
instead, each cluster has a fixed number of nodes c̄ ∈ Z

+, it can be
shown that the conditional PGFL is

G̃[v] = Ĝ[v]
∫

R2

(∫
R2
v(x − y)fcl(x)dx

)c̄−1

fcl(y)dy,
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where

Ĝ[v] = exp
(
−λp

∫
R2

1 −
(∫

R2
v(x + y)fcl(y)dy

)c̄
dx
)
.

We observe that when c̄ = 1 we get back the PGFL of the PPP.
The conditional Laplace transform of the interference follows from

Lemma 4.1 and Theorem 4.2. It can be used to derive the moments
of the interference. For example the average interference is equal
to E

!o[IΦ(z)] = − d
dsL!o

IΦ(z)(s)|s=0. When �(x) = ‖x‖−α, the conditional
Laplace transform can be used to prove that the interference has a
heavy tail. The following lemma provides the asymptotics of the tail.

Lemma 4.3. For �(x) = ‖x‖−α, the lower and upper bounds of the
CCDF F̄I(y) of the interference at location z, when the nodes are dis-
tributed as a Neyman–Scott cluster process, scale as follows for y→∞:

F̄ lI(y) ∼ Czy
−δ

F̄ uI (y) ∼ Cz
1 − δ y

−δ,

where Cz = πc̄[(fcl ∗ fcl)(z) + λp]E[hδ] and δ = 2/α.

This lemma is proved in more generality in Section 5. For a proof
specifically for the cluster process, see [13, Lemma 3]. From this lemma
we see that the interference does not have any finite integer moments
when �(x) = ‖x‖−α. With (4.3), Cz can also be expressed as

Cz =
πρ(2)(z)

λ
E[hδ].

For Rayleigh fading and the Thomas cluster process we have

Cz = πλpc̄Γ(1 + δ)
[
1 +

1
4πλpσ2 exp

(
−‖z‖2
4σ2

)]
,

and when Φ is a Matern cluster process

Cz =


λpc̄Γ(1 + δ)

[
1 + 4‖z‖

πa2

(
cos−1 (az) − az

√
1 − a2

z

)]
az < 1

λpc̄Γ(1 + δ) az ≥ 1
,
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Fig. 4.3 Comparison of the interference CCDF for a Thomas cluster process for different
path loss models and different fading statistics. The common parameters are λp = 2, c̄ = 3,
σ = 0.25, α = 4, and ‖z‖ = 0.3. The curves were obtained by Monte-Carlo simulation (from
[13] c© 2009 IEEE).

where az = ‖z‖/(2a). In Theorem 5.6, we prove that P(IΦ(z) ≥ y) ∼
πρ(2)(z)λ−1

E[hδ]y−δ and hence it can be concluded that the lower
bound is closer to the actual CCDF for large y.

When �(x) is bounded at the origin, the interference tail follows the
distribution of the fading. In Figure 4.3 curves #1 and #2 correspond
to �(x) = (1 + ‖x‖α)−1. Curve #1 corresponds to Rayleigh fading and
exhibits an exponential decay. Curve #2 for which h is generalized
Pareto3 with parameters k = 1, θ = 0, σp = 1 (a hypothetical fading
distribution which exhibits power law decay) exhibits a power law
decay. Curves #3 (generalized Pareto) and #4 (Rayleigh) correspond
to �(x) = ‖x‖−α and exhibit a heavy tail for both fading distributions.

3 The PDF of the generalized Pareto distribution is f(x) = σ−1
(
1 + k x−θ

σ

)−1−1/k
.
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We can also use the conditional Laplace transform to obtain the
nearest-neighbor distribution as N(r) = G[1b(o,r)c(x)]. All the reduced
Palm moments of the PCP can be derived from the conditional PGFL
obtained before.

4.2 Outage Analysis

The probability of success for the transmitter located at the origin and
its receiver at z is

ps(θ) = P

( h�(z)
W + IΦ\{o}(z)

≥ θ | transmitter at the origin
)

= P
!o
( h�(z)
W + IΦ(z)

≥ θ
)
. (4.12)

For Rayleigh fading,

ps(θ) =
∫ ∞

0
e−sθ/
(z)dP

!o(W + IΦ(z) ≤ s)

= L!o
IΦ(z)(θ/�(z))LW (θ/�(z)). (4.13)

L!o
IΦ(z) is the conditional Laplace transform of the interference and LW

denotes the Laplace transform of the noise. We now use the conditional
PGFL of PCP and (4.13) to evaluate the success probability.

Theorem 4.4 (Success probability). The probability of successful
transmission between the transmitter at the origin and the receiver
located at z ∈ R

2, when W ≡ 0 (no noise), is

Ps(θ) = exp
{
− λp

∫
R2

[
1 − exp(−c̄β(z,y))

]
dy
}

︸ ︷︷ ︸
T1

×
∫

R2
exp(−c̄β(z,y))fcl(y)dy︸ ︷︷ ︸

T2

, (4.14)

where

β(z,y) =
∫

R2

�(x − y − z)

(z)
θ + �(x − y − z)

fcl(x)dx. (4.15)
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Proof. From Lemma 4.1, we have

L!o
IΦ(z)

(
θ

�(z)

)
= G̃

[
Lh

(
θ

�(z)
�(· − z)

)]
(a)
= G̃

[
1

1 + θ

(z)�(· − z)

]
,

where (a) follows from the Laplace transform of the exponentially dis-
tributed h. Hence the result follows from Theorem 4.2.

Remarks. The interference can be written as a sum of two indepen-
dent terms, one being the interference caused at the receiver by the
transmitter’s own cluster and the other being the interference caused
by other clusters, i.e.,

IΦ(z) = IΦ\Tx-cluster(z) + ITx-cluster(z). (4.16)

Since we are considering a Poisson cluster process, these two terms
are independent. The contribution of the interference in the success
probability is L!o

IΦ(z)(θ/�(z)). Since the Laplace transform of the sum of
independent random variables is the product of the individual Laplace
transforms, we have the product of two terms in Theorem 4.4. The term
T1 in (4.14) captures the interference without the cluster at the origin
(i.e., without conditioning); it is independent of the position z since the
original cluster process is stationary, which can be verified by a change
of variables y1 = y + z. The second term T2 is the contribution of the
transmitter’s cluster; it is identical for all z with ‖z‖ = R since fcl and
� are isotropic. So the success probability itself is the same for all z at
distance R. This is because the Palm distribution is always isotropic
when the original distribution is motion-invariant [45, 4.4.8].

From the above argument we observe that ps(θ) depends only on
‖z‖ = R and not on the angle of z. So the success probability should
be interpreted as an average over the circle ‖z‖ = R, i.e., the receiver
may be uniformly located anywhere on the circle of radius R around
the origin.

Intuitively for the same intensity of transmitting nodes, a Poisson
cluster process will have bigger vacancies (areas without any transmit-
ters) than a PPP. Hence for R larger than a critical radius that is a
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Fig. 4.4 G(R) versus R, α = 4,σ = 0.25. Observe that the gain curves #2 and #3, which
correspond to the singular channel, start at 1, decrease and then increase above unity.
The crossover point R∗ is approximately 1/(2

√
λp), which is the average nearest-neighbor

distance of the parent process. Curves #1 and #4 correspond to a bounded path loss model,
and the crossover point R∗ may not exist (from [13] c© 2009 IEEE).

function of σ2 or a, λp, c̄ and, the probability that an interfering trans-
mitter is close to the receiver is smaller for a cluster process than a
PPP. For a smaller R, the receiver is in the cluster, which causes more
outages. Let the clustering gain be defined as

G(R) � pcl
s

pppp
s

,

where pcl
s represents the success probability when the transmitters are

clustered and pppp
s represent the same for a PPP. We can then show that

when �(x) = ‖x‖−α, G(R) < 1 for small R and G(R) > 1 for large R,
i.e., that there exists a critical link distance R∗ above which clustering
is beneficial. For a bounded path loss function, the crossover point may
not exist and G(R) may be greater than unity for all R. See Figure 4.4.
A detailed discussion of the clustering gain is provided in [13].



5
Interference in General Motion-Invariant

Networks

5.1 System Model

In this section, we consider transmitters distributed in a stationary
and isotropic fashion on the plane. Stationary and isotropic point pro-
cesses are also called motion-invariant. Please refer to the appendix
for a mathematical description of such point processes. We give four
examples:

Homogeneous Poisson point process: A PPP of constant density λ

is a stationary and isotropic point process and hence motion-invariant.
Also any point process with finite number of points in the plane cannot
be stationary and hence cannot be motion-invariant.

Poisson cluster process: Poisson cluster processes, defined in the
appendix and analyzed in Section 4, are motion-invariant.

Shifted lattice process: This point process Φ is the randomly translated
and rotated square lattice. More precisely,

Φ =
√
λZ

2ejβ + U,

where β is uniformly distributed in [0,2π] and U is uniformly dis-
tributed in [0,

√
λ].

199
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Hole-1 process: Consider two stationary PPPs Φs and Φp of intensities
λs and λp with λp < λs. The lower intensity process Φp models the
primary users and Φs the secondary users in a cognitive network. A
secondary user x ∈ Φs with no primary user in a disk of radius a around
itself is allowed to transmit. More formally,

Φt
s = {x ∈ Φs : b(x,a) ∩ Φp = ∅}.

The average number of secondary transmitters in a set B is

EΦt
s(B) = E

∑
x∈Φs∩B

∏
y∈Φp

(
1 − 1b(x,a)(y)

)
(a)
= E

∑
x∈Φs∩B

E

∏
y∈Φp

(
1 − 1b(x,a)(y)

)
(b)
= E

∑
x∈Φs∩B

exp
(
−λp

∫
R2

1b(x,a)(y)dy
)

(c)
= λs exp(−λpπa2)|B|,

where (a) follows from the independence of the two point process, (b)
follows from the PGFL of Φp, and (c) follows from the Campbell theo-
rem applied to Φs. From the above, we observe that the density of Φt

s

is λs exp(−λpπa2).
Every transmitter is assumed to transmit with unit power. The

intended transmitter is located at the origin and is a part of the trans-
mit point process Φ. The interference observed at z ∈ R

2 is

IΦ(z) =
∑

x∈Φ\{o}
hx�(x − z), (5.1)

where the fading process hx is iid with CDF Fh, PDF fh, and unit mean.
In this section we provide the characterization of the (complementary)
CDF of IΦ(z) given that there is a transmitting node at the origin. So all
probabilities are conditioned on the event that there is a transmitting
node at the origin, i.e., we are using Palm probabilities [8, 29, 45]. Let
G̃[v] denote the conditional probability generating functional of the
point process Φ, i.e.,

G̃[v] = E
!o

[∏
x∈Φ

v(x)

]
, (5.2)



5.2 Properties of the Interference 201

where v : R
2→ [0,∞) is a well-behaved function [8].

