The Local Delay in Poisson Networks

Martin Haenggi,Senior Member, IEEE

Abstract—Communication between two neighboring nodes is a without noise. The channel fading and the transmit/receive
very basic operation in wireless networks. Yet very little esearch states are assumed iid over time, while the nodes are either

has focused on thdocal delay in networks with randomly placed highly mobile, in which case a new realization of the PPP
nodes, defined as the mean time it takes a node to connect to its. ’

nearest neighbor. We study this problem for Poisson network, is drawn in each time slot, or completely static, in which

first considering interference only, then noise only, and latly ~Case only a single realization exists, and the nodes stag fixe
and briefly, interference plus noise. In the noiseless casaye forever.

analyze four different types of nearest-neighbor communiation Secondly, we ignore interference but consider random link
and compare the extreme cases of high mobility, where a new distances. so that the “network” is just a collection of inde

Poisson process is drawn in each time slot, and no mobility, . . .
where only a single realization exists and nodes stay put fever. pendent (orthogonal) links. We take the distances to bestat

It turns out that the local delay behaves rather differently in the  (but random) and derive the mean delay (ensemble average)
two cases. We also provide the low- and high-rate asymptotic over the links for different types of fading and power cohtro
behavior of the minimum achievable delay in each case. In the strategies.

cases with noise, power control is essential to keep the dgla  rpirqy e combine noise and interference and present
finite, and randomized power control can drastically reducethe ’

required (mean) power for finite local delay. bounds on the local delay. .
A mathematical framework for the analysis of the local

delay in Poisson networks is provided in [2, Sect. 17.5] and
[3], where it was first observed that the local delay may be
infinite for certain network parameters; this phenomenon is
. INTRODUCTION called wireless contention phase transitiowe build on this

Delay and reliability are important performance indicatof’@Méwork and our preliminary work in [4], [S] to obtain
that measure the quality-of-service provided by a networkoncrete resu_lts for the Iogal_delay for all four basic types
they complement the quantity-of-service, usually dendtgd ©f Nearest-neighbor transmission. _
throughput or capacity. The triplet of throughput, delayda Specifically, the main contributions of this paper are:
reliability (TDR) forms a comprehensive metric for a net- ¢ Closed-form expressions or bounds on the local delay
work’s capability to deliver information [1]. The focus dfis for the most practical scenarios, including the case where
paper is thdocal delay defined as the mean time (in numbers  both interference and noise are considered
of time slots) until a packet is successfully received over a« Derivation of the optimum ALOHA transmit probabilities
link between nearest neighbors. In terms of the TDR metric, and minimum achievable local delays
the local delay spans a plane in the TDR space where the Derivation of the delay asymptotics in the low- and high-
reliability is set to 100% and the delay is a function of the  rate limits
throughput or rate. It lower bounds all other types of delayse A systematic comparison of the performance of the four
such as single-hop, end-to-end, or round-trip delays, vhic ~ cases of nearest-neighbor communication
makes it a fundamental quantity to study. If it is infinitegte  « Analysis of the effects of random power control in noise-

Index Terms—Poisson point process, stochastic geometry, ad
hoc networks, interference, delay, power control.

is little hope that the network provides any useful servize t  limited networks

its users. Furthermore, the local delay is a sensitive atdic

of the diversity present in a network model; in particular, i || HicHLY MOBILE AND STATIC NETWORKS WITHOUT
measures the interference correlation in network modetls wi NOISE

interference.

Focusing on the case where nodes are distributed on the tio-Network Model
dimensional plane as a homogeneous Poisson point proces#/e consider a marked Poisson point process (RPP}
(PPP), we tackle the problem in three steps. First, we aealy@x;,t,.)} C R? x {0,1}, where® = {z;} is a homogeneous
the local delay in a Poisson network with interference b#®PP of intensity\, and the marks,, are iid Bernoulli with
P(t=1) =p =1-g¢q. A mark of 1 indicates that the node
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whereS,, £ t hy, ||z — y|| = and with respect to the link distance. This method can be used
. B whenever conditioning o also fixes the link distance. The
Iy = Z toheyllz —yll ™. static NRT and NTR cases as described above do not meet this
(z:t2)€d\{(@,t2)} requirement, as the link distance would also depend on who
This definition implies that the transmit powers are norgeadi 1S transmitting. So we will make a small amendments to the
to 1, that] = oo if £, = 1 (y is itself transmitting), and networ_k model in _these cases, namely a fixed partitioning of
SIR = 0 if ¢, = 0. The power fading coefficients,, are the point process into point p_rocesses_qf potential trattersi
exponential with mearl and iid for all z,y € ® and over and receivers of the appropriate densities. -
time (block Rayleigh fading). Time is slotted, and transiga ~ ConsideringD as a function of the transmit probabilify
attempts are synchronized. we define theminimum delayas
The (normalized) rate of transmission (or spectral effi- Dpin 2 min{D(p)},
ciency) R is, slightly optimistically, assumed to be related P
to the threshold by R = log, (1 + 6). the optimum transmit probabilityas
We consider two extremes cases of mobility, thigh-
mobility case where a new realization @b is drawn in each
time slot, and thestatic case where® (the node locations) ang thecritical transmit probabilityas
stays fixed forever. The main event of interest is the event o
that the typical node, situated at the origir® (0,0) € R?, pe = sup{p: D(p) < oo}.

