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On Distances in Uniformly Random Networks

Martin Haenggi, Senior Member, IEEE

Abstract—The distribution of Euclidean distances in Poisson point pro-
cesses is determined. The main result is the density function of the distance
to the -nearest neighbor of a homogeneous process in , which is shown
to be governed by a generalized Gamma distribution. The result has many
implications for large wireless networks of randomly distributed nodes.

Index Terms—Poisson point process, random graphs, stochastic geom-
etry, wireless networks.

I. INTRODUCTION

For the capacity and performance analysis and comparison of proto-
cols and algorithms for wireless networks with unknown location of the
terminals, in particular for ad hoc and sensor networks, it is important
that the distribution of the distances between the terminals be known.
Only few results are available in the literature: In [1], distance distri-
butions of uniformly and Gaussian distributed nodes in a rectangular
area are presented. In [2], the mean L1 distance in a square random
network of unit size is determined to be 2=3. Mean distances for Man-
hattan networks, hypercubes, and shufflenets are presented in [3]. In
this correspondence, we provide closed-form expressions for the dis-
tributions inm-dimensional homogeneous Poisson point processes (or,
equivalently, infinite networks with uniformly random distributions).

II. EUCLIDEAN DISTANCES IN INFINITE NETWORKS

In a homogeneousm-dimensional Poisson point process of intensity
�, the probability of finding k nodes in a bounded Borel A �

m is
given by

[k nodes in A] = e���(A) (��(A))k

k!
(1)

where �(A) is the standard Lebesgue measure of A. This permits the
calculation of the distance to an nth neighbor in a straightforward
manner.

Theorem 1 (Euclidean Distance to nth Neighbor): In a Poisson
point process in m with intensity �, the distance Rn between a
point and its nth neighbor is distributed according to the generalized
Gamma distribution

fR (r) = e��c r m(�cmr
m)n

r�(n)
(2)

where cmrm is the volume of them-dimensional ball of radius r.
Proof: Let Bm(r) := cmr

m be the volume of the m-dimen-
sional ball of radius r. The coefficient cm is given by

cm =

�

( )!
; for evenm

� 2 ( )!
m!

; for odd m:

(3)

Let Sk be the kth coefficient in the Poisson distribution: Sk :=
(�Bm(r))k=k!. The complementary cumulative distribution function
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(cdf) of Rn is the probability that there are less than n nodes closer
than r

Pn := [0 . . .n� 1 nodes within r] =
n�1

k=0

Sk e
��B (r): (4)

From fR = � dP
dr

, we have

fR = �cmmrm�1
n�1

k=0

Sk �
n�1

k=1

Sk�1 e��B (r)

= �cmmrm�1Sn�1e
��B (r)

=
nm

r
Sne

��B (r) (5)

which is identical to (2).

An immediate yet useful consequence is as follows.

Corollary 2 (Distribution ofRm
i ): Let y 2 m, and letXi 2 m be

the points of a homogeneous Poisson point process of intensity � in m

ordered according to their Euclidean distance to y. Then Rm
i := ky �

Xikm has the same distribution as a one-dimensional Poisson process
of intensity �cm, i.e., Rm

1 and Rm
i � Rm

i�1; i > 1 are exponentially
distributed with mean 1=(�cm), and [Rm

i ] = i=(�cm).
Proof: From (2), the cdf of Rn is

FR (r) = 1� �ic(n; �cmr
m)

�(n)
(6)

where �ic(�; �) is the incomplete � function. Thus, the cdf of Rm
n

is given by 1 � �ic(n; �cmr)=�(n), which is the cdf of the Erlang
distribution.

Note that this is a generalization of a result mentioned in [4] for the
two-dimensional case to m dimensions.

III. APPLICATIONS TO LARGE WIRELESS NETWORKS

In this section, we list some applications of Theorem 1 and Corol-
lary 2 to large networks of randomly distributed nodes.

Interference: In wireless networks, we are not only interested in the
distances themselves but also in their higher moments, since the energy
required to transmit over distance R with a certain reliability and rate
can be assumed to be proportional toR�, where � is the so-called path
loss exponent.

From Corollary 2 follows that [R�
n] is concave in n if � < m,

proportional ton if� = m, and convex inn if� > m. The interference
at a given point is I = 1

n=1R
��
n , so Theorem 1 permits a complete

characterization of the interference—albeit not in closed form. For the
mean interference we obtain (for all positive �)

[I] =

1

n=1

R��n >

1

n=1

[R�
n]
�1 (7)

where the lower bound follows from Jensen’s inequality. For � = m,
the last sum is the sum of the harmonic series, which is known to di-
verge. So, themean interference is infinite unless the path loss exponent
� is larger than the number of dimensionsm. This is a simple and gen-
eral proof of an observation made earlier for the two-dimensional case
(see, e.g., [4]–[6]).

Routing: For efficient routing, progress should bemade at each hop,
i.e., the next-hop neighbor should be closer to the destination. So, we
have to determine the distance to a neighboring node that lies within
an angle 0 < � � �

2
of the source–destination axis.1 In the distribu-

tion, this simply corresponds to a change of the volume from anm-ball
to an m-sector (with opening angle �) whose volume is c�;mrm. For
m = 1; 2; 3, we have c�;1 = 1; c�;2 = �, and c�;3 = 2�

3
(1� cos�),

1The angle between the source–destination vector and the vector to the
next-hop neighbor must be smaller than .

respectively. Replacing cm by c�;m in (2), the probability density func-
tion (pdf) of the distance to the nth neighbor in a sector � is given as
follows.