In this section, we will also consider the effect of the path loss func-
tion �(x) on the distribution of the interference. We consider the fol-
lowing path loss models:

(1) Singular model: �(x) = ‖x‖−α, α > 2.
(2) Non-singular (bounded) model: �(x) = (1 + ‖x‖α)−1, α > 2.

We require α > 2 since we want
∫
b(o,1)c l(x) <∞, i.e., the path loss

model should be well-behaved except possibly at the origin. In the liter-
ature [11], an exponential path loss model i.e., �(x) = exp(−γ‖x‖)/‖x‖α
is also used. But from the interference perspective, it is similar to the
singular path loss model. As before, we will use δ to denote 2/α.

5.2 Properties of the Interference

We first start by deriving the first and the second conditional moments
of the interference.

Lemma 5.1. The mean interference is

E
!o[IΦ(z)] =

1
λ

∫
R2
�(x − z)ρ(2)(x)dx.

Proof.

E
!o[IΦ(z)] = E

!o
∑
x∈Φ

hx�(x − z)

(a)
= E[h]λ

∫
R2
�(x − z)K2(dx)

(b)
=

1
λ

∫
R2
�(x − z)ρ(2)(x)dx.

(a) follows from the definition of the n-th factorial moment measure,
see (A.10) and (b) from the definition of ρ(2)(x).

The average interference is finite for the non-singular path loss model.
For �(x) = ‖x‖−α, the average interference is finite if and only if ρ(2)(x)
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is zero in a small neighborhood of z. From the definition of ρ(2)(x) this
implies that there should not be any interfering transmitter close to
the receiver located at z. For a PPP and PCP ρ(2)(z) �= 0 for z > 0 and
hence the average interference is infinite. For the shifted lattice process,
ρ(2)(x) = 0 for ‖x‖ <

√
λ and hence the average interference is finite for

z <
√
λ.

Lemma 5.2. The second moment of the interference is

E
!o[I2

Φ(z)] =
E[h2]
λ

∫
R2
�2(x − z)ρ(2)(x)dx

+
E[h]2

λ

∫
R2

∫
R2
�(x1 − z)�(x2 − z)ρ(3)(x1,x2)dx1dx2.

Proof. We have

E
!o[I2

Φ(z)]

= E
!o
[∑

x∈Φ

hx�(x − z)
]2

= E
!o

[∑
x∈Φ

h2
x�

2(x − z)
]

+ E
!o


 �=∑

x1,x2∈Φ

hx1hx2�(x1 − z)�(x2 − z)




(a)
= E[h2]E!o

[∑
x∈Φ

�2(x − z)
]

+ E[h]2E!o


 �=∑

x1,x2∈Φ

�(x1 − z)�(x2 − z)


 ,

where
∑�= indicates that the summation is to be taken over all pairs of

distinct points in Φ. (a) follows from the independence of the fading.
For the first term,

E
!o

[∑
x∈Φ

�2(x − z)
]

(a)
= λ

∫
R2
�2(x − z)K2(dx)

(b)
=

1
λ

∫
R2
�2(x − z)ρ(2)(x)dx.
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Similarly, for the second term,

E
!o

[ �=∑
x1,x2∈Φ

�(x1 − z)�(x2 − z)
]

(c)
= λ2

∫
R2

∫
R2
�(x1 − z)�(x2 − z)K3(dx1 × dx2)

(d)
=

1
λ

∫
R2

∫
R2
�(x1 − z)�(x2 − z)ρ(3)(x1,x2)dx1dx2.

(a), (b), (c), and (d) follow from the definition of the n-th order product
density in the appendix.

When Φ is PPP, we have ρ(2)(x) = λ2 and ρ(3)(x) = λ3 and hence

E
!o[I2

Φ(z)] = E[h2]λ
∫

R2
�2(x)dx + E[h]2λ2

(∫
R2
�(x)dx

)2

,

in agreement with (3.52). We observe that the interference moments
and hence the distribution depend on the location z for a general point
process. The distribution of the IΦ(z) does not depend on the direc-
tion of z because of the isotropy of the Palm distribution for motion-
invariant processes.

5.3 Bounds on the Interference Distribution

In the previous sections, we have derived the Laplace transform of the
interference for the PPP and the PCP. Although in theory, the Laplace
transform provides the complete description of the interference, it is
more beneficial to know the CDF or the PDF of the interference explic-
itly. In this section we provide bounds on the CCDF of the interference
when the transmitting nodes are homogeneously distributed on the
plane.

The basic idea behind the proof is easy to understand when fading is
absent, �(x) = ‖x‖−α and for a PPP. In this case the interference at the
origin is given by I =

∑
x∈Φ �(x). We can then divide the transmitting

set into two subsets, denoted as the near set and the far set. The near
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R

Fig. 5.1 The nodes inside the disk of radius R = y−1/α constitute the near set, i.e., the set
of transmitters that individually contribute at least y to the interference I in the non-fading
case.

set consists of all the nodes that individually contribute at least y
to I, and the far set is the complement of the near set. See Figure 5.1.
Without fading, the near set consists of the nodes in b(o,y−1/α). We
can lower bound P(I > y) by neglecting the contribution of the far set
and this will be a tight bound if α − 2 is not too small since most of the
contribution to the interference is from the near set. A lower bound for
P(I < y) follows by first observing that the event I < y requires the near
set to be empty and secondly that the contribution of the far set can
be replaced by its average using the Markov inequality (the average
interference caused by the far set is finite for y > 0). When there is
fading there is an effective reordering of the points, as discussed in
detail in [20] but the near and far sets can still be defined in a similar
fashion.

Theorem 5.3. When the transmitters are distributed as a stationary
point process Φ, the CCDF F̄I(y) of the interference at location z,
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conditioned on a transmitter present at the origin but not included
in the interference, is lower bounded by F̄ lI(y) and upper bounded by
F̄ uI (y), where

F̄ lI(y) = 1 − G̃
[
Fh

(
y

�(. − z)

)]
, (5.3)

F̄ uI (y) = 1 − (1 − ϕ(y))G̃
[
Fh

(
y

�(. − z)

)]
, (5.4)

where Fh(x) denotes the CDF of the fading coefficient h, and

ϕ(y) =
1
yλ

∫
R2
�(x − z)ρ(2)(x)

∫ y/
(x−z)

0
νdFh(ν)dx. (5.5)

If E
!o[IpΦ] <∞, we can also use a loose ϕ(y) = E

!o[IpΦ]y−p, p ≥ 1.

Proof. The basic idea is to partition the transmitter set Φ into two
subsets Φy and Φc

y where,

Φy = {x ∈ Φ, hx�(x − z) > y} (near set),

Φc
y = {x ∈ Φ, hx�(x − z) ≤ y} (far set).

Φy consists of those transmitters whose contribution to the interference
exceeds y. We have IΦ(z) = IΦy(z) + IΦc

y
(z), where IΦy(z) corresponds

to the interference due to the transmitter set Φy and IΦc
y
(z) corresponds

to the interference due to the transmitter set Φc
y. Hence we have

F̄I(y) = P(IΦy(z) + IΦc
y
(z) ≥ y)

≥ P(IΦy(z) ≥ y)

= 1 − P(IΦy(z) < y)

= 1 − P(Φy = ∅). (5.6)
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We can find the probability P(Φy = ∅) that Φy is empty using the con-
ditional Laplace functional as follows:

P(Φy = ∅) = E
!o
∏
x∈Φ

1hx
(x−z)≤y

(a)
= E

!o
∏
x∈Φ

Eh

(
1hx
(x−z)≤y

)
= E

!o
∏
x∈Φ

Fh

(
y

�(x − z)

)

= G̃
[
Fh

(
y

�(· − z)

)]
, (5.7)

where (a) follows from the independence of hx. To obtain the upper
bound,

F̄I(y) = P(IΦ > y | IΦy > y)F̄ lI(y) + P(IΦ > y | IΦy ≤ y)(1 − F̄ lI(y))
(a)
= 1 − G̃

[
Fh

(
y

�(· − z)

)]

+P(IΦ > y | IΦy ≤ y) G̃
[
Fh

(
y

�(· − z)

)]

= 1 − (1 − P(IΦ > y | IΦy ≤ y)) G̃
[
Fh

(
y

�(· − z)

)]
, (5.8)

where (a) follows from the lower bound we have established. To bound
P(IΦ > y | IΦy ≤ y) we use the Markov inequality. We have

P(IΦ > y | IΦy ≤ y) = P(IΦ > y | Φy = ∅)
(a)
≤ E

!o (IΦ | Φy = ∅)
y

=
1
y

E
!o
∑
x∈Φ

hx�(x − z)1hx
(x−z)≤y

=
1
y

E
!o
∑
x∈Φ

�(x − z)
∫ y/
(x−z)

0
νdFh(ν)

(b)
=

1
yλ

∫
R2
�(x − z)

∫ y/
(x−z)

0
νdFh(ν)ρ(2)(x)dx,
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where (a) follows from the Markov inequality, and (b) follows from a
procedure similar to the calculation of the mean interference in the
previous section.

Since isotropy is not used in the proof, Theorem 5.3 holds for sta-
tionary point processes, not just motion-invariant ones.

When Φ is a PPP, we have G̃[v] = exp(−λ
∫

1 − v(x)dx) (A.3). For
Rayleigh fading and �(x) = ‖x‖−α, the lower bound is

F̄ lI(y) = 1 − exp(−πλy−δΓ(1 + δ)),

and the upper bound is

F̄ uI (y) = 1 −
(

1 − 2πλΓ(1 + δ)
α − 2

y−δ
)

exp(−πλy−δΓ(1 + δ)).