successfully connects to its nearest neighbor in a single ti An important parameter that will be used throughout the pape
slot. In the high-mobility case, we denote this eventthyin s the spatial contentiony, introduced in [7] and generalized
the static case, we first focus on the success es@mditioned in [8], [9], which measures a network’s capability of sphtia
on the point proces®, which we callCs. Success events inreuse by quantifying how quickly the success probabilityof
different time slots are independent, so there is no needdo aransmission (over fixed distance) decreases when thetgensi
a time index to this event. Conditioning @ having a point of interfering nodes is increased. It is defined as the sldpe o
at the origino implies that the relevant probability measureéne outage probability of a transmission over unit distaase

is the Palm probability?’, and that expectations that involvea function of the interferer density at density zero [8, CRf.

the point process are taken with respectPto and denoted |t depends on the path loss exponentthe SIR threshold,

by E° [6]. The partner nodg of the origin will be chosen and the network geometry. For a transmission over distance

according to one of the four basic cases of nearest-neighlipin a Poisson field of interferers with Rayleigh fading, the
communication: nearest-receiver transmission (NRT)re®a success probability is [10]

neighbor transmission (NNT), nearest-transmitter rdoapt B 2/a 5
(NTR), and nearest-neighbor reception (NNR). Psir = exp(=C(a)0”/“pAR") , (3)
In the highly mobile case, we hal(C) = P°(SIR., > ¢) where C(a) £ 272/(asin(27/a)). Asymptotically, as the
and in the static casé’(Ce) = P?(SIRy, > 0 | @), where transmitter density\p — 0, pyi ~ 1 — C(a)8?/°p), thus
uUu=0,v=1y for NRT and NNT, andu = Y, V=0 for NTR the spatia| contention is
and NNR. The link distanc® = ||u — v|| is itself a (Rayleigh 5
distributed) random variable. The local del&yis the mean v =6°C(a) = 9‘57rsm(m$)

number of slots needed until success. Formally,
whered £ 2/a. Fora = 4, v = v67%/2, and fora = 3,

NRT, NNT: D £E° (min {k € N: 14 (0 — NN(0)) }) v = 6?3472 /(3v/3). Asa | 2,y — oo, since the interference
) Ao . ) is infinite a.s. fora < 2.

NTR,NNR: D=2£E (mm {k € N: 1;(NN(o) — 0)}) ’ The asymptotic regimes considered ére- 0 andf — oo,

or, equivalently,R — 0 and R — oo. Since~ increases

1monotonically with#, we may also writey — 0 andy — oo.

popt é arg InlIl{D(p)} )
p

= 0’701+ 0)0(1—6), (4)

wherely(z — y) = 1 if SIRg, > 6 in time slotk, and0
otherwise NN (o) denotes the origin’s nearest node (for NN
and NNR), its nearest receiver (NRT), or its nearest tratiemi . .
(NTR). B. High-Mobility Networks

In the high-mobility case, the local delay is simg(C)~!; To analyze the four cases of nearest-neighbor transmission
in the static case, the success events are only conditonate need the following lemma:
independent, hence the conditional local delay is geometri )
with meanP°(Cs)~", and the expectation with respect to th&€mma 1 Let’ ¢ R* and
point process yields the local delay: I = Z tohe|z|| ™. (5)

High-mobility: D = P°(C)~* 1) (@/ts)e®
_ 1 The conditional Laplace transform d@fgiven thatH does not
Static: D =Eg <W> (2)  contain any nodes ob is
In our approach .for th_e static case, Welwill decondition Oz (s | HN® = 0) = exp _)\p/ S dz )| . (6)
® in two steps, first with respect to the interferers and then r2\x S T |||



The success probability for a transmission over distaRcis
obtained by replacing by 0R*, i.e, P°(C | R) = L;(0R* |
HN®=0).

Proof: The conditional Laplace transform follows from
the probability generating functional for PPPs [6]. Thecass
probability is the Laplace transform evaluatedf@t®, since
for Rayleigh fading, giverR,

P(SIR > 0) =P(hR™“ > 0I) =E;exp(—0R*I). m
The distributional properties of the interferentedefined
in @), do not depend on where it is measuredHlt= (, the

success probability of a transmission between two nodes at

distanceR is (cf. (3))

P°(C | R)=pgE°(e """ 1) =pq L (OR™) =pq exp(—ypAR?),

1) Nearest-receiver transmission (NRTn this case, the
destination node is always listening, so

P°(CN* | R) = pexp(—ypAR?).

Since the point process of receivers has intenkitythe link
distanceR is is Rayleigh distributed with meab/(2/g)\)
[11], i.e, fr(r) = 2q\7r exp(—gAnr?). Hence

Po(CNRTY — | (P°(CNRT | RY) — pm
() =B | B) = 2
and 1 1
NRT _ _.
P = ey T T

The optimum transmit probability is

T — /T

Popt® = ———— (8
="

The local delay is always finite fgs € (0,1), sop. = 1 (as

for all high-mobility cases). The minimum delay only depsnd

on the spatial contention:

DﬁﬁT_1+2\/§+1. (9)
s s

2) Nearest-neighbor transmission (NNTLet y be the
typical node’s nearest neighbor ait = ||y||. In this case
R is distributed asfr(r) = 2Amrexp(—Anr?), and having
the nearest neighbor at distanéeimplies thatthere is no
interferer in the ball B,(R) centered ato with radius R.
So y sees the conditional interference, conditioned on the
disk B,(R) being empty, and the interference observed at the
receiver is smaller than at a typical node, or, in other wattts
spatial contention is smaller. The following theorem pd®s
bounds on the absolute gain in the spatial contention:

Theorem 1 The success probability of nearest-neighbor
transmission giverR is

P°(C | R) = pgexp(—y"NTpAR?),

with ~NNT denoting the spatial contention for nearest-
neighbor transmissiomy™ 7T is bounded as follows:

(b) Letting 6 =

(i) Since Hi(z) =

2/« and denoting byHs(z) the Gauss
hypergeometric function

Hs(z) £ oFi(1,6;1+ 6; ),
we have

7= N < S (-2 0) + T Hs(~3/2/6)+

™

GHs(=2°72/0) + THy(-1/6)  (11)
y — ANNT >gH5(—3a/2/9) + gHg(—2°‘/2/9)+
5 Ho(=1/0) (12)

(c) A lower bound without special functions is

3 T
___NNT _ Cqlta/2 14a/2 )
2-3 2 1).
e ~ 69(2+a)( + +

(13)

The proof is provided in the appendix.
Remarks:

(i) By construction, the simpler lower bound{13) is

looser
than [I2).

—log(l — z)/z and Hy(z) = 1,
simplified expressions can be obtained for the cases
wherea | 2 (or 6 7 1) anda — oo (or 6 | 0),
respectively.

(i) While the absolute gain in the spatial contention in-

creases withy, the relative gaindecreases witl# and
approaches asf — oo, see Fidl (a). The plot shows
that for smallg, y™"NT ~ ~/2 (for a = 4). In fact, the
upper bound on the differencE{11) results in a lower
bound on the ratioy™NT /4 that approached /2 as
6 — 0. This follows from

)
sin(7d) ’
In particular, fora =4 (§ = 1/2),

Hipp(=t/0) =

Vo 2Vt
Using this limit in [I) vyields y™"T/y =
ANNT /(672 /2) > 1/2. Applied to [I2), we obtain
ANNT /o < 2/3 (upper bound in Fidll (a)).

Hs(—z) ~ 27 T — 00.

(14)

010

(iv) The qualitative behavior of the spatial contention etso

be explained as follows: For small only the closest
interferers are relevant. The interference-free regian (o
hole) H essentially removes half of them. For lar@e

a large area around the receiver must be interferer-free,
much larger thari{. So the relative gain is small, while
the absolute gain is just proportional to the area of the
hole.

The local delay follows from integration with respecti
(10) Which is Rayleigh with mean /(21/)) in this case:

NNT + 7 1 NNT

pq

DNNT _ PY

(15)

g q

@ v > +"T > 4 — 7, wherey is the unconditioned spatial The delay is composed of two parts, thecess delay /(pq),
contention given ir@). Also, limg_,oo v — Y"1 = 7. which is the time it takes for the transmitter to transmit &mel
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Fig. 1. Relative (a) and absolute (b) values of the spatiaterdion in the Fig. 2.  Optimum transmit probability (a) and minimum achiele local
high-mobility case fora = 4. The bounds are obtained frofnJ11) afidl (12)delay (b) in the high-mobility case fax = 4.
In the left figure, the bounds readly2 and2/3, respectively, ag — 0.

probability is
receiver to listen, and theervice time which is proportional T+ T /7 1
to the spatial contention™~". Compared with the nearest- opt | = NNT 7 ; (16)
receiver case, we observe the following: "
and the minimum delay is
NNT g
Corollary 1 For a fixedp and finite §, DN®" < DNNT, Drin’ = g+20-vVIitg)’ (17)
Asymptotically, the delays are identical,e., DYRT 1
DNNT 45 ¢ — oo, whereg = A/™T /7. As 0 — 0,
NNT 2yNNT
. . . . Dy ~4+ ~4+ : 18
Proof: The maximum difference —y~NT is 7, achieved min 7 ev/m (18)

asf — oo. Sincep(y — m) = py + mq, the two delays are where ¢ € (1,4/3). Figld shows the optimum transmit
then identical. For finite, the difference is smaller and thUSprobabiIityp and the minimum delay. A8 — 0, the optimum
DNRT < DNNT, B transmit probability for NRT approachéswhereas for NNT,
So at high rates, the gain in the spatial contention in the NNfTapproached /2. The difference is due to the fact that the
case is exactly offset by the fact that the nearest neighlreceiverdensity is less critical in NRT. In the delay plot, it is
is only listening with probabilityg. The optimum transmit observed thaDNNT > 4, sincel/(pq) is at leastd.



When comparing the NRT and NNT schemes, it also neetike expression has the same form as the one for NNT, the only
to be factored in that the distance to the nearest receiver iglifference being the spatial contention. So the optimuamnd
factor ¢—'/2 larger than the distance to the nearest neighbtie minimum delay follow from[{16) and{IL7), respectively,
So a significant advantage of NRT is that more distance wsth vNN® instead ofy™"NT, As § — 0,
covered. It is, however, an opportunistic scheme since the 4 2
receiver may change from slot to slot, and it can therefote no DI ~ 4+ —29 =4+ ﬁH. (22)
be used in standard routing algorithms, where routing able a4 .
are maintained at relay nodes. The results for all four cases are shown in Elg. 2.

