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A Geometric Interpretation of Fading in Wireless
Networks: Theory and Applications

Martin Haenggi, Senior Member, IEEE

Abstract—In wireless networks with random node distribu-
tion, the underlying point process model and the channel fading
process are usually considered separately. A unified framework
is introduced that permits the geometric characterization of
fading by incorporating the fading process into the point process
model. Concretely, assuming nodes are distributed in a stationary
Poisson point process in �, the properties of the point processes
that describe the path loss with fading are analyzed. The main
applications are single-hop connectivity and broadcasting.

Index Terms—Broadcasting, connectivity, fading, geometry,
point process, wireless networks.

I. INTRODUCTION AND SYSTEM MODEL

A. Motivation

T HE path loss over a wireless link is well modeled by the
product of a distance component (often called large-scale

path loss) and a fading component (called small-scale fading
or shadowing). It is usually assumed that the distance part is
deterministic while the fading part is modeled as a random
process. This distinction, however, does not apply to many
types of wireless networks, where the distance itself is subject
to uncertainty. In this case, it may be beneficial to consider
the distance and fading uncertainty jointly, i.e., to define a
stochastic point process that incorporates both. Equivalently,
one may regard the distance uncertainty as a large-scale fading
component and the multipath fading uncertainty as small-scale
fading component.

We introduce a framework that offers such a geometrical in-
terpretation of fading and some new insight into its effect on
the network. To obtain concrete analytical results, we will often
use the Nakagami- fading model, which is fairly general and
offers the advantage of including the special cases of Rayleigh
fading and no fading for and , respectively.

The two main applications of the theoretical foundations laid
in Section II are single-hop connectivity (Section III) and broad-
casting (Section IV).

Single-hop connectivity. We characterize the geometric prop-
erties of the set of nodes that are directly connected to the origin
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for arbitrary fading models, generalizing the results in [1], [2].
We also show that if the path loss exponent equals the number
of network dimensions, any fading model (with unit mean) is
distribution-preserving in a sense made precise later.

Broadcasting. We are interested in the single-hop broadcast
transport capacity, i.e., the cumulated distance-weighted rate
summed over the set of nodes that can successfully decode a
message sent from a transmitter at the origin. In particular, we
prove that if the path loss exponent is smaller than the number
of network dimensions plus one, this transport capacity can be
made arbitrarily large by letting the rate of transmission ap-
proach .

In Section V, we discuss several other applications, including
the maximum transmission distance, probabilistic progress, the
effect of retransmissions, and localization.

B. Notation and Symbols

For convenient reference, we provide a list of the symbols
and variables used in the paper at the top of the following page.
Most of them are also explained in the text. Note that sans-serif
symbols such as and denote random variables, in contrast to

and that are standard real numbers or “dummy” variables.
Since we model the distribution of the network nodes as a sto-
chastic point process, we use the terms points and nodes inter-
changeably.

C. Poisson Point Process Model

A well accepted model for the node distribution in wireless
networks1 is the homogeneous Poisson point process (PPP) of
intensity . Without loss of generality, we can assume
(scale-invariance).

Node distribution. Let the set consist of the
points of a stationary Poisson point process in of intensity

, ordered according to their Euclidean distance to the
origin . Define a new one-dimensional (generally inhomoge-
neous) PPP such that almost
surely (a.s.). Let be the path loss exponent of the network
and be the path loss process (before fading)
(PLP). Let be an independent and identically dis-
tributed (i.i.d.) stochastic process with drawn from a distribu-
tion with unit mean, i.e., , and .
Finally, let be the path loss process with
fading (PLPF). In order to treat the case of no fading in the same
framework, we will allow the degenerate case ,
resulting in . Note that the fading is static (unless men-
tioned otherwise), and that is no longer ordered in general.

1In particular, if nodes move around randomly and independently, or if sensor
nodes are deployed from an airplane in large quantities.
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We will also interpret these point processes as random counting
measures, e.g., # for any Borel subset of .

Single-hop connectivity. We are interested in connectivity to
the origin. A node is connected if its path loss is smaller than

, i.e., if . The processes of connected nodes are
denoted as

(PLP)

and

(PLPF)

Counting measures. Let be the mean measure associated
with , i.e., for Borel . For

, we will also use the shortcut . Similarly, let
be the mean measure for . All the point processes considered
admit a density. Let and
be the densities of and , respectively.