From Figure 5.2, we observe that the lower bound is closer to the actual
CCDF than the upper bound. In the above derivation, the upper bound
may be loose because a simple Markov inequality is used to bound
P(IΦ > y | IΦy ≤ y), and a better bound may be obtained by using the
Chernoff bound. The upper bound diverges as α ↓ 2 since the average
interference contribution from the far set diverges. From the upper and
lower bounds we can (once again) infer that the interference in a PPP
network is heavy-tailed with parameter δ for the singular path loss
model.

In the next lemma we prove that the upper and lower bounds are
asymptotically tight when �(x) = ‖x‖−α. We will use g1(x) ∼ g2(x) to
denote limx→∞ g1(x)/g2(x) = 1.

Lemma 5.4. When �(x) = ‖x‖−α, α > 2, z ∈ R
2 and ρ(2)(z) continu-

ous in a small neighborhood of z,

ϕ(y)

{
∼ πρ(2)(z)E[hδ ]

λ(δ−1−1) y−δ ρ(2)(z) �= 0

= o(y−δ) ρ(2)(z) = 0.
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Fig. 5.2 The CCDF of the interference is plotted when Φ is a PPP and 
(x) = ‖x‖−4. In this
case the interference is a Lévy-stable distribution (3.20).

Proof. When �(x) = ‖x‖−α,α > 2, we have

ϕ(y) =
1
yλ

∫
R2
‖x − z‖−αρ(2)(x)

∫ ‖x−z‖α

0
νdFh(ν)dx

(a)
=

1
yλ

∫ ∞

0
ν

∫
R2
‖x‖−α1‖x‖α>νy−1ρ(2)(x + z)dxdFh(ν)

(b)
=

y−δ

λ

∫ ∞

0
ν

∫
R2
‖x‖−α1‖x‖α>νρ

(2)
(

x

y1/α + z

)
dxdFh(ν),

where (a) follows from the substitution x→ x + z and interchanging
the integrals. (b) follows by the substitution y1/αx→ x. So by the dom-
inated convergence theorem, we have for ρ(2)(z) �= 0

lim
y→0

ϕ(y)
y−δ =

ρ(2)(z)
λ

∫ ∞

0
ν

∫
R2
‖x‖−α1‖x‖α>νdxdFh(ν)

=
2πρ(2)(z)E[h2/α]

λ(α − 2)
.



5.4 Asymptotic Behavior of the Interference Distribution 209

5.4 Asymptotic Behavior of the Interference Distribution

In the previous section, bounds on the CCDF were provided and they
depend on the conditional PGFL. But the PGFL (let alone the condi-
tional PGFL) is known only for a few point processes. In this section
we take an alternate approach and evaluate the tail of the CDF. We
show that the CCDF of the interference depends critically on the path
loss model �(x).

5.4.1 Singular Path Loss Function

For a real-valued function f(x), the behavior of the function for large
x can be evaluated by examining its Laplace transform at s = 0. The
generalization of this idea is expressed by the following Tauberian the-
orem.

Theorem 5.5 (Tauberian theorem [5, 10]). For 0 ≤ β ≤ 1,
η ∈ R0, the following are equivalent:

1 −
∫ ∞

−∞
e−sxf(x)dx ∼ sβη

(
1
s

)
, s ↓ 0

1 −
∫ x

0
f(y)dy ∼ η(x)

xβΓ(1 − β)
, x→∞.

R0 represents the set of functions which satisfy the property

η(λx)
η(x)

→ 1, x→∞.

In this section we will derive the tail behavior of the interference using
the conditional Laplace transform of the interference. We first prove
that the interference is heavy-tailed when the path loss model is singu-
lar. The basic idea of the proof is as follows: From the previous chapter,
we know that the conditional Laplace transform of the interference is
given by G̃[Lh(s�(· − z))]. We have

G̃[Lh(s�(· − z))] = G̃[1 − v(s,x − z)],
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where v(s,x) = (1 − Lh(s�(x))). We observe that v(s,x)→ 0 as s→ 0.
Since v(s,x) is small, we show that the following approximation holds
when s is small.

G̃[1 − v(s,x)] ≈ 1 − E
!o
∑
x∈Φ

v(s,x − z)

= 1 −
∫

R2
v(s,x − z)ρ(2)(x)dx.

It is then shown that
∫

R2 v(s,x − z)ρ(2)(x)dx = Θ(s2/α) when �(x) =
‖x‖−α and the Tauberian theorem is used to prove that the tail of the
interference is heavy.

Theorem 5.6. Let z ∈ R
2 such that ρ(2)(z) �= 0 and ρ(2)(z) continuous

in a small neighborhood of z. If �(x) = ‖x‖−α, α > 2, and factorial
moments of Φ exist then IΦ(z) is heavy-tailed with parameter δ. More
precisely,

P(IΦ(z) ≥ y) ∼ πρ(2)(z)
λ

E[hδ]y−δ, y→∞.

Proof. The idea is to use the scaling of the Laplace transform of IΦ(z)
at s = 0 and derive the properties of the tail properties of IΦ(z) using
the Tauberian Theorem 5.5.

Let �r(x) = �(x)1b(o,r)(x) be a truncated version of �(x). Observe
that �r(x)→ �(x) uniformly as r→∞. We now prove that
Eh(e−sh
r(x−z)) belongs to the class of functions over which the condi-
tional PGFL is continuous. First, we observe that 1 − Eh(e−sh
r(x−z))
has a bounded support. Next we prove moment convergence:∫

R2

∣∣Eh(e−sh
r(x−z)) − Eh(e−sh
(x−z))
∣∣ρ(2)(x)dx→ 0 as r→∞.

(5.9)
The left-hand side of the above equation is∫

R2

∣∣∣∣
∫ ∞

0
[exp(−s�r(x − z)t) − exp(−s�(x − z)t)]f(t)dt

∣∣∣∣ρ(2)(x)dx

=
∫

‖x−z‖>r

∫ ∞

0
[1 − exp(−s�(x − z)t)]f(t)dt ρ(2)(x)dx
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(a)
≤ s

∫
‖x−z‖>r

‖x − z‖−αρ(2)(x)dx
∫ ∞

0
tf(t)dt

(b)
=

E[h]s
rα−2

∫
‖x‖>1

‖x‖−αρ(2)(rx + z)dx

(c)
=→ 0, when r→∞, (5.10)

where (a) follows from the inequality 1 − exp(−x) ≤ x, (b) follows from
the substitution r−1(x − z)→ x, and (c) follows since ρ(2)(rx + z)→
λ2 and

∫
‖x‖>1 ‖x‖−αdx <∞.

From (5.9) and from [8, Problem 9.4.5] it follows that

LIΦ(z)(s) = lim
r→∞

E
!o

[∏
x∈Φ

Eh

(
e−sh
r(x−z)

)]
. (5.11)

Hence we can work with �r(x) and take the limit r→∞ at the end.
Define

kr(s,x) = Eh(e−sh
r(x−z)).

Because �r(x) = �(x)1b(o,r)(x) is defined on a compact subset, we have
that kr(s,x) �= 1 only on a compact subset Br of R

2. Since Φ ∩ b(o,r)
is a simple and finite point process, Φ(Br) <∞ a.s. So we have from
[52, p. 458],

0 ≤
∏
x∈Φ

[1 − (1 − kr(s,x))] −
[
1 −

∑
x∈Φ

(1 − kr(s,x))
]

≤
�=∑

x1,x2∈Φ

(1 − kr(s,x1))(1 − kr(s,x2)). (5.12)

First taking expectation and then taking the limit, we have from (5.11),
limr→∞ E

!o[
∏

x∈Φ[1 − (1 − kr(s,x))]] = LIΦ(z)(s). Also,

η(s) = lim
r→∞

E
!o

[∑
x∈Φ

(1 − kr(s,x))
]

(a)
= lim

r→∞
λ−1

∫
R2

(1 − kr(s,x))ρ(2)(x)dx

= λ−1
∫

R2
(1 − k(s,x))ρ(2)(x)dx,
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where (a) follows from the definition of ρ(2)(x) and k(s,x) =
limr→∞kr(s,x). Similarly,

β(s) = lim
r→∞

E
!o


 �=∑

x1,x2∈Φ

(1 − kr(s,x1))(1 − kr(s,x2))




(a)
= λ−1

∫
R2

∫
R2

(1 − k(s,x1))(1 − k(s,x2))ρ(3)(x1,x2)dx1dx2,

where (a) follows from the definition of ρ(3)(x). We now prove that
lims→0 η(s)s−δ > 0 and lims→0β(s)s−δ = 0. From

η(s) = λ−1
∫

R2

[
1 − Eh(e−sh
(x−z))

]
ρ(2)(x)dx

= λ−1
∫ ∞

0

∫
R2

[1 − exp(−s‖x‖−αt)]ρ(2)(x + z)dxf(t)dt

= λ−1sδ
∫ ∞

0

∫
R2

[1 − exp(−‖x‖−αt)]ρ(2)(xsδ + z)dxf(t)dt.

we obtain

lim
s→0

η(s)
sδ

= λ−1 lim
s→0

∫ ∞

0

∫
R2

[1 − exp(−‖x‖−αt)] ·

ρ(2)(xsδ + z)dxf(t)dt

(a)
= λ−1ρ(2)(z)

∫ ∞

0

∫
R2

[
1 − exp

(
−‖x‖−αt

)]
dxf(t)dt

= λ−1ρ(2)(z)E[hδ]πΓ(1 − δ) . (5.13)

Here (a) follows from the dominated convergence theorem. We now
prove that β(s) divided by sδ tends to zero. Consider

β(s) = λ−1
∫

R2

∫
R2

(1 − k(s,x1))(1 − k(s,x1))ρ(3)(x1,x2)dx1dx2

= λ−1s4/α
∫

R2

∫
R2

(∫ ∞

0
1 − exp

(
−‖x1‖−αt

)
f(t)dt

)
·(∫ ∞

0
1 − exp

(
−‖x2‖−αt

)
f(t)dt

)
·

ρ(3)(s1/αx1 + z,s1/αx2 + z)dx1dx2.
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The integral is finite because ρ(3)(x,y) < log(‖x‖) log(‖y‖) for large |x|
and |y|. Hence

lim
s→0

β(s)
sδ

= 0. (5.14)

From (5.12), we have

0 ≤ LIΦ(z)(s) − (1 − η(s)) ≤ β(s).