3) Nearest-transmitter reception (NTRINext we consider
the case where the typical nodecateceives from its nearestC. Static Networks

transmitter, sayy. This implies that there are no interferers |, the static case, only a single realization of the point

in the disk of radiusk = [|y| around the receiver. So inprocess is drawn. Comparingl (1) arfid (2), we obtain a bound

this case, we apply Lemnid 1 with = B,(R). Using the g the local delay in the static case by Jensen’s inequality:
hypergeometric function defined in Thid. 1, D > P(C)~'. As we shall see, this bound is often very loose.
R g ) N In particular, the actual delay may be infinite while the lowe

2”/0 ro +Sd7° =R Hs(—=R"/s), bound is always finite. The reason is the correlation of the

NTR interference in the static case [12]. To analyze static aeksy
soy™ " =7 —mHs(~1/6) and we need a lemma similar to Lemrfih 1:

P°(CNT™® | R) = gexp (—A\prR*(y — nHs(—1/0))) .
o ) ) Lemma 2 LetI denote the interference as defined®), H C
As 6 — oo, the gain in the spatial contention approaches R2 and let

as in the NNT case, hencg"™ ~ v — 7 ~ ~. This is to

be expected, since for large an area much larger than the Li(s| ®,H)=E(exp(—sl | P, PNH =0))

disk of radiusR needs to be free of interferers, so it does n%t o . .
o . e the conditional Laplace transform giv@nand given that

matter whether the disk is centered at the receiver or &iset| there is no transmitter irt. Then

by R. As 6 — 0, it follows from {I34) thatrHs(—1/5) — 7, '

which indicates that the spatial contention vanishes fdlstn o 1 ps
5 E°| ————= ] =exp | A ——dz | ,
6°. In fact, Li(s|®,H) r2\1 54 + [|z[|*
TR 2T g 0Ty g, (19) (23)
a—2 1-6 )
The two asymptotic regimes are clearly visible in Elg. 1 (b‘?’hICh for’H = 0 evaluates to
in the casea = 4. For § < 1, the slope is about one (or PAC(a)s?
10dB/decade), whereas fér> 1 it is about 5dB/decade. For =ex <T) )

«a = 4, the success probability simplifies to

1
Po(CNTR | R) = ge (—)\ R*V0 {z—acta <—)
(€T ) = gexp (~xprRPV | — arctan (-

with C(a) as defined in@). The local delay conditioned on
lg . a link distanceR is obtained by replacing by 6 R*.

. o ( Proof: Follows from [2, Lemma 17.30 and Prop. 17.34].
In the NTR case, R is distributed as fr(r) = 1) Nearest-receiver transmission (NRTere we consider
2mpAr exp(—pArr?). Integration and inversion yields the case where the partitioning into potential transnstsard
nrr 1 ANTR receivers is fixedi.e. the transmitters are chosen frabrwith
D = 5 + rq (21) probability p, as before, but there exists another, independent

PPP of receiver®, of intensity A\, = ¢A. So, in this model,
épe nodes in® that do not transmit are not available as
eceivers. This assumption maintains the same density of
(For p = 0, the delay is undefined since there is no neargﬁgtual) transmitters anq r_eceivers as in the other models.
transmitter in this case.) For small we have the particularly pqlnte_d out at the. beglnnlng of this section, the reason for
simple result this sllghtly modified model is that the NRT s<_:heme where
transmitters and receivers are chosen dynamically from the
DNTR 1 4 2 0=1+ Lg 0 —0. same point process cannot be analyzed in the same way since
e a—2 1-6" the link distance would not be fixed # was fixed.
4) Nearest-neighbor reception (NNRYhis case is quite
similar to NTR, with the difference that the nearest neighb@heorem 2 For independent point processds of intensity
is at distance /(2v/X) on average and that the delay increases of potential transmitters and®, of intensity A, = g\ of
by a factorl/p since the nearest neighbor only transmits witfreceivers, letDNET be the local delay from the typical node
probability p. SoyNNR = ANTR "gnd in ® to its nearest neighbor i®,. We have

NNR 1 AR NRT _ L m )
D =— + . D =-———=, p¢’" " <7/y (24)
pq Tq p ™ —=7pq

which is monotonically decreasing as| 0. This indicates
that, without noise, the benefit of reducing the interfer
density compensates for the increased transmission déstal




and the boundD T < DNET - DY \here

= 1
HVRT _ 71'

=———, w<¢n (25)
P —pq
1
DM — - T p<gr. (26)
P —pg

Proof: Replacings in 23) by R> yields the success
probability given a link distance?. Since C(a)(0R*)?/* =
~R?, deconditioning onR yields

2

1 o0
DNRT — —27Tq/\/ exp (_)\pl”ﬂ; ) rexp(—mghr?)dr,
p 0 q
(27)

which evaluates td{24). Sinde-2 € (-2, —1), we obtain up-

per and lower bounds for the delay by replacing the expone

0 — 2 by —1 and —2, respectively. ]

Remarks.
(i) The upper delay bound becomes tightamcreasesq |
0), whereas the lower delay bound becomes tight a2
(611).

i) Interestingly, the lower bound~%T is the delay that
gly y

would result from using the unconditional Laplace trangllightly smaller thanr/(2y). For o = 4, this isp

200

——0=1
——6=10
——6=100 ||

180

160

140y
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=
& 100
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Fig. 3. The local delay for the static NRT case as a functiothefchannel
access probability for « = 4 andé = 1, 10, 100. The dashed lines are the
upper and lower boundEP5) arfd¥26), respectively.

< 1/(xv0)

form of I instead of the conditional onEq23). This wouldf ¢ > 10. Asy — 0, we have

be the delay resulting from a network model with highly
mobile interferers but static (yet random) link distance

R.
The local delay together with the bounds are illustrated
Fig.3.
The condition for a finite upper delay bourd yields a
lower bound forp., and vice versa. Thereforg, > p. > P,

for
1
pRT — ”;pm%ﬂ+lQ_M+l)ww
’Y _|_ T —C 27T ’Y

Sincepp " ~ 7/ andp*T ~ 7/y asy — oo, we have
pRT ~ 7 /~. For the caser = 4, for which§ —2 = —3/2 is

exactly in between the two extremeg and —1, p. can be

calculated in closed form as the solution to a cubic equation

It lies quite exactly in between the two bounds.