Fading model. To obtain concrete results, we frequently use
the Nakagami- (power) fading model. The distribution and
density are

(1)

(2)

where denotes the upper incomplete gamma function. This
distribution is a single-parameter version of the gamma distri-
bution where both parameters are the same such that the mean
is always .

Fig. 1. A Poisson point process of intensity � in a �� � �� square. The reach-
able nodes by the center node are indicated by a bold� for a path gain threshold
of � � ���, a path loss exponent of � � �, and Rayleigh fading (standard net-
work). The circle indicates the range of successful transmission in the nonfading
case. Its radius is ��

�
� � ����, and there are about ��� � �� nodes inside.

D. The Standard Network

For ease of exposition, we often consider a standard network2

that has the following parameters: (path loss ex-
ponent equals the number of dimensions) and Rayleigh fading,
i.e., .

Fig. 1 shows a PPP of intensity in a square, with
the nodes marked that can be reached from the center, assuming
a path gain threshold of . The disk shows the maximum
transmission distance in the nonfading case.

II. PROPERTIES OF THE POINT PROCESSES

Proposition 1: The processes and are Poisson.
Proof: is Poisson by definition, so and

are Poisson by the mapping theorem [3]. is Poisson since is
i.i.d., and .

The Poisson property of will be established in Proposi-
tion 6.

Corollary 2 states some basic facts about these point pro-
cesses that result from their Poisson property.

Corollary 2 (Basic Properties):
(a) and . In

particular, for has constant intensity (on ).
(b) is governed by the generalized gamma probability den-

sity function (pdf)

(3)

and is distributed according to the cumulative distribu-
tion function (cdf)

(4)

2The term “standard” here refers to the fact that in this case the analytical
expressions are particularly simple. We do not claim that these parameters are
the ones most frequently observed in reality.
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The expected path loss without fading is

(5)

In particular, for the standard network, the are Erlang
with .

(c) The distribution function of is

(6)
For and Nakagami- fading, the pdf of is

(7)

In particular

(8)

and

for (9)

for (10)

For the standard networks

(11)

Proof:
(a) Since the original -dimensional process is sta-

tionary, the expected number of points in a ball of radius
around the origin is . The one-dimensional process

has the same number of points in , and ,
so . For is constant.

(b) Follows directly from the fact that is stationary
Poisson. Equation ((3) has been established in [4].)

(c) The cdf is with distributed
according to (4). Equation (7) is obtained by straightfor-
ward (but tedious) calculation.

Remarks:
— For general (rational) values of and can be

expressed using hypergeometric functions.
— Equation (8) approaches as ,

which is the distribution of (as expected, since this is the
no-fading case). Similarly,
and .

— Alternatively, we could consider the path gain process
. Since , the distribution func-

tions look similar.
— In the standard network, the expected path loss does

not exist for any , and for , the expected path gain
is infinite, too, since both and are exponentially dis-
tributed. For and for

.

— The are not independent since the are ordered. For
example, in the case of the standard network, the difference

is exponentially distributed with mean , thus,
the joint pdf is

(12)

where denotes the (positive) order cone (or
hyperoctant) in dimensions.

Proposition 3: For and any fading distribution with
mean

i.e., fading is distribution preserving.
Proof: Since is Poisson, independence of and

for is guaranteed. So it remains to be shown
that the intensities (or, equivalently, the counting measures on
Borel sets) are the same. This is the case if for all

# #

i.e., the expected numbers of nodes crossing from the left
(leaving the interval ) and the right (entering the same in-
terval) are equal. This condition can be expressed as

If and the condition reduces to

which holds since

An immediate consequence is that a receiver cannot decide
on the amount of fading present in the network if and
geographical distances are not known.

Corollary 4: For Nakagami- fading, , and any ,
the expected number of nodes with and , i.e.,
nodes that leave the interval due to fading, is

# (13)

The same number of nodes is expected to enter this interval.
For Rayleigh fading , the fraction of nodes leaving any
interval is .

Proof: # , and for Nak-
agami- , the fraction of nodes leaving the interval is
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Fig. 2. The points of a Poisson point process are mapped and reordered
according to � �� � , where is i.i.d. exponential with unit mean. In the
lower axis, the nodes to the left of the threshold ��� are connected to the origin
(path loss smaller than ���).