Dividing both sides by sδ, taking the limit s→ 0 and using (5.13) and
(5.14),

lim
s→0

1 − LIΦ(z)(s)
sδ

=
πρ(2)(z)

λ
E[hδ]Γ(1 − δ) .

So we have

1 − LIΦ(z)(s) ∼
πρ(2)(z)

λ
E[hδ]Γ(1 − δ)sδ.

So using the Tauberian Theorem 5.5,

P(IΦ(z) ≥ y) ∼ πρ(2)(z)
λ

E[hδ]y−δ.

From the above theorem we observe that interference at z is always
heavy-tailed with parameter δ when the path loss model is singular and
ρ(2)(z) �= 0. This is because the receiver is not a part of the process and
a transmitter can be arbitrarily close to it, which causes the interference
to be very large with finite probability. This is consistent with (3.25).

5.4.2 Non-singular Path Loss Function

We now investigate the interference distribution when the path loss is
non-singular or bounded. In this case, the existence of an interferer close
to a receiver will not alter the magnitude of the interference drastically.
Instead the fading becomes an important factor, and the distribution
tail depends mainly on the tail of the fading. We will use the following
theorem that connects the convergence region of the Laplace transform
of a random variable and the decay of its CCDF.
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Theorem 5.7 (Nakagawa). Let X be a non-negative random vari-
able, and F (x) = P(X ≤ x) be the probability distribution function of
X. Let

LX(s) =
∫ ∞

0
e−sxdF (x), s = σ + jτ ∈ C (5.15)

be the Laplace–Stieltjes transform of F (x) and σ0 be the abscissa of
convergence of LX(s). We assume −∞ < σ0 < 0. If s = σ0 is a pole of
LX(s), then we have

lim
x→∞

1
x

logP(X > x) = σ0. (5.16)

The above theorem is useful in dealing with fading distributions whose
tail decays exponentially. Since the conditional Laplace transform of
the interference is known, it can be used in conjunction with the above
theorem to prove the exponential decay of the interference tail when the
fading is exponential. When the fading distribution is heavy-tailed, we
use the upper and lower bounds on the CCDF provided in Theorem 5.3
to prove that the interference is also heavy-tailed.

Theorem 5.8. Let �(x) = 1/(1 + ‖x‖α). Then

(1) If the fading has at most an exponential tail, i.e., F̄h(x) <
exp(−ax) for large x, then the interference tail is also expo-
nential. Formally: if ∃a > 0 s.t. F̄h(x) = Θ(e−ax), x→∞,
this implies F̄I(x) = Θ(e−ax).

(2) If the fading is heavy-tailed, the interference is also heavy-
tailed:

F̄h(x) ∼ x−α =⇒ F̄I(x) ∼ x−α.

Proof. Case (1): Exponential fading. We will first show that the condi-
tional Laplace transform of the interference converges for s < σ, σ < 0
and diverges for s > σ. We have

LIΦ(z)(s) = E
!o
∏
x∈Φ

k(s,x),
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where k(s,x) = Lh(s�(x − z)). From the above equation we observe
that LIΦ(z)(s) is finite if and only if

η(s) = E
!o
∑
x∈Φ

| logk(s,x)| <∞.

We now show that the abscissa of convergence σ of LIΦ(z)(s) is strictly
less than zero, i.e., η(s) <∞ for some s < 0.

Let β(s,x,h) = exp
( −sh

(1+‖x−z‖α)

)
. We have

η(s) = E
!o
∑
x∈Φ

| logk(s,x)|

=
∫

R2
|log(Eh[β(s,x,h)])|ρ(2)(x)dx.

When s > 0, it is trivial to see that η(s) <∞. The rest of the proof can
be better understood by considering s < 0. Since F̄h(x) ∼ exp(−ax),
x→∞, it can be assumed without any loss of generality that the fading
PDF is f(x) = aexp(−ax), x > R, for some large R. We have

k(s,x) =
∫ R

0
β(s,x, t)dF (t)

+a
∫ ∞

R
exp

(
−t

[
a +

s

(1 + ‖x − z‖α)

])
dt. (5.17)

The first term is always finite. Considering the second term, we observe
that the term in the exponent will be positive for all x when s > −a.
Hence the integral converges when s > −a and k(s,x) is well-defined
(especially in the neighborhood of z).1

Also observe that k(s,x) > 1 for s ∈ (−a,0). Let b ∈ (−a,0). We now
prove that η(b) <∞. Since k(b,x) > 1, we have log(k(b,x)) ≤ k(b,x) −
1. Hence

η(s) ≤
∫

R2
[k(b,x) − 1]ρ(2)(x)dx

=
∫
b(o,κ)

[k(b,x) − 1]ρ(2)(x)dx +
∫
b(o,κ)c

[k(b,x) − 1]ρ(2)(x)dx

1 Observe the importance of 1 in the denominator of the second term. Without it ∀s < 0,
k(s,x) would be undefined in an open neighborhood of z.
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for κ ∈ (0,∞). Since b > −a, k(b,x) is a well-behaved function, i.e.,
bounded and smooth, and hence the first term in the above equation
is bounded for any κ <∞. So if we prove that the second term is
finite, then η(b) <∞. For large ‖x‖ we have ρ(2)(x)→ λ2. We choose
κ such that for all ‖x‖ > κ , ρ(2)(x) is very close to λ2. Hence ρ(2)(x)
is essentially a constant and proving∫

b(o,κ)c

(k(b,x) − 1)dx <∞

will be sufficient. We have∫
b(o,κ)c

(k(b,x) − 1)dx =
∫
b(o,κ)c

∫ R

0
[β(−|b|,x, t) − 1]f(t)dtdx︸ ︷︷ ︸

A

+
∫
b(o,κ)c

∫ ∞

R
[β(−|b|,x, t) − 1]f(t)dtdx︸ ︷︷ ︸

B

.

Considering the first term A, we can increase κ such that

β(−|b|,x, t) = exp
(

|b|t
(1 + ‖x − z‖α)

)
≈ 1 +

|b|t
(1 + ‖x − z‖α)

. (5.18)

This can be done since t < R. Hence we have

A =
∫
b(o,κ)c

∫ R

0

|b|t
(1 + ‖x − z‖α)

f(t)dtdx <∞.

Considering the second integral B, substituting for the fading PDF and
after some algebraic manipulation, we get

B = e−aR
∫
b(o,κ)c

a(1 + ‖x − z‖α)(β(−|b|,x,R) − 1)
a(1 + ‖x − z‖α) − |b| dx

+e−aR
∫
b(o,κ)c

|b|
a(1 + ‖x − z‖α) − |b|dx.

Since κ is large, using the approximation (5.18), it follows that B <∞.
So we have shown that η(b) <∞ for all b ∈ (−a,∞). We also observe
that η(s) =∞ for s < −a. So the abscissa is equal to −a < 0. From
[36, Theorem 3], it then follows that the tail falls exponentially with
parameter a.
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Case (2): F̄h ∼ h−a is a heavy-tailed distribution. In this case
k(s,x) =∞ for all s < 0, and hence [36, Theorem 3] cannot be applied.
We will use Theorem 5.3 that provides upper and lower bounds for the
CCDF of the interference. We first evaluate G̃

[
Fh
( y

(.−z)

)]
for large y:

G̃
[
Fh

(
y

�(. − z)

)]
= G̃ [1 − [1 − Fh (y(1 + ‖x − z‖α))]]

(a)∼ G̃
(
1 − [y(1 + ‖x − z‖α)]−a

)
(b)∼ 1 − y−aλ−1

∫
R2

[(1 + ‖x − z‖α)]−a ρ(2)(x)dx,

where (a) follows by the continuity of G̃ and the fact that y is large.
(b) follows from an argument similar to Theorem 5.6. We also have
from Theorem 5.3, that ϕ(y) = y−a

E
!o[IΦ(z)a]. Here E

!o[IΦ(z)a] <∞
because of the bounded nature of �(x) and its sufficiently fast decaying
tail. So from the upper bound in Theorem 5.3, we have

P(IΦ(z) > y)

< y−a
[
λ−1

∫
R2

[(1 + ‖x − z‖α)]−α ρ(2)(x)dx + E
!o[IΦ(z)a]

]
,

and from the lower bound

P(IΦ(z) > y) > y−aλ−1
∫

R2
[(1 + ‖x − z‖α)]−α ρ(2)(x)dx.

So the tail decays like y−a.

We now show that the distribution of interference decays exponentially
fast at the origin. The basic idea is that there is some contribution from
some point of the process, however, small it is.

Theorem 5.9. The CDF of the interference decays faster than any
polynomial at the origin, i.e., ∀n ∈ N,

P(IΦ(z) < y) = o(yn), y→ 0.
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Proof. Find a such that Fh(x) = o(xa). Choose k ∈ N such that k >
n/a. From Theorem 5.3, we have

P(IΦ(z) < y) < G̃
(
Fh

(
y

�(. − z)

))

= E
!o

[∏
x∈Φ

Fh

(
y

�(x − z)

)
| Φ has at least k points

]
.

Multiply both sides by y−n and take the limit y→ 0. On the right-hand
side, the limit can be moved inside the expectation by the dominated
convergence theorem. Since there are at least k points almost surely on
the plane (because Φ is stationary), we have that the limit on the right
goes to zero by our choice of k.

5.5 Examples and Simulation Results

In this section we give examples of the interference for different point
processes and fading distributions and give approximations for the dis-
tribution.

5.5.1 Examples

We concentrate on three different point processes: the PPP, the Thomas
cluster process, and the shifted lattice process.

Poisson point processes. (1) Singular path loss model: �(x) =
‖x‖−α
From Section 3, the Laplace transform of the interference is LIΦ(s) =
exp(−λπsδE[hδ]Γ(1 − δ)). The Laplace transform is independent of z,
hence the distribution is independent of the location z. Also LIΦ(s) is
the Laplace transform of a stable random variable with parameter δ
and hence heavy-tailed.

(2) Bounded path loss model: �(x) = (1 + ‖x‖α)−1

We first consider the case of exponential fading, i.e., fh(x) =
µexp(−µx). In this case,

LIΦ(s) = exp
(
−λπ πδ

sin(πδ)
s

(µ + s)1−δ

)
.
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Fig. 5.3 CCDF of the interference for Rayleigh fading and path loss α = 4, z = (3,0) (from
[12] c© 2008 IEEE).