Asymptotically, asy — 0 (or § — 0), the exactp. can
be obtained from(1 — p.)?>~2* = (v/7)®, sincep. — 1 as
~ — 0. This yields

7y

¢

NRT
(¢ ~1-

1
)2757 N 0.

Minimizing the lower boundD™®T(p) yields an upper
bound on the optimun:

=NRT _

Y
Popt =1- :
Vy+a

~ 7/(2y) asy — oo. Minimizing the upper

=NRT

Hencep,,

gl

=NRT 1
e o~ 11—

. NRT
Pop ) p ~

2 1/3
g e1-(2)7, @
Bp there is a gap between the bounds.
The expression for the minimum del@\RT = D(pypt) is

not very compact and therefore omitted. Asymptoticallycsi
Popt ~ 7/(27),

DNRT

min

~4(1—l+1), v — 00. (30)
[ ™

On the other hand, ag — 0, the minimum delay is smaller
than the delay achieved jf is chosen from either of the two
bounds[[ZB). From the series expansions of the two resulting
expressions,

DNRT

min = L+ O(met3ely g — 0. (31)

2) Nearest-neighbor transmission (NNT): Applying
Lemmal2 to the case whef® = By (R) gives for the
local delay givenR

1 _
DENT _ p_q exp ()\pRQ(’Y/ql o KJNNT)) ,

J -
w5+ ]

Apart from the additional factog in the denominator, this is
the same integral as in the highly mobile NNT case, [cHl (66).
Using the hypergeometric function, we can express theiiateg

where

HNNT

bound yields a solution of a cubic equation with the sanié polar form as

asymptotic behavior, from which we conclude thafii" ~
7/(27y) = pNRT /2 asymptotically. For finitey, this is an upper
bound onp}tT, which is quite tight as soon ag > 13dB.

2

dr = g—qu(—bo‘/(sq)) )

rs
sq +r¢

(32)

’

So a good rule of thumb is to choose the transmit probability



Theorem 3 The local delay of nearest-neighbor transmissio 200 ——
—— LB 6=1

in static networks giverR can be expressed as 180 e UBB=1 |
NNT 1 2 1-6 NNT 160 —o-LBE=10 il
Dp™ = —exp(A\pR*(v/q ~° — K ), (33) -¢-UB =10
pq 140} —e— LB 6=100 |
wherexNNT depends on, §, andf and accounts for the hole. = "UB 8=100|
x™NT s bounded as follows: a
= i
(@) 0 < kNN < 7/q, andlimg_, o, sNNT = 7/4. §D 100
(b) Lettingd’ = 6q, we have 80 ]
2 60 1
0™ < H(—20/0') + T Hs(=3"/2/0)+
401! 8
ﬁ _oa/2 /p! ﬁ _ / 5
6H5( 2472/6") + 6H5( 1/6") (34) 20 |
NNT T a/2 g T a/2 g
—Hs(—3%%/0 —Hs(—2%%/6 ‘
qr >%T a( /6') + & Ha( /0)+ 05 o8 1
SHs(=1/0') (35)
. . . . Fig. 4. Bounds on the local delay for the static NNT case asetion of the
(C) A lower bound without speC|aI functions is channel access probabilify for « = 4 and 6 = 1, 10, 100. The bounds are
3 - obtained by inserting the bounds eANT in Thm.[3 in the delay expression
NNT 97 . al+a/2 1+a/2 @3).
2.3 2 1) .
w2y 69’(2+a)( + +
(36)
L df =1,
Proof: The proof is similar to the proof of Thnl 1. TheAn or o
form of the expressior {83) follows from Lemrih 2 ahdl(32). _NNT 1 ) ) 3 40
The bounds (a) follow fronim; .., A(R,s,q) = 7R?/q. The Popt,o—oo = 3 {17 N ) (40)
bounds (b) and (c) follow fron(32) and the inner and outer o NT _
bounds on the hole shown in Figl11. m Again the scaling is the same, $Q.;" ~ 7/(27). Numeri-
Remarks. cally obtained bounds on " and the asymptotic expressions

(i) As fg — 0, it follows from (I2) that are illustrated in Fidll5. Inserting the asymptotic valudtie
q ' delay expression, we find

NNT _ T ps 6—1
Z9 - 4
3 sin(7d) s A sin(md) ’ D! ~ %7 v — 00. (41)
or 1 v wr 1o On the other hand, for smajl (small 8), the limiting value
30~ <3 (7)) of v/¢=% — K¥NNT s less thar2y/(3¢* ) by (Z2). Setting
0 = 0 yields the simple asymptotic lower bound
So the gain due to the hole is asymptotically between a
factor1/3 to 1/2 in the exponent, as in the highly-mobile pNT 3 . (42)
NNT case. —oph6=0 6 4 2y
(ii) Better bounds that do not contain special functions cagy v — 0, DNNT — 4 4 ©(+). The numerically obtained
be obtained by including more te_rms from the expansi%gﬁT and its Iglgymptotic behavior are shown in Elg. 6.
&) of the hypergeometric function. Generally, asy — oo, there is no difference between
Deconditioning onR yields the local delay the NRT and NNT in terms of interference, but only in the
1 T availability of the destination node as a receiver and in the
DNNT = —. . (38) link distance distribution.
pg m—p(y/qt70 — KNNT)