Fig. 3. Illustration of the Rayleigh mapping. 200 points � are chosen uni-
formly randomly in ��� ��. Plotted are the points �� � � �� 	, where the � are
drawn i.i.d. exponential with mean �. Consider the interval ��� �� (i.e., assume a
threshold � � �). Points marked by� are points that remain inside ��� ��, those
marked by � remain outside, the ones marked with left- and right-pointing tri-
angles are the ones that moved in and out, respectively. The node marked with
a double triangle is the furthest reachable node. On average, the same number
of nodes move in and out. Note that not all points are shown, since a fraction
� is mapped outside of ��� ��.

Clearly, fading can be interpreted as a stochastic mapping
from to . So, are the points in the geographical domain
(they indicate distance), whereas are the points in the path
loss domain, since is the actual path loss including fading.
This mapping results in a partial reordering of the nodes, as
visualized in Fig. 2. In the path loss domain, the connected nodes
are simply given by .

Fig. 3 illustrates the situation for 200 nodes randomly chosen
from with a threshold . Before fading, we expect 40
nodes inside. From these, a fraction is moving out (right tri-
angles), the rest stays in (marked by ). From the ones outside,
a fraction 9% moves in (left triangles), the rest
stays out (circles).

For the standard network, the probability of point reordering
due to fading can be calculated explicitly. Let

By this definition

(14)

is Erlang with parameters and is the distance from
to and thus Erlang with parameters and , and the cdf of

is . Hence

does not depend on . Closed-form expressions include
and . Gener-

ally, can be determined analytically. For we
obtain .
Further, , which is the probability that an
exponential random variable is larger than another one that has
twice the mean.

In the limit, as , which is the
probability that a node has the largest fading coefficient among

nodes that are at the same distance. Indeed, as
a.s. for any and finite .

While the are dependent, it is often useful to consider a
set of independent random variables, obtained by conditioning
the process on having a certain number of nodes in an in-
terval (or, equivalently, conditioning on ) and
randomly permuting the nodes. In doing so, the points
and are i.i.d. distributed as follows.

Corollary 5: Conditioned on :
(a) The nodes are i.i.d. distributed with

(15)

and cdf .
(b) The path loss with fading is distributed as

(16)

(c) For the standard network

(17)

(d) For Rayleigh fading and

(18)

Proof: As in (6), the cdf is given by with
distributed as (15).

III. SINGLE-HOP CONNECTIVITY

Here we investigate the processes and of
connected nodes.

A. Single-Transmission Connectivity and Fading Gain

Proposition 6 (Connectivity): Let a transmitter situated at the
origin transmit a single message, and assume that nodes with
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Fig. 4. Connectivity fading gain for Nakagami-� fading as a function of � � ��� ���� and � � ��� ��. For � � �, the gain is � independent of � (thick line).

path loss smaller than can decode, i.e., are connected. We
have the following.

(a) is Poisson with .
(b) With Nakagami- fading, the number of

connected nodes is Poisson with mean

(19)

and the connectivity fading gain, defined as the ratio of the
expected numbers of connected nodes with and without
fading, is

(20)

Proof:
(a) The effect of fading on the connectivity is independent

(nonhomogeneous) thinning by
.

(b) Using (a), the expected number of connected nodes is

which equals in the assertion. Without fading,
, which

results in the ratio (20).

Remarks:
1) Equation (19) is a generalization of a result in [1] where

the connectivity of a node in a two-dimensional network
with Rayleigh fading was studied.

2) can also be expressed as

(21)

The relationship with part (b) can be viewed as a simple
instance of Campbell’s theorem [5]. Since is Poisson,
the probability of isolation is .

3) , and . For
does not depend on the type (or presence) of fading.

4) The connectivity fading gain equals the th moment of the
fading distribution, which, by definition, approaches one
as the fading vanishes, i.e., as . For a fixed , it is
decreasing in if , increasing if , and equal to

for all if . It also equals if . For a fixed
, it is not monotonic with , but exhibits a minimum at

some . The fading gain as a function of and
is plotted in Fig. 4. For Rayleigh fading and ,

the fading gain is , and the minimum is assumed at
, corresponding to for . So,

depending on the type of fading and the ratio of the number
of network dimensions to the path loss exponent , fading
can increase or decrease the number of connected nodes.