Corollary 3 (Euclidean Distance to nth Neighbor in a Sector �):

fR (r) = e��c r m(�c�;mr
m)n

r�(n)
: (8)

The expected distance is

[Rn] =
1

�c�;m

� n+ 1
m

�(n)
=

1

�c�;m
(n)1=m (9)

where (n)1=m is the Pochhammer symbol notation.

The higher moments2 are

[R�
n] =

1

�c�;m

� n+ �
m

�(n)
=

1

�c�;m
(n)�=m: (10)

The variance of Rn follows directly:

Var[Rn] =
1

�c�;m
(n)2=m � (n)21=m (11)

=
1

�c�;m

�(n)� n+ 2
m

� �2 n+ 1
m

�2(n)
: (12)

Remarks:

a) If m = 2 and � = �=4 (routing within a 90� sector), R1 is
Rayleigh distributed with [R1] = 1=

p
�.

b) m and � have complementary roles: m-dimensional networks
with path loss exponent � require the same3 energy for trans-
mission to the nth neighbor as km-dimensional networks with
path loss exponent k�.

c) As a function of n, the Pochhammer sequence (n)�=m grows as
n�=m. This follows from the series expansion [7]

(n)q = nq(1�O(1=n))

or can be derived from identities such as [8]

(n)1=2 =
(2n)!

p
�

n!(n � 1)!4n

and applying Stirling’s approximation. So, for m = 2, the ex-
pected distance grows as

p
n.

d) Form = 2, the variance is tightly bounded4 for all n

(1� �=4)=(��) � Var[Rn] < 1=(4��)

for all n � 1. For m > 2, the variance goes to 0 with in-
creasing n.

Furthest Neighbor Routing: The main problem with nearest
neighbor routing is the large variance in the energy consumption

Var [R�
n] =

1

�c�;m

�(n)� n+ 2�
m

� �2 n+ �
m

�2(n)
: (13)

To decrease the variance, furthest neighbor routing may be employed.

Proposition 4 (Distance to the Furthest Neighbor in a Sector Within
a Given Distance): The distance to the furthest neighbor within dis-
tance dmax in a sector �, given that there is at least one neighbor in the
sector, is given by the probability density

fR(r) =
r�er �=2

ed �=2 � 1
; r 2 [0; dmax]: (14)

Proof: The complementary cumulative distribution [R > r],
conditioned on having at least one node in the sector within distance

2Note that does not have to be an integer.
3There is a small difference stemming from the different coefficients .
4The lower bound is the variance of the Rayleigh distribution, the upper bound

can be derived from Stirling’s approximation, letting .
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dmax, is given by the probability that there is (at least) one node with
distance r < R � dmax

[R > r] =
1� e�(d �r )�=2

1� e�d �=2
: (15)

For the mean distance, we get

�d = [R] =
dmaxe

d �=2 � c

e�d �=2 � 1
(16)

with

c :=
�

2�
er�

dmax
2

2�

where er�( � ) is the imaginary error function, i.e.,

er�(x) = 2=
p
� �

x

t=0

et dt:

This distance determines how far a node can transmit given a certain
minimum signal-to-noise ratio (SNR) at the receiver, i.e., the length
of the longest possible hop for a given transmit power. The distance
is also essential to determine the minimum-delay route between two
terminals.

Other Applications: Other applications of the distance distribution
include the following.

• Optimum number of hops. Even for one-dimensional networks
with equidistant nodes, the question of which is the optimum
number of hops to cover a certain source–destination distance
is important and nontrivial [9]–[11]. Depending on the spectral
efficiency and path loss exponent, there exists an optimum hop
distance that maximizes the capacity. A generalization of these
results to networks with unknown node positions requires the
knowledge of the internode distances.

• Outage probabilities. Assuming that a certain SNR is neces-
sary for successful packet reception, the outage of a link to the
n-nearest neighbor is simply � (n;�c r )

�(n)
from (6).

• Cooperative diversity and relay channels. Cooperative commu-
nication strategies in relay networks have recently received con-
siderable attention [12], [13]. The geometry is usually assumed
to be fixed. In order to determine the achievable rates in an actual
network, the node distances (beyond nearest neighbors) must be
taken into account.

IV. CONCLUDING REMARKS

We have derived the pdfs of the distances in Poisson point processes
in m. These results have applications in all problems of large net-
works of randomly distributed nodes where the geometry plays a role,
including interference, capacity analysis, routing, energy consumption,
and network connectivity. We include a short list of examples that il-
lustrate their potential impact.
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On the Filtering Problem for Stationary Random -Fields

Wojciech Bułatek, Mariusz Lemańczyk, and Emmanuel Lesigne

Abstract—It is shown that whenever a stationary random field
( ) is given by a Borel function : of two
stationary processes ( ) and ( ) , i.e.,

( ) = ( (( + ) ( + ) ))

then under a mild first coordinate univalence assumption on , the process
( ) is measurable with respect to ( ) whenever the
process ( ) is ergodic. The notion of universal filtering property of
an ergodic stationary process is introduced, and then using ergodic theory
methods it is shown that an ergodic stationary process has this property if
and only if the centralizer of the dynamical system canonically associated
with the process does not contain a nontrivial compact subgroup.

Index Terms—Disjointness, filtering problem, random field, random
process, stationary process.
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