3) Nearest-transmitter reception (NTRBimilarly to the
The bounds on the local delay obtained frdml (34) dnd (35)atic NRT case, we pre-partition transmitters and recgive
are shown in Fidl4. In this case, receivers do not matter (except for the typical
Due to the different exponents qf and ¢ and the de- receiver considered). We take a fixed point process of trinsm
pendence of: on p, (38) does not lend itself easily for theters of intensity\p, which implies there is no actual ALOHA
derivation of the optimum transmit probability and minimuninvolved, or, in terms of the marked point processwe take
achievable delay. Asymptotically, as in the NRT case, it cahe marks to be fixed also.
be shown thap ™™™ ~ 7/~. This is not surprising since the Recall from the high-mobility case that here the interferer
relative effect of the hole vanishes adncreases. free hole is centered at the receiver, so we apply Lerima 2
For the optimunyp, settingd = 0 andx™"NT = /¢ yields  with H = B,(R). From [32) we have

1n 1 _
Poptoo0 = 35 (39) D™ = ~exp (R (7/q' =0 = ¥T1))
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Fig. 5. The optimum transmit probability for the stafiéNT case as a
function of the SIR threshold for a« = 4. The numeric bounds are obtained
by numerically optimizing ovep when the upper and lower bounds from
Thm.[3 for «NNT are used. The lower and upper bounds for latgare the
ones in[[3P) and{40), respectively. The asymptotic lowamioasf — 0 is

Fig. 7. The local delay for the static NNR case as a functiothefchannel
access probability for « = 4 and 9 = 1,10, 100. The delay is given in

from {@2).
Since the delay is monotonically decreasingds0 (and thus
200 : : 1),
—e—numeric NNR a1 )
1801 —=—numeric NNT 1 ™ 1
. DNIR — = . (46
160! asymptote | min T—+ <NTR 1+ Hg(—l/@) — ’Y/ﬂ— ( )
140} , What is interesting about this case is that there ikaad
§ ‘ : phase transition in the sense that a finite local delay cammot
%D'E 120 | achieved for any as soon a$ exceeds some critical value

100f - , . 0., determined byl + Hs(—1/6.) — /7 = 0. While reducing

(),

T gol | p reduces the interference, it also increases the link distan
a in proportion top~—!/2, and the net gain is negative  is
601 ] larger thard.. For o = 4, 0. ~ 1.351. So, the maximum rate
a0k 1 that can be supported for finite local delayR$,.x ~ 1.2333.
As o decreases). decreases also. Sinee < 4.95 in most
201 _ 1 environments, the rate supported by NTR cannot exceed 4/3
Q1= ‘ ‘ ‘ ‘ ‘ ‘ bits/s/Hz. Therefore the high-asymptotics do not exist. The
-10 -5 0 5 10 15 20 25 30

0 [dB] NTR case is relevant for the downlink of cellular networks
when mobile users connect to the nearest base station [13].
Fig. 6. The minimum local delay for the static NNT and NNR cass a For smallé, it follows from {@8) and[44) that
function of the SIR threshold for o = 4. The curves are very close; at small 5

0, the delay for NNT is slightly larger. The asymptotedis/~, per [41), in

2
both cases. It is quite tight as soon&s> 1. Drliil;lR ~ 1+ o 29 =1+ mea 0—0. (47)

4) Nearest-neighbor reception (NNR)n this case, pre-

with xNTR = %H(;(_y(gq)), For a = 4, this simplifies to ~ partitioning is unnecessary. As in the highly mobile case,
the difference to NTR is the factod/p in the delay

w1 , [0 1 and the link distance distribution. We havBRN? =
Dp " = 5exp ApmR 5{§—arctan (ﬁ)] . p_lqexp (/\pRQ(v/ql_‘;—mNNR)) with kKNNR — ,NTR  gnq

deconditioning yields

(43)
From [23) follows that, for general, DNNR _ 1 -
_ 2 pg ™—p(y/¢—0 — KNNR)
1-¢ NTR
- ~ 0, 6 . 44
/4 " a—2 "7 0 (44) for p(v/q' 7% — K¥NVRY < 7. (48)
Deconditioning on? yields This expression has the same form[ad (38), so for larg#!
1 T bounds derived in the NNT section apply. For smallthe
NTR _ 1-¢ NTR
D™= 47— /qi=® + RNIR /a7 =K< T difference betweenNNT and xNNR becomes significant, as

(45) in the highly mobile case. Fifll 7 shows the local delay as a



05 : : High mobility Static
- - -numeric NRT 1+ 2¢/y/m; 1+@(91/a) 1+O(,ymax{1/3,1/a})
0.45 —e—asympt. LB (small 8) i NNT 4+ cy/m; 4+ ©(0%) 4+0(v); 4+ 6(6°)
0.4 —=—asympt. LB (large 6) || NTR 1+ 1550 1+ 250
' —<—asympt. UB (I C)
ympt. UB (large ) NNR 4+ 26 4+ 26
0.35 i
03 TABLE |
— ’ SCALING BEHAVIOR OF THE MINIMUM LOCAL DELAY AS 6 — 0.
“3/,& 0.25 2 WITHOUT A O OR® SYMBOL, THE ASYMPTOTIC RESULTS ARE SHARP
a° \ i.e., “~". THE CONSTANTc DEPENDS ONax AND ASSUMES VALUES
0.2f c € (1,4/3).
0.15F
0.1F
0.051 to NRT, where interferers can be located anywhere, the
' delay scaling improves fror!/® to 6%/ for the NNT
%% = o case, where the hole is centered at the transmitter, and