5) For the standard network, and the probability
of isolation is .

6) The expected number of connected nodes with
is

(22)

where is given in (16).

Corollary 7: Under Nagakami- fading, a uniformly ran-
domly chosen connected node has mean

(23)

which is times the value without fading.
Proof: A random connected node is distributed according

to

(24)

Without fading, the distribution is ,
resulting in an expectation of .
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For Rayleigh fading, for example, the density is a gamma
density with mean , so the average connected node is
times further away than without fading.

B. Connectivity With Retransmissions

Assuming a block fading network and transmissions of the
same packet, what is the process of nodes that receive the packet
at least once?

Corollary 8: In a network with i.i.d. block fading, the density
of the process of nodes that receive at least one of trans-
missions is

(25)

Proof: This is a straightforward generalization of Proposi-
tion 6(a).

So, in a standard network, the number of connected nodes
with transmissions

(26)

where is the digamma function (the logarithmic derivative of
the gamma function), which grows with , and
is Euler’s constant. Alternatively, if the threshold for the th
transmission is chosen as the expected
number of nodes reached increases linearly with the number of
transmissions.

IV. BROADCASTING

A. Broadcasting Reliability

Proposition 9: For and Nakagami- fading, ,
the probability that a randomly chosen node can be
reached is

(27)

where . is increasing in for all and converges
uniformly to

(28)

Proof: is given by

(29)

For , this is

(30)

which, after some manipulations, yields

(31)

(32)

The polynomial is the Taylor expansion of order of
at (the coefficient for is zero). So

from which the limit
for follows. For , the exponential dominates the

polynomial so that their product tends to zero and remains
as the limit.

The convergence to is the expected behavior,
since without fading a node is connected if it is positioned within

, and for a randomly chosen node in for
or , this has probability . So with increasing

, derivatives of higher and higher order become at .
From the previous discussion we know that .
Calculating the coefficient for yields

(33)

The th-order Taylor expansion at is a lower bound.
Upper bounds are obtained by truncating the polynomial; a nat-
ural choice is the first-order version to obtain

(34)

Using the lower bound, we can establish the following corollary.

Corollary 10 ( -Reachability): If

(35)

at least a fraction of the nodes are connected.
In the standard network (specializing to ), the sufficient
condition is

(36)

This follows directly from the lower bound in (34).

Remarks:
— For , the bound (35) is not tight since the right-

hand side (RHS) converges to for all positive (by Stir-
ling’s approximation), while the exact condition is

.
— The sufficient condition (36) is tight (within 7%) for

. With , the condition
can be solved exactly using the Lambert W function

where (37)

A linear approximation yields the same bound as before,
while a quadratic expansion yields the sufficient condition

which is within 3.9% for .
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B. Broadcast Transport Sum-Distance and Capacity

Assuming the origin transmits, the set of nodes that receive
the message is . We shall determine the broadcast transport
sum-distance , i.e., the expected sum over the all the distances

from the origin

(38)

Proposition 11: The broadcast transport sum-distance for
Nakagami- fading is

(39)

and the (broadcast) fading gain is

(40)

Proof: From Campbell’s theorem

which equals (39) for Nakagami- fading.
Without fading, a node is connected if , therefore

(41)

(42)

So the fading gain is the th moment of as given
in (40).

Remarks:
1) The fading gain is independent of the threshold .

for all . It strongly resembles the connectivity gain
(Proposition 6), the only difference being the parameter

instead of . In particular, is independent of if
. See Remark 3 to Proposition 6 and Fig. 4 for a

discussion and visualization of the behavior of the gain as
a function of and .

2) For Rayleigh fading , and the
fading gain is . For .

3) The formula for the broadcast transport sum-distance re-
minds of an interference expression. Indeed, by simply re-
placing by , a well-known result on the mean in-
terference is reproduced: Assuming each node transmits at
unit power, the total interference at the origin is

which for diverges due to the lower bound integra-
tion bound (i.e., the one or two closest nodes) and for
diverges due to the upper bound (i.e., the large number of
nodes that are far away).