Observe that LIΦ(s) is well defined for s > −µ. With fIΦ(x) being
the PDF of the interference, we have by the final-value theorem that
limx→∞ eµ1xfIΦ(x) = lims→0LIΦ(s − µ1) <∞ for all µ1 < µ. So the
PDF is a combination of many decaying exponentials. In Figure 5.3,
we plot the CCDF of Poisson interference with Rayleigh fading. We
observe the heavy-tailed distribution for �(x) = ‖x‖−α and the expo-
nential decay when �(x) = (1 + ‖x‖α)−1.

Thomas cluster processes. In Section 4, we have derived the prop-
erties of interference for this distribution of nodes. We show in [13,
Lemma 3] that the interference has a heavy-tailed distribution for
�(x) = ‖x‖−α with parameter δ.

Shifted lattice processes. The interference results for this process
are verified by simulation. In Figure 5.4, we plot the CCDF for dif-
ferent values of z and with Rayleigh fading. We observe that the tail
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Fig. 5.4 CCDF of the interference for exponential power fading and path loss α = 4 for
lattice processes (from [12] c© 2008 IEEE).

properties depend heavily on z. When ‖z‖ < 1, we have that ρ(2)(z) = 0
(actually the associated measure K2(A) = 0, ∀A ⊂ b(o,1)). So here the
effective path loss model is bounded and hence the interference tail fol-
lows that of the fading. When ‖z‖ > 1, there is a positive probability
that a transmitting node can be arbitrarily close to z and hence the
interference follows a heavy tail distribution.

5.5.2 Approximation of the Interference Distribution

From the previous theorems, we have the following observations:

(1) The CDF FI(y) of the interference decays faster than any
polynomial as y ↓ 0.

(2) When �(x) = (1 + ‖x‖α)−1, α > 2, the mean interference is
finite, and the CCDF tail decays like that of the fading dis-
tribution.
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(3) When �(x) = ‖x‖−α, the mean diverges, and the CDF has a
heavy tail.

Observation 1 eliminates the use of Gaussian distribution to model the
interference except when the mean µ = E[IΦ] is very large (but finite),
so that exp(−µ2/2σ2) is small. We choose three probability distribu-
tions which have the desired properties. The gamma distribution, the
inverse Gaussian distribution, and the inverse gamma distribution.

(1) Gamma distribution: f(x) = xk−1 exp(−x/a)/Γ(k)ak. Mean:
ka, variance: ka2.

(2) Inverse Gaussian distribution:

f(x) =
[ ν

2πx3

]1/2
exp

(
−κ(x − ν)

2

2ν2x

)

Mean: ν, variance: ν3/κ.
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Fig. 5.5 Empirical PDF of the interference and the corresponding fits for 
(x) = (1 +
‖x‖4)−1 and Rayleigh fading (mean 1) (from [12] c© 2008 IEEE).
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(3) Inverse gamma distribution:

f(x) = βax−a−1 exp(−β/x)Γ(a)−1

Mean: β/(a − 1), variance: β2/((a − 1)2(a − 2)).

In the inverse Gaussian distribution, the mean and variance can be
chosen independently of each other. The gamma distribution only has
a (k − 1)-th order of decay at the origin and has an exponential tail.
On the other hand, the inverse Gaussian distribution has an exponen-
tial decay at origin and a slightly super-exponential tail. In Figure 5.5,
we have plotted2 the PDF of the interference using Monte-Carlo sim-
ulation when the underlying node distribution is PPP and the fading
is Rayleigh with a non-singular path loss model. We observe that the
normal fit performs the worst. Both the gamma and inverse Gaussian
give us a good fit. The inverse gamma PDF is a bad fit since it has a
fourth-order decaying tail, while the fading is exponentially decaying.
In finite networks, where the number of nodes is finite and fixed and
the nodes are distributed on a bounded subset of the Euclidean plane,
the interference does not decay superpolynomially fast at the origin,
but only goes to zero like yna where n is the number of transmitters
and a the decay of the fading CDF at the origin.

2 We have used a square of size 40 × 40 for simulation and averaged over 200,000 instances.



6
Conclusions

The cumulated interference power in wireless networks can be sharply
characterized in certain cases. Most notably, in the case of a homo-
geneous Poisson network, at least the Laplace transform of the inter-
ference can be derived. For the power law path loss with singularity
at the origin, the interference follows a stable distribution if the path
loss exponent α exceeds the number of network dimensions d, other-
wise the interference is infinite a.s. This result holds irrespective of the
fading statistics and the number of network dimensions, and it implies
that the mean interference does not exist. The dimensionality of the
network and the path loss exponent enter the Laplace transform only
through their ratio δ = d/α, which is exactly the characteristic expo-
nent of the stable distribution, and the fading process only through its
δ-th moment. The Laplace transform, evaluated at the SIR threshold
θ, is the success probability of a transmission where the desired sig-
nal power is exponentially distributed, e.g., due to Rayleigh fading. So
in this case, the SIR distribution is known for all parameters α and
d, whereas the PDF of the interference only exists when the ratio is
δ = 1/2.

223
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ALOHA is the only MAC scheme that preserves the Poisson dis-
tribution, since it performs independent thinning from the process of
all nodes to the process of transmitting nodes. Accordingly, ALOHA
has naturally received considerable attention in the literature, see, e.g.,
[2, 3, 51]. In addition to its analytical advantages, ALOHA also serves
as an important benchmark, since it is the only completely distributed
and overhead-free MAC scheme. A more elaborate channel access mech-
anism may appear to yield much higher throughput, but the induced
communication overhead needs to be subtracted, and the net gain rel-
ative to ALOHA can be used as an objective metric. It is also inter-
esting to note that ALOHA achieves the Θ(1/

√
n) scaling law, so from

that perspective, nothing is lost if ALOHA is employed in the analysis.
Due to its independent thinning property, ALOHA is also the extreme
case for the interference correlation: non-ALOHA MACs also introduce
stronger correlations, so the results in correlation section (Section 3.8)
are lower bounds.

As a generalization to the ubiquitous Poisson model, we have
derived interference results for Poisson cluster processes in Section 4.
Not surprisingly, clustering increases the interference, since the local
density of interferers is higher than for the homogeneous PPP of the
same overall density. On the other hand, as shown in [53], clustering
can be beneficial if spread-spectrum communication is used.

The counterparts of cluster processes are hard-core processes, where
a minimum separation between nodes is enforced. While such processes
are a natural model for networks with CSMA-type MAC schemes, their
analysis is complicated by the fact that probability generating func-
tionals do not exist. As in many cases, there is tension between the
analytical tractability and the practicality of the models. As long as
motion-invariance, i.e., stationarity and isotropy, is preserved, precise
statements about the interference are still possible. In Section 5 we
have shown that the heavy tail of the interference is present whenever
the point process model (and MAC scheme) allows two nodes to be
arbitrarily close and the path loss law is singular. If either of these two
conditions is not met, the tail of the interference is governed by the fad-
ing distribution. This is intuitive, since if the interference is bounded,
either by a minimum distance between nodes or by the path loss law,
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the only reason why the interference can get large is fading. So great
care should be exercised when choosing the network models, both for
theoretical and simulation studies, to ensure that the models are not
used outside the regime they are intended for.

The interference, SIR, and outage results are fundamental local
physical-layer metrics, which enable the calculation of global and
higher-layer metrics such as the maximum spatial throughput, opti-
mum routing progress, and end-to-end delay [3, 21, 44]. Similarly, the
derivation of asymptotic results (scaling laws) requires knowledge of
the interference or SIRs, typically in the form of bounds. The point
process and path loss models are equally critical for these types of anal-
yses. Some results, in particular for so-called dense networks where the
node density goes to infinite while the area remains constant, rely on
the homogeneity of the path loss law, which makes nearest-neighbor
communication possible irrespective of the network density [16, 17].
For a bounded path loss law, the situation changes drastically. Indeed,
as shown in [9], the capacity scaling law changes to from Θ(1/

√
n) to

Θ(1/n). For a detailed account on how the singularity of the path loss
model affects network performance, see [27].

The interference and outage analyses in this monograph may help
devise guidelines for the design of large wireless system. Some examples
of design decisions facilitated by the theory developed are:

• Improved receivers can be designed that are tailored to
the interference statistics encountered. These statistics also
determine when it is optimum to consider interference as
noise [42].

• Transmission to the nearest neighbor in a PPP is successful
with a probability that does not go to zero with increasing
network density. This is the reason why multihopping over
nearby neighbors is successful even in highly dense network.

• The optimum ALOHA transmit probability can be derived
by maximizing the unconditional success probability p(1 − p)
ps(p), which includes the probabilities that the transmit-
ter actually transmits and the receiver listens [21]. The
sensitivity to the path loss exponent shows that transmit
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probabilities need to be drastically reduced if the path loss
exponent is close to the number of network dimensions. Other
metrics to maximize include the spatial density of progress
or spatial throughput [3].

• The density of transmitters can be maximized under an out-
age constraint. This is the purpose of the transmission capac-
ity framework [51].

• SINR thresholds can be optimized if the rate of transmission
is factored in by putting R = log2(1 + θ) or R = E(log2(1 +
SINR)) and maximizing the product of rate and success prob-
ability Rps(R). The same framework also permits the anal-
ysis of the benefits of adaptive modulation.

• Different physical-layer techniques, including spread-
spectrum techniques, power control, and interference
cancellation, can be analyzed [1, 48, 49].

• The correlation structure of the interference is important
when designing ARQ mechanism. The positive correlation
of subsequent transmission success events means that the
typical assumption of an independent success when retrans-
mitting is invalid. In a static network, the probability that
the k-th transmission succeeds if the first k − 1 failed goes
to zero as k→∞, even with ALOHA and iid block Rayleigh
fading.

• The impact of clustering can be assessed. The analysis of
clustered networks yields the conditions under which it is
beneficial to cluster users, or use a MAC scheme that induces
clustering.