0 [dB] further tod for the NTR and NNR cases, where the hole
is centered at the receiver.
fFig- 8. fTh;]e optimuhm t[]ar:;n;it probabilityhfor the static NNiaseb as ad (i) 1t does not matter for small whether the nodes are static
unction of the SIR threshold for o = 4. The numeric curve is obtaine . . . . .
by numerically optimizing ovep. The lower and upper bounds for large or hlghly moplle when the disk around the receiver is
are the ones iM{39) anf({K0), respectively (same as for th€ blge). The known to be interferer-free.

asymptotic lower bound a8 — 0 is from (&0). Expressed in terms of the transmission rate, the scaling
behavior can be summarized as follows.

function of p. Certainly pX\® — 1/2 asf — 0, hence we

have opt Corollary 2 Irrespective of the level of mobility in the net-
NNR 5/2 work and the choice of the nearest-neighbor transmission
Dy ~4(14+ 1-5" )" (49) scheme, the minimum local delay scales at high rates as

For a = 4, the sharper expression Duin = 0(2°%), R — 0.

Nl\tIR N 1 <1 4 1 1_ 1 n i) 90 (50) Again the exception is the statTR case. AsR — 0,

op 2 ’ )

3\ ¢ o0 Duin = K+ O(RY*) and Dy = K +Q(R),
i i NRT

can be derived. In this casél,;” ~ 4 + 26. where K = 1 for NRT and NTR and{ = 4 for NNT and

The numerically optimized transmit probability is shown i
Fig.[4, together with the asymptotic curves, and the rewmylti
minimum delay is plotted in Fifl6. The constank is the minimum achievable access delay. If one
of the nodes is known to be transmitting or listenidg,= 1.
D. Asymptotic Delays

We first summarize the results on the asymptotic delays fn Delay Distributions

a theorem. 1) Highly mobile networks:Let A be the delay random
o ) variable, s.t.D = E(A). The delayA is geometric, since
Theorem 4 Asf — oo, the minimum local delay in all four gach transmission attempt is independent. For nearesieec

highly mobile cases scales agn or transmission (NRT),
) ™
DminN96.7T . PANRT:kzl— k-l y =
sin(md) ( )=(1-8"7¢, & T+ p/d
In the static NRT, NNT, and NNR cases, the scaling behavior?) Static networks:Let D(R) be the local delay as a
is 4~/ or function of the link distance random variabfe
Dyin ~ 495.”75, For NRT,P(R? < z) = 1 — exp(—Amgz), hence in the
sin(d) static case, the delaf(R) has a continuous distribution with
The exception is the static NTR case, where the delay becodwavy tail:
infinite for all values ofp as soon a®$) exceeds some critical ng2—2/0
valued.. NRT 1 Py
¢ . - P(D Ry<z)=1-(— , >1 .
Asf — 0, the scaling laws of the minimum local delay are ( () < o) (J?pq) v 2 1/(pa)
listed in Tablell. S (51)
In any case DNRT(R) is finite, but the local delay
Remarks. Er(DNET(R)) does not exist ifrg®>~2/® < py, which

(i) The benefits of the interferer-free disk around the transecovers the condition in Thriil 3. While the distributignl(51
mitter or receiver are apparent @&s— 0. Compared is not the delay distribution, since it includes averagingro
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the point process (given the link distance), it indicateat thn = 1, where the distance is Rayleigh distributed, and then
the delay distribution is fundamentally different in thatst relate the local delay for general to the casen = 1.
than in the highly mobile case in two aspects: It is contirgjouThe success probability of a transmission over distaRge
and it has a heavy tail. Both are consequences of the tempdsal,| z, = exp(—0R{/P). For constani’, the mean delay
dependence of the transmission success events, as analyzed

o0
[12]. D, = 271'/\/ exp(0r® ) P)r exp(—Anr?)dr
0
I1l. STATIC NETWORKS WITHOUTINTERFERENCE diverges to infinity as soon as > 2. Fora = 2 and all
In this section, we consider noise but not interferences THionstant, we have
scenario is appropriate if the links use orthogonal chanogl D AT (52)
1

more generally, if the distance between concurrent trattesrgi
is much larger than the distance of the typical link. The
resulting network is a collection of independent wireléskd.

:)\W—Q/P.

For > 2, the transmit power needs to be chosen as

a function of the link distance?;. So we will henceforth

assume that the transmitter knows, which is a reasonable

A. System Model assumption given that the distance remains constant fioreve
The links have random distances that are spatially iid band that it chooses its transmit power as

temporally fixed or static, and they are subject to fading tha

is iid across both space and time. In the presence of noise, th ’ (53)

transmit power, denoted bly, becomes relevant. Focusing ORyhere o the power control factor and b the power con-
a single link, the received power 8. = PhR™, whereh tro| exponent In this case, the success probability becomes

is the (power) fading coefficient an® is the link distance. Ps|ry = exp(—2R?7%), and the mean delay, now a function
We will allow % to be more general than Rayleigh fadingf , andp, is “

in this section, but always iid temporally and across links. o
The transmission is assumed successfubif> 6 for some D, (a,0) = 2)\77/ ex <QT2b> rexp(—Anr?)dr. (54)
1la, p p
thresholdd that is proportional to the noise power. Givéh 0 a
the success probability is Forb < 0, the integral diverges for all values of the remain-
_ o _ @ ing parameters (not enough power if the nearest neighbor is

Poir = P(h > OR"/P) =1 = Fa(OR"/P), far). Forb > 2, the integral diverges since there is not enough

whereF), (z) = P(h < z) is the cumulative fading distribution power for receivers that are very closg « 1). This second

function. Since each node has a pre-defined partner, wetecefetype of divergence is due to the singularity of the path lags |

the mean delay until success simply as the mean delay instae&ithe origin. If a bounded path loss law is used, Gay R) ™~

of the local delay. We also ignore channel access delaysfhwh{and the corresponding transmit power), the first expoaknti

are trivial in the interference-free case. The mean delay iof (84) is to be replaced byxp(£(1 +r)*~?), which results

successful transmission, conditioned Bnis p;}%. If R was in a finite delay for allb > 0. This integral does not admit

also temporally iid, the (unconditioned) mean delay would closed-form expression, though. We will therefore cardin

simply be with the unbounded path-loss law and restrict ourselvekdo t

D =1/Er(ps|r) - regimeb € [0,2], knowing that for bounded path loss the

delay could be further reduced by choosihng> 2, i.e., by

over-compensatinfpr the large-scale path loss.