So far, we have ignored the actual rate of transmission
and just used the threshold for the sum-distance. To get to
the single-hop broadcast transport capacity (in bit-meters per
second per hertz), we relate the (bandwidth-normalized) rate of
transmission and the threshold by and
define

(43)

Let be the broadcast transport sum-distance for (see
Proposition 11) such that .

Proposition 12: For Nakagami- fading we have the fol-
lowing.

(a) For , the broadcast transport capacity is
achieved for

(44)

The resulting broadcast transport capacity is tightly
(within at most 0.13%) lower-bounded by

(45)

(b) For

(46)

independent of , and .
(c) For , the broadcast transport capacity increases

without bounds as , independent of the transmit
power.

Proof:
(a) , so which, for

, has a maximum at given in (44). The
lower bound stems from an approximation of using

which holds since for
, the two expressions are identical, and the deriva-

tive of the Lambert W expression is smaller than for
.

(b) For increases as the rate is lowered but re-
mains bounded as . The limit is .

(c) For is decreasing with , and
.

Remarks:
— The optima for are independent of the type of fading

(parameter ).
— For , the optimum is tightly lower bounded by

(47)

This is the expression appearing in the bound (45).
— (c) is also apparent from the expression ,

which, for , is approximately . So,
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Fig. 5. Optimum transmission rates for � � ����� ���� The optimum rate is � for � � ���	 
�� 	 � ���	.

Fig. 6. Broadcast transport capacity for � � 	�� � ����� ���� and � � � and � ��. For � � �, the capacity is 	���� 
�� 	 � ���	 irrespective of �. For
the no fading case, the minimum occurs at � � ���	 
�� 	, where � � 	���.

the intuition is that in this regime, the gain from reaching
additional nodes more than offsets the loss in rate.

— For and .
This is, however, not the minimum. The capacity is min-
imum around , depending slightly on .

Fig. 5 depicts the optimum rate as a function of , together
with the lower bound , and Fig. 6 plots the
broadcast transport capacity for Rayleigh fading and no fading
for a two-dimensional network. The range corre-
sponds to a path loss exponent range . It can be seen
that Nakagami fading is harmful. For small values of , the ca-
pacity for Rayleigh fading is about 10% smaller.

C. Optimum Broadcasting (Superposition Coding)

Assuming that nodes can decode at a rate corresponding to
their signal-to-noise ratio (SNR), the broadcast transport ca-
pacity (without fading) is

(48)

To avoid problems with the singularity of the path loss law at
the origin, we replace the by for . For , we
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Fig. 7. Expected maximum transmission distances for the standard two-dimensional network and � � ������ �����. The simulation curve shows the average of
50000 realizations for each value of �, and the 99% confidence intervals for 50 averages over 1000 realizations are shown. The dashed line is the upper bound (54).
For comparison, the curve � for the nonfading case is also displayed.

use the lower bound . Proceeding as in the
proof of Proposition 11, we obtain

(49)

which is significantly larger than in the case with single-rate
decoding. For

(50)

For , this lower bound and thus is unbounded, in
agreement with the previous result. The only difference is that
for diverges whereas is finite. Note that since

for , the lower bound is
within a factor of the correct value.

If the actual Shannon capacity were considered for nodes that
are very close, would diverge more quickly as

since the contribution from the nodes within distance one
would be

(51)

V. OTHER APPLICATIONS

A. Maximum Transmission Distance

How far can we expect to transmit, i.e., what is the (average)
maximum transmission distance ?

Let be a uniformly randomly chosen connected node. The
pdf is given by (24). The distribution of the maximum

of a Poisson number of random variables (RVs) is given by the
Gumbel distribution3

(52)

So, in principle, can be calculated. How-
ever, even for the standard network, where

, there does not seem to exist a closed-form
expression. If the number of connected nodes was fixed to
(instead of being Poisson distributed with this mean), we would
have with mean

(53)

Since is concave, this upper-bounds the true mean by
Jensen’s inequality. Finally, we invoke Jensen again by re-
placing by to obtain

(54)

Without much harm, could be replaced by (the slightly
larger) . Even replacing by still appears
to be an upper bound. The bound is quite tight, see Fig. 7. Also
compare with Fig. 1, where the most distant node is quite exactly
six units away . The factor is the bound in the
nonfading case, so the Rayleigh fading (diversity) gain for the
maximum transmission distance is roughly which
grows without bounds as .