• Generally, the results for the ALOHA MAC with single-
user receivers provide lower bounds for the achievable per-
formance. More sophisticated solutions at the lower layers
can be compared with this benchmark. In some cases, when
the necessary control or overhead traffic for the improved
coordination is taken into account, it may turn out that the
simplest schemes actually perform comparatively well.



A
Mathematical Preliminaries

In this appendix, we provide a brief summary of the main mathematical
techniques and concepts used: Point process theory, Palm theory, and
a characterization of stable random variables.

A.1 Point Process Theory

In a wireless network, the geographical locations of the nodes is gener-
ally modelled as a point process on the plane and here we review some
basic mathematical foundations of point process theory. For a detailed
description and analysis of point processes, the reader is referred to [45]
and [8].

Let N be the set of all sequences of points in R
d, such that any

sequence φ ∈ N:

• is finite, i.e., has only a finite number of points in any
bounded subset of R

d; and
• is simple, i.e., x �= y for any x,y ∈ φ.

Informally a point process on R
d is random variable which takes values

from the set of simple and finite sequences N. The formal definition of

227
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point processes can be best understood by its relation to a real-valued
random variable.

Numerical random variable. Let X be a real-valued random variable on
(Ω,A,P), i.e., an A-measurable function X: Ω→ R. The distribution of
X is the measure

F � P ◦ X−1

on (R,B), where B is the Borel sigma algebra of R, defined by

F (B) = P ◦ X−1(B) = P(X ∈ B) ∀B ∈ B.

So measurability is the requirement that X−1(B) ∈ A for all B ∈ B. For
a numerical random variable X : Ω→ R, we almost always focus on the
distribution function of X:

F (x) � F ((−∞,x]) = P(X ≤ x) (right-continuous).

Point process. We shall use the notation φ(B), φ ∈ N and B ⊂ R
d, to

denote the number of points of φ in B. Let N denote the smallest sigma
algebra so that the maps φ→ φ(B) are measurable for all Borel subsets
B of R

d. N is the equivalent of the Borel sigma algebra on the real line
for the set of point sequences N.

Definition A.1. A point process Φ on R
d is a measurable mapping

from a probability space (Ω,A,P) to (N,N ), i.e.,

Φ : Ω→ N.

So a point process is a random variable that takes values in the set
of sequences N. Each elementary outcome ω ∈ Ω determines an entire
point sequence Φ(ω). The distribution of Φ is

P(E) = P ◦ Φ−1(E) = P(Φ ∈ E) ∀E ∈ N .

Measurability requires that Φ−1(E) ∈ A. An element of N is an event
and can be viewed as a property of the point sequence. For example in
a wireless network, Y ∈ N may represent the event that there are 10



A.1 Point Process Theory 229

wireless nodes in a unit ball around the origin, or it can represent the
event that the minimum distance between any pair of nodes is greater
than unity.

Random measure representation. Alternatively, a simple point pro-
cess can be decomposed as the sum of discrete measures, i.e.,

Φ =
∞∑
i=1

δxi , (A.1)

where δx is the Dirac measure δx(B) = 1B(x) for B ∈ B.
Void probabilities. A simple point process is fully characterized by

its void probability on compact subsets of R
d, i.e., P(Φ(K) = 0) for

compact subsets K of R
d. So to verify the equivalence of two simple

point processes, it is sufficient to check the equality of their void prob-
abilities on all compact sets.

We now provide some examples of point processes.

A.1.1 Binomial Point Process (BPP)

A BPP is generally used to model the location of a fixed number of wire-
less nodes in a bounded domain. It is a simple point process obtained
by placing n points Φ = {x1, . . . ,xn} ⊂ R

d independently and uniformly
in a closed and bounded set B ⊂ R

d. The probability that there are
k < n nodes in A ⊂ B of a BPP is

P(Φ(A) = k) =
(
n

k

)(
|A|
|B|

)k(
1 − |A||B|

)n−k
,

where |A| represents the Lebesgue measure of the set |A|. We observe
that the random variables Φ(A) and Φ(B) are not independent even
if A ∩ B = ∅, which makes the analysis of the interference and related
quantities difficult.

We now describe the Poisson point process which exhibits better
independence properties than the BPP and is obtained as a limit of
the BPP, by increasing |B| → ∞ while keeping n−1|B| constant.

A.1.2 Poisson Point Process (PPP)

The PPP is perhaps the most well-studied point process, and its
importance stems from its ease of analysis. A stationary PPP of density
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(or intensity) λ is characterized by the following two properties:

• The number of points in any set B ⊂ R
d is a Poisson random

variable with mean λ|B|.
• The number of points in disjoint sets are independent random

variables.

From the definition we observe that

P(Φ(B) = k) = exp(−λ|B|)(λ|B|)k
k!

,

and in particular the void probability is given by exp(−λ|B|). Some
interesting properties of the PPP are the following:

• The superposition of two PPPs of densities λ1 and λ2 results
in a PPP of density λ1 + λ2.

• The thinning of a PPP (i.e., selecting a point of the process
with probability p independently of the other points and dis-
card it with probability 1 − p) results in two independent
PPPs of intensity measures pλ and (1 − p)λ. For example,
using ALOHA as the MAC protocol in a wireless network
leads to a thinning of the node set, and when the underly-
ing nodes form a PPP, the resulting transmitter and receiver
node locations also form a PPP.

• Conditioned on the number of points of Φ in a compact set
B ⊂ R

d, the set of points Φ ∩ B form a BPP. This fact can
be used for the simulation of a PPP.

An inhomogeneous PPP of intensity measure Λ is defined in a similar
manner as the stationary PPP, except that the number of points in
a set B is a Poisson random variable with mean Λ(B). For example
using Λ(B) = (2π)−1 ∫

B exp(−‖x‖2/2)dx results in a PPP with Gaus-
sian density. Another example is the finite PPP: A PPP with density λ,
restricted to a bounded domain A, results in an inhomogeneous PPP
with Λ(B) = λ|A ∩ B|. Observe that a stationary PPP is a special case
of the inhomogeneous PPP with Λ(B) = λ|B|.

The independence properties of a PPP are retained if each point of
the process is subject to an independent random operation. Indepen-
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dent thinning of the point process is one such operation and as men-
tioned earlier results in two independent PPPs. The following mapping
theorem illustrates the effect of applying a function f to each point of
a PPP.

Theorem A.1 (Mapping theorem). Let Φ be an inhomogeneous
PPP on R

d with intensity function Λ, and let f : R
d→ R

s be measur-
able and Λ(f−1{y}) = 0 for all y ∈ R

s. Assume further that

µ(B) = Λ(f−1(B)),

satisfies µ(B) <∞ for all bounded B. Then f(Φ) is a non-homogeneous
PPP on R

s with intensity measure µ.

From the above theorem, we observe that if Φ is a stationary PPP of
intensity λ and A is a nonsingular linear mapping, then AΦ = {Ax :
x ∈ Φ} is also a stationary PPP with intensity λdet(A−1).

A.1.3 Poisson Cluster Process (PCP)

A PCP consists of a parent PPP Φp = {x1,x2, . . .} of density λp. The
clusters are of the form Nxi = Ni + xi for each xi ∈ Φp. The Ni are a
family of identical, independently distributed point sets and also inde-
pendent of the parent process. The complete process Φ is given by

Φ =
⋃

x∈Φp

Nx.

The daughter points of the representative cluster No are scattered inde-
pendently and with an identical spatial distribution

Fcl(A) =
∫
A
fcl(x)dx, A ⊂ R

2,

around the origin. The number of points in a cluster may be random,
and we denote its mean by c̄.

We now provide some basic definitions and intensity measures asso-
ciated with point processes.
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Definition A.2. A point process Φ = {xn} is said to be stationary if

P(Φ ∈ Y ) = P(Φx ∈ Y )

for all Y ∈ N , where Φx = {xn + x}. A point process Φ is said to be
isotropic if

P(Φ ∈ Y ) = P(Φx ∈ rY ),

where r is a rotation in R
d.

A point process that is both stationary and isotropic is said to be
motion-invariant. From the above definition we observe that a BPP is
not a stationary point process, and that it is isotropic if the domain
is isotropic. A PPP with constant intensity measure, i.e., with mea-
sure proportional to the Lebesgue measure, is stationary and isotropic,
and the proportionality constant is the intensity. We now define an
equivalent of the mean of random variables for the point processes.

Definition A.3. The intensity measure of a point process Φ is equal
to the average number of points in a set B ⊂ R

d, i.e.,

Λ(B) = E(Φ(B)).

If Φ is stationary, then Λ(B) = λ|B| where λ is called the intensity
(density) of the stationary point process Φ. We have

• The intensity measure Λ(B) of a BPP is equal to n|B∩A|
|A| .

• For a stationary PPP, the intensity measure is equal to λ|B|.
• For a PCP, the intensity measure is equal to λpc̄|B|.

It is often necessary to evaluate the average sum of a function evaluated
at the point of the process Φ. For example when �(x) represents the
path loss model, the average interference seen at the origin when the
transmitting nodes form a point process Φ is given by E

∑
x∈Φ �(x).

The next theorem helps in evaluating such sums.
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Theorem A.2. Campbell’s Theorem: Let f(x) : R
d→ [0,∞] be a mea-

surable function. Then

E

(∑
x∈Φ

f(x)

)
=
∫

Rd

f(x)Λ(dx).

Proof. Interpreting Φ as the random measure (A.1), the sum of f(x)
over the point process Φ is∑

x∈Φ

f(x) =
∫

Rd

f(x)Φ(dx).

Taking the average on both sides we have

E

[∑
x∈Φ

f(x)

]
= E

[∫
Rd

f(x)Φ(dx)
]

(a)
=

∫
N

∫
Rd

f(x)φ(dx)P(dφ)

(b)
=

∫
Rd

f(x)
∫

N
φ(dx)P(dφ)

(c)
=

∫
Rd

f(x)E[Φ(dx)]

(d)
=

∫
Rd

f(x)Λ(dx).

In (a) the average is written as an integral over the set of point
sequences and the distribution measure P. (b) results by interchanging
the integrals (which is essentially an application of Fubini’s theorem),
(c) follows by rewriting the inner integral as an expectation operator
(inverse step of (a)) and (d) follows from the definition of the intensity
measure.

When Φ is stationary with intensity λ the right side is equal to
λ
∫

Rd f(x)dx. Hence in a wireless network the mean interference seen
at the origin, when the transmitters have density λ, is λ

∫
Rd �(x)dx.

We also observe that the average sum depends only on the (first-
order) intensity of the process, and hence any two stationary node
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distributions with the same intensity measure lead to equal average
interference.

Definition A.4. The second-order product density ρ(2) of a point pro-
cess is defined by the following relation:

E


 �=∑

x1,x2∈Φ

f(x1,x2)


 =

∫
Rd

∫
Rd

f(x1,x2)ρ(2)(x1,x2)dx1dx2

for any non-negative and measurable function f .∑�=
x,y represents summation only over distinct x and y. When Φ is

stationary, ρ(2)(x1,x2) depends only on x1 − x2. ρ(2)(x1,x2)dx1dx2 can
be interpreted as the probability that there exist two points of Φ in the
infinitesimal regions dx1 and dx2. ρ(2)(x1,x2) can be used to evaluate
the second-order properties of the interference I. We have

E[I2] = E

[∑
x∈Φ

�(x)2
]

+ E


 �=∑

x1,x2∈Φ

�(x1)�(x2)




=
∫

Rd

�(x)2Λ(dx)

+
∫

Rd

∫
Rd

�(x1)�(x2)ρ(2)(x1,x2)dx1dx2.

For a stationary PPP of density λ, we have the following lemma for the
mean and the variance which follow from Campbell’s theorem and the
second-order product density.

Lemma A.3. For a PPP of density λ, the mean of the sum∑
x∈Φ f(x) is

E

[∑
x∈Φ

f(x)

]
= λ

∫
Rd

f(x)dx,

and the variance is

var

[∑
x∈Φ

f(x)

]
= λ

∫
Rd

f(x)2dx.
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Proof. Follows from Campbell’s theorem and the fact that
ρ(2)(x1,x2) = λ2 for a PPP of density λ.

We now provide an equivalent of the moment generating functional for
the point process.

Definition A.5 (Probability generating functional (PGFL)).
Let ν(x) : R

d→ [0,∞) be measurable. The PGFL of the point process
Φ is defined as

G[ν] = E

∏
x∈Φ

ν(x).

Observe that the PGFL is a functional, i.e., acts on a function and when
the function is a multivariate, a dot “·” is used to represent the variable
that the PGFL acts on. For example G[v(· + y)] = E

∏
x∈Φ v(x + y).

The probability generating functional of a BPP is given by

G[ν] =
( 1
|A|

∫
Rd

ν(x)dx
)n
. (A.2)

For a PPP it is equal to

G[ν] = exp
(
−
∫

Rd

(1 − ν(x))Λ(dx)
)
. (A.3)

The probability generating functional of the PCP is given by

G[ν] = exp
(
−λp

∫
Rd

1 −M
(∫

Rd

ν(x + y)fcl(x)dx
))

, (A.4)

where M(z) is the moment generating function of the number of points
in the representative cluster.

A PGFL completely characterizes a simple point process and can
be used to derive all the density measures of a point process. A PGFL
is very useful to evaluate the Laplace transform of the sum

∑
x∈Φ f(x).

We have

Eexp

(
−s

∑
x∈Φ

f(x)

)
= E

∏
x∈Φ

exp(−sf(x))

= G[exp(−sf(·))].
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In a wireless network the above procedure can be used to derive the
Laplace transform of the interference. Another simple application of the
PGFL is the derivation of the first-contact distribution of a stationary
point process, which is equal to the distribution of the nearest point
distance of the process from the origin, i.e.,

D(r) = P(Φ(b(o,r)) = 0)

= E

∏
x∈Φ

1 − 1b(o,r)(x)

= G
[
1b(o,r)c(x)

]
. (A.5)

In general, Campbell’s theorem is used to evaluate the average of a sum
and the PGFL for the average of a product of a function over the point
process.

In the next section, we provide the equivalent of conditional prob-
ability for the point process.

A.2 Palm Distributions

Palm distributions are the counterparts to the conditional distributions
for the point processes, and they arise when the point process is con-
ditioned to have a point at x ∈ R

d. The use of Palm measures arises
in a wireless network when we calculate outage probabilities which
requires conditioning on either the receiver or the transmitter location.
We provide the definition of Palm distribution in terms of the Campbell
measure, which is a measure on R

d × N.

Definition A.6. The reduced Campbell measure of a point process is
defined as

C !(A × Y ) = E

[ ∑
x∈Φ∩A

1(Φ \ {x} ∈ Y )

]

for any Borel set A ⊂ R
d and Y ∈ N .
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An immediate consequence of this definition is the following theorem:

Theorem A.4 (Mecke). Let f(x,φ) be a measurable function on
R
d × N. Then,

E

∑
x∈Φ

f(x,Φ \ {x}) =
∫

Rd

∫
N
f(x,φ)dC !(x,φ).

If C(. × Y ) is absolutely continuous with respect to the intensity mea-
sure Λ, we have by the Radon–Nikodym theorem

C !(A × Y ) =
∫

Rd

P!x(Y )dΛ(x). (A.6)

P!x is called the reduced Palm measure of the process Φ. Intuitively,
this is equal to conditioning on the point process having a point at x
but not counting it. From (A.6), Mecke’s theorem, and the definition
of the Campbell measure, we have

E

∑
x∈Φ

f(x,Φ \ {x}) =
∫

Rd

E
!x(f(x,Φ))Λ(dx). (A.7)

We now provide a brief description of the reduced Palm probability
measure for PPP and PCP conditioned on a point being at the origin.
The following theorem, often referred to as Slivnyak’s theorem, is in
this generality actually due to Mecke [34].

Theorem A.5 (Mecke; Slivnyak). For a PPP,

P!o ≡ P,

i.e., the reduced Palm distribution equals the distribution of the PPP
itself.

This is also a complete characterization of the PPP. It says that an addi-
tional point at o does not change the distribution of the other points of
the PPP. Hence for a stationary PPP, Mecke’s theorem Theorem A.4
reads

E

∑
x∈Φ

f(x,Φ \ {x}) = λ

∫
Rd

Ef(x,Φ)dx.
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As an application we calculate the average number of transmitters that
can connect to a receiver in the presence of interference. Suppose the
transmitters form a PPP Φ of intensity λ on the plane and a receiver is
located at the origin. A transmitter x can connect to the receiver at o if
the signal-to-interference ratio SIRφ\{x}(o,x) > β, where SIRψ(o,x) =
�(x)/

∑
y∈ψ �(y). Let η denote the average number of transmitters that

connect to the receiver at o. We then have

η = E

∑
x∈Φ

1
(
SIRΦ\{x}(o,x) > β

)
= λ

∫
Rd

E1(SIRΦ(o,x) > β)dx

= λ

∫
Rd

P(SIRΦ(o,x) > β)dx.

So the calculation of η is reduced to the problem of deducing the link
formation probability of a pair of nodes.

Next we provide a characterization of the Palm measure for a PCP.

Theorem A.6. The Palm measure of a PCP is given by

P!o = P ∗ Ω!o,

where Ω!o is the reduced Palm measure of the representative cluster
No, given by

Ω!o(Y ) =
1
c̄
E

∑
x∈No

1Y ((No − x) \ {o}).

∗ denotes the convolution of the distributions, which corresponds to
the superposition of the two point measures.

Definition A.7. For a point process Φ, the second-order moment mea-
sure is defined as

K2(B) = E
!o
∑
x∈Φ

1B(x) (A.8)

for any Borel set B ⊂ R
d.
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It is equal to the average number of points in the set B given that
there is a point at the origin but without counting the point. We also
have the following relation between the second-order moment measure
and the second-order product measure

λ2K2(B) =
∫
B
ρ2(x)dx. (A.9)

An important characteristic of a stationary point process is Ripley’s
K-function defined as K(r) = K2(b(o,r)). For a d-dimensional PPP, it
is cdrd, where cd is equal to the volume of the unit ball in d-dimensions.
For any stationary point process K(r) ∼ cdrd, r→∞.

Similar to the reduced second moment measure, the reduced n-th
factorial moment measure [8, 45] of a point process Φ, is defined as

λn−1Kn(B) � E
!o


 xi �=xj∑

x1,...,xn−1∈Φ

1B(x1, . . . ,xn−1)


 , (A.10)

where B = B1 × . . . × Bn−1, Bi ⊂ R
2. When Kn(B) is absolutely con-

tinuous with respect to the Lebesgue measure, the n-th order product
density ρ(n) exists, and we can write (in the stationary case) [23, 45]

Kn(B) =
1
λn

∫
B
ρ(n)(x1,,x2, . . . ,xn−1)dx. (A.11)

One of the fundamental distance distributions of a point process is
the nearest-neighbor distribution. For a stationary process, we condi-
tion on the fact that there is a point at the origin and find the distance
distribution of the nearest neighbor as follows:

FN (r) = P(the nearest-neighbor distance of

the point at the origin is less than r)

= 1 − P
!o(Φ(b(o,r)) = 0) (A.12)

The nearest-neighbor distribution which depends on the reduced Palm
measure is in general different from the first-contact distribution
D(r) (A.5). Indeed the metric J(r) = (1 − FN (r))/(1 − D(r)), called
the J-function, is used to distinguish between different point processes.
For a PPP, since P!o = P we have FN (r) = 1 − exp(−Λ(b(o,r))) which
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is equal to the first-contact distribution and hence J(r) = 1. The n-th
nearest-neighbor distributions of the PPP are provided in [19].

Similar to the definition of the PGFL, the conditional PGFL is
defined as:

Definition A.8 (Conditional PGFL). Let v(x) : R
d→ (0,∞). The

conditional PGFL is

G̃[v] = E
!o

[∏
x∈Φ

v(x)

]
. (A.13)

For a PPP, by Slivnyak’s theorem the conditional PGFL is equal to the
PGFL, i.e.,

G̃[v] = exp
(
−
∫

Rd

(1 − v(x))Λ(dx)
)
.

A.3 Stable Distributions

The interference in a wireless network follows a heavy-tailed distribu-
tion when the path loss model is given by �(x) = ‖x‖−α, α > d, and it
follows a stable distribution when the transmitting nodes form a PPP.
In this section, we introduce stable distributions and their important
properties. A random variable X is stable if for some a,b,c ∈ (0,∞),
d ∈ R,

aX1 + bX2 = cX + d,

where X1 and X2 are some independent copies of X. The only known
stable distributions with closed-form density functions are the Gaus-
sian, the Lévy, and the Cauchy distribution.