3Note that the Gumbel cdf is not zero at �. This reflects the fact that the
number of connected nodes may be zero, in which case the maximum trans-
mission distance would be zero. Accordingly the pdf includes a pulse at �, the
term ���	� 
���	��.
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B. Probabilistic Progress

In addition to the maximum transmission distance or the dis-
tance–rate product, the product distances times probability of
success may be of interest. Without considering the actual node
positions, one may want to maximize the continuous proba-
bilistic progress . For the stan-
dard network with , this is maximized at . If
there were no fading, the optimum would be . Of course
there is no guarantee that there is a node very close to this op-
timum location.

Alternatively, define the (discrete) probabilistic progress
when transmitting to node by

(55)

We would like to find . For the standard
network

(56)
The maximum of cannot be found directly, but since

is very tightly lower-bounded by , we have

(57)

which, assuming a continuous parameter , is maximized at

(58)

Note that the same expression for would be ob-
tained if was approximated by the factorization

. For the standard network,
, and . So differs from

only by the factor which is independent of
and quite small for typical .
Now, the question is how to round to . For large

. For small so

(59)

is a good choice. It can be verified that this is indeed the op-
timum. The expected distance to this th node is quite ex-
actly . So in this nonopportunistic setting when reli-
ability matters, Rayleigh fading is harmful; it reduces the range
of transmissions by a factor .

C. Retransmissions and Localization

Proposition 13 (Retransmissions): Consider a network with
block Rayleigh fading. The expected number of nodes that re-
ceive out of transmitted packets is

(60)

Proof: Let . The density of nodes that
receive packets out of transmissions is given by

(61)

Fig. 8. Densities � ��� for the standard network with � � � �� � �� and
� � �. The maximum of the density for � � � � � is � ��� � �. The dashed
curve is the density of the nodes that receive at least one packet. Normalized by
	 , these densities are the pdfs of .

Plugging in for Rayleigh fading and inte-
grating (61) yields .

Remarks:
— Interestingly, (60) is independent of . So, the mean

number of nodes that receive packets does not depend
on how often the packet was transmitted.

— Summing over reproduces Corollary 8.
— Equation (60) is valid even for since .
— For the standard networks, the expression simplifies

to , which, when summed over ,
yields (26).

Let be the position of a randomly chosen node from the
nodes that received out of packets. From Proposition 13,
the pdf (normalized density) is

(62)

For the standard network, we have
and which is again related to

(26) (division by the constant density ).
The densities of the nodes receiving exactly of six messages

is plotted in Fig. 8 for the standard network with . This
expression permits the evaluation of the contribution that each
additional transmission makes to the broadcast transport sum-
distance and capacity.

These results can also be applied in localization. If a node
receives out of transmissions, is an obvious estimate
for its position, and for the uncertainty. Alternatively, if
the path loss can be measured, then the corresponding node
index can be determined by the ML estimate

(63)

with the pdf given in Corollary 2. For the standard networks,
for example, the maximum-likelihood (ML) decision is

since

(64)

This is, of course, related to the fact .
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VI. CONCLUDING REMARKS

We have offered a geometric interpretation of fading in wire-
less networks which is based on a point process model that in-
corporates both geometry and fading. The framework enables
analytical investigations of the properties of wireless networks
and the impact of fading, leading to closed-form results that are
obtained in a rather convenient manner.

For Nakagami- fading, it turns out that the connectivity
fading gain is the th moment of the fading distribution, while
the fading gain in the broadcast transport sum-distance is its

th moment. A path loss exponent larger than the number of
dimensions ( for broadcasting) leads to a negative im-
pact of fading. Interestingly, the broadcast transport capacity
turns out to be unbounded if , i.e., if the path loss
exponent is smaller than . While this result may be of
interest for the design of efficient broadcasting protocols, it
also raises doubts on the validity of transport capacity as a
performance metric.

Generally, it can be observed that the parameters and/or
appear ubiquitously in the expressions. So the network behavior
critically depends on the ratio of the number of dimensions to
the path loss exponent.

Other applications considered include the maximum trans-
mission distance, probabilistic progress, and the effect of re-
transmissions. We believe that there are many more that will
benefit from the theoretical foundations laid in this paper.
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