Theorem A.7. For any stable random variable X, there is a 0 < δ ≤ 2
such that the number c in the definition satisfies

aδ + bδ = cδ.

δ is called the characteristic exponent of the stable random variable.
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A stable distribution can be characterized by its characteristic function:

E[ejtX] =


exp

(
jtµ − γ|t|δ(1 − jβsgn(t)tan(πδ/2))

)
δ �= 1

exp
(
jtµ − γ|t|(1 + j 2β

π sgn(t) log(|t|))
)

δ = 1,
(A.14)

where sgn(t) is the sign of t. β ∈ [−1,1] is the skew parameter, µ is
the drift, and γ is the dispersion parameter. Alternatively, a stable
random variable with δ < 1 and β = 1 can be described by its Laplace
transform, which is given by

E
[
e−sX

]
= exp

(
−γ

cos(πδ/2)
sδ
)
. (A.15)

Except for the Gaussian (δ = 2), all the stable distributions are heavy-
tailed with parameter δ, i.e.,

lim
t→∞

tδP(X > t) = C, 0 ≤ δ < 2.

The p-th moment of a stable random variable with δ < 2 is finite if and
only if p < δ. For a stable random variable with drift 0 and skew 1, the
p-th moment is given by

E|X|p =
(sec(δπ/2))p/δΓ(1 − p/δ)

Γ(1 − p) γδ/p, p < δ, δ �= 1,

where Γ(x) is the standard gamma function.
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Notations and Acronyms

Notation and Symbols:

Symbol Definition/explanation
Z,N integers, positive integers
R,R+ real numbers, positive real numbers
C complex numbers
[k] the set {1,2, . . . ,k}
j

√
−1

1A(x) indicator function
1x>b = 1(x > b) shortcut for 1{x : x>b}(x)
u(x) � 1x≥0 (unit step function)
d number of dimensions of the network
#A cardinality of A
P(A) probability of event A
E(X) expectation of random variable X
LX(s) = E(e−sX) Laplace transform of random variable X
| · | Lebesgue measure
o origin in R

d

B a Borel subset of R
d
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Bc
R
d \ B

b(x,r) {y ∈ R
d : ‖y − x‖ < r}

(ball of radius r centered at x)
cd � |b(o,1)| = πd/2/Γ(1 + d/2)

(volume of the d-dim. unit ball)
FX(x) = P(X ≤ x) distribution of random variable X (CDF)
Φ = {xi} ⊂ R

d point process in d dimensions
Λ,λ counting measure and density for Φ
h (power) fading random variable (E(h) = 1)
θ ∈ R

+ min. SIR or SINR for successful communication
� : R

d→ R
+ (isotropic) large-scale path loss function

α path loss exponent
δ � d/α ratio of number of dim. to path loss exponent
W thermal noise
N,N space of simple sequences, its σ-algebra

Acronyms:

LHS left-hand side (of equation)
RHS right-hand side (of equation)
a.s. almost surely (with probability 1)
iid independent and identically distributed
PPP Poisson point process
PDF Probability density function
CDF Cumulative distribution function
CCDF Complementary CDF
PGFL Probability-generating functional



References

[1] J. G. Andrews, S. Weber, and M. Haenggi, “Ad hoc networks: To spread or not
to spread?,” IEEE Communications Magazine, vol. 45, pp. 84–91, December
2007.

[2] J. C. Arnback and W. van Blitterswijk, “Capacity of slotted ALOHA in
rayleigh-fading channels,” IEEE Journal on Selected Areas in Communications,
vol. SAC-5, pp. 261–269, February 1987.

[3] F. Baccelli, B. Blaszczyszyn, and P. Mühlethaler, “An Aloha protocol for mul-
tihop mobile wireless networks,” IEEE Transactions on Information Theory,
vol. 52, pp. 421–436, February 2006.

[4] F. Baccelli, B. Blaszczyszyn, and P. Mühlethaler, “Stochastic analysis of spatial
and opportunistic Aloha,” IEEE Journal on Selected Areas in Communications,
vol. 27, pp. 1105–1119, September 2009.

[5] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation. Cambridge
University Press, 1989.

[6] N. Campbell, “Discontinuities in light emission,” Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 15, pp. 310–328, 1909.

[7] N. Campbell, “The study of discontinuous phenomena,” Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 15, pp. 117–136, 1909.

[8] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Pro-
cesses: Volume II: General Theory and Structure. Springer, second edition,
2007.

[9] O. Dousse and P. Thiran, “Connectivity vs Capacity in Dense Ad Hoc Net-
works,” in IEEE INFOCOM, Hong Kong, March 2004.

[10] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2.
Wiley, second edition, 1970.

245



246 References

[11] M. Franceschetti, J. Bruck, and L. Schulman, “A random walk model of
wave propagation,” IEEE Transactions on Antennas and Propagation, vol. 52,
pp. 1304–1317, May 2004.

[12] R. K. Ganti and M. Haenggi, “Interference in ad hoc networks with general
motion-invariant node distributions,” in 2008 IEEE International Symposium
on Information Theory (ISIT’08), Toronto, Canada, July 2008.

[13] R. K. Ganti and M. Haenggi, “Interference and outage in clustered wireless ad
hoc networks,” IEEE Transactions on Information Theory, vol. 55, pp. 4067–
4086, September 2009.

[14] R. K. Ganti and M. Haenggi, “Spatial and temporal correlation of the inter-
ference in ALOHA Ad Hoc networks,” IEEE Communications Letters, vol. 13,
pp. 631–633, September 2009.

[15] E. N. Gilbert and H. O. Pollak, “Amplitude distribution of shot noise,” Bell
Systems Technical Journal, vol. 39, pp. 333–350, March 1960.

[16] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad hoc wire-
less networks,” IEEE/ACM Transactions on Networking, vol. 10, pp. 477–486,
August 2002.

[17] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans-
actions on Information Theory, vol. 46, pp. 388–404, March 2000.

[18] A. Gut, Probability: A Graduate Course, Springer Texts in Statistics. Springer,
2005.

[19] M. Haenggi, “On distances in uniformly random networks,” IEEE Transactions
on Information Theory, vol. 51, pp. 3584–3586, October 2005.

[20] M. Haenggi, “A geometric interpretation of fading in wireless networks: The-
ory and applications,” IEEE Transactions on Information Theory, vol. 54,
pp. 5500–5510, December 2008.

[21] M. Haenggi, “Outage, local throughput, and capacity of random wireless net-
works,” IEEE Transactions on Wireless Communications, vol. 8, pp. 4350–
4359, August 2009.

[22] K. Hamdi, “Exact probability of error of BPSK communication links subjected
to asynchronous interference in Rayleigh fading environment,” IEEE Transac-
tions on Communications, vol. 50, no. 10, pp. 1577–1579, 2002.

[23] K.-H. Hanisch, “Reduction of n-th moment measures and the special case of
the third moment measure of stationary and isotropic planar point processes,”
Mathematische Operationsforschung und Statistik, Serie Statistik, vol. 14, no. 3,
pp. 421–435, 1983.

[24] A. Hasan and J. Andrews, “The guard zone in wireless ad hoc networks,” IEEE
Transactions on Wireless Communications, vol. 6, pp. 897–906, March 2007.

[25] L. Heinrich and V. Schmidt, “Normal convergence of multidimensional shot
noise and rates of this convergence,” Advances in Applied Probability, vol. 17,
no. 4, pp. 709–730, 1985.

[26] J. Ilow and D. Hatzinakos, “Analytical alpha-stable noise modeling in a pois-
son field of interferers or scatterers,” IEEE Transactions on Signal Processing,
vol. 46, no. 6, pp. 1601–1611, 1998.

[27] H. Inaltekin, M. Chiang, H. V. Poor, and S. B. Wicker, “On unbounded
path-loss models: effect of singularity on wireless network performance,” IEEE



References 247

Journal on Selected Areas in Communications, vol. 27, pp. 1078–1092, Septem-
ber 2009.

[28] N. Jindal, S. Weber, and J. Andrews, “Fractional power control for decen-
tralized wireless networks,” IEEE Transactions on Wireless Communications,
vol. 7, pp. 5482–5492, December 2008.

[29] O. Kallenberg, Foundations of Modern Probability. Springer, second edition,
2001.

[30] J. F. C. Kingman, Poisson Processes. Oxford Science Publications, 1993.
[31] J.-P. M. G. Linnartz, “Exact analysis of the outage probability in multiple-user

radio,” IEEE Transactions on Communications, vol. 40, pp. 20–23, January
1992.

[32] S. B. Lowen and M. C. Teich, “Power-law shot noise,” IEEE Transactions on
Information Theory, vol. 36, pp. 1302–1318, November 1990.

[33] R. Mathar and J. Mattfeldt, “On the distribution of cumulated interference
power in Rayleigh fading channels,” Wireless Networks, vol. 1, pp. 31–36, Febru-
ary 1995.

[34] J. Mecke, “Eine charakteristische Eigenschaft der doppelt stochastischen Pois-
sonschen Prozesse,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, vol. 11, pp. 74–81, 1968.

[35] S. Nadarajah and S. Kotz, “On the product and ratio of gamma and weibull
random variables,” Econometric Theory, vol. 22, no. 02, pp. 338–344, 2006.

[36] K. Nakagawa, “Application of Tauberian theorem to the exponential decay of
the tail probability of a random variable,” IEEE Transactions on Information
Theory, vol. 53, pp. 3239–3249, September 2007.

[37] H. Q. Nguyen, F. Baccelli, and D. Kofman, “A stochastic geometry analysis of
dense 802.11 networks,” in IEEE INFOCOM, Anchorage, AK, May 2007.

[38] P. Patel and J. Holtzman, “Analysis of a simple successive interference can-
cellation scheme in a DS/CDMA system,” IEEE Journal on Selected Areas in
Communications, vol. 12, no. 5, pp. 796–807, 1994.

[39] S. O. Rice, “Mathematical analysis of random noise,” Bell System Technical
Journal, vol. 23, pp. 282–332, July 1944.

[40] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman & Hall, Jan 1994.

[41] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elek-
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