1) b = 0: We obtain

N a—2+b
P =aR]

In this case, we could definé £ AR~ and consider

the fading coefficient to bé, combining the distance and
fading uncertainties [14]. Here we focus on the case of fixed

R, in which case the_: mean delay .is the ensemble_ average D1 (a,0) = A 7 0 < ar, (55)
D = Egr(1/psr). This static case is more interesting and A —0/a
practical. which shows that the mean delay exhibits a phase tran-
sition even in the interference-free case. There is tension
B. The gamma/Rayleigh case between the delay given the distancecall it D,(r), for
We first consider the case where the link distance is gamM/gich log D1(r) = cor?, and the densityf, (r), for which
distributed, parametrized by an integer log fr, (r) ~ —c1r? asr — oo. Hence the local delay is finite
9 if c1 > c2, which is exactly the condition i(5).
fr, (1) = =——A1)"r*"Lexp(=Arr?) r>0,neN So, if the power control factos is large enough, the local
I'(n) delay will be finite even if the power is adjusted in propantio

We will refer to this link distance model as the gamma(rtp R 2 only — thus the compensation for the large-scale path
model. The fading is Rayleigh. loss does not have to be complete. In particular,doe 2,

The gamma distribution models the case where a notie transmit power can be chosen to be the same for all nodes,
transmits to itsn-th nearest neighbor in a Poisson networkrespective of their nearest-neighbor distance (E€k).(73
[11]. The mean iSE(R,) = +/n/\/2. The local delay as a consequence, the distances do not need to be known at the
a function ofn is denoted byD,,. We start with the case transmitter fora = 2.
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2) b= 2: With complete compensation for the large-scal€. The Rayleigh/Nakagami case
path loss, the integration ifiL{b4) becomes obsolete sinee th yare we restrict ourselves to Rayleigh (or gamma(1)) link

success probability does not depend on the distdtyceand
we obtain immediately

oo (2).

In this case, the delay increases exponentially; ior log D, =

(56)

O(0) asf — .
—1- A _ 0
) b=1: Lett = s Then
O exp(t?) (1 + erft)
Di(a,1) =1+
(1) 2av/\

=1+ /mtexp(t?)(1 +erft). (57)

So in this caselog D; = ©(6?). We observe that there is no

phase transition fob =1 or b = 2.
4) Generalb € (0,2]:

Proposition 1 (Rayleigh distance distribution and Ray-
leigh fading) If P « R?‘2+b, for any 0 < b < 2, the links
can support arbitrary rates at finite mean delays.

Proof: Letting z £ 72, the delay[[B4) is of the form

cl/ exp ( —xz(c1 — CQ:Cib/2))dZC, c1,c0 > 0.
0

For b < 2, the integral can only diverge due to the uppandependent of?.

integration bound. To show that it converges evenifet: 1,
we compare the integrand witkkp(—bz). We observe that

cazr 2¢5\ 2/?
exp (—x(cl—CQ:c*b/Q)) < exp (—17) for z > <c_2> )
1

which proves finiteness of the delay for alk b <2,¢; >0
and0 < ¢a < 00. co = 0/a is finite for all ratesR. [ |

The delays will become extremely large as- 0, a — 0,
and/orf — oo, but there is no phase transition.

For generakh, calculatingE exp(£R%?), we find that the
delay increases geometrically in

Proposition 2 (Gamma distance distribution and Rayleigh
fading) For a transmit powerP = aR22, the mean delay
D, is

D,(a,0) = (D1(a,0))",

neN. (58)

aR%,

mn

If the path loss is fully compensated for., P
D, (a,2) = exp(f/a), irrespective ofn.

distances but allow the fading to be Nakagami-

Proposition 3 (Rayleigh distance distribution and Nakaga-
mi fading) With Nakagami= fading, m > 1/2, andb = 0,
the mean delay is finite if

g < U7 (60)
m
and infinite if
0 > aAT . (61)
m
For b = 2, the mean delay is
__ TI'm)
D(a’72) - F(m,m@/a) ) (62)

whereT'(-, ) is theupperincomplete gamma function.

Proof: Let h be a Nakagamin (power) fading random

variable. FromP(h < z) = F(f’z;?’f)””) follows
_ I(m,mdR*7"/a)
Ps|lR = F(m) )

and examining the range Wheﬂp;‘}%) is finite yields the
result forb = 0. Forb = 2, the delay is simply_ !, which is
[ |
Remarks.

(i) Forb = 0 itis interesting to note that the phase transition
occurs at a value of that is directly proportional to the
amount of fading or the variance of the fading random
variableh. The stronger the fading (the smalber), the
higher the threshold can be chosen while still achieving
finite delay. If m > aAn/0, the delay becomes infinite
due to a lack of diversity.

(i) The condition [&D) generalizes the condition [@](55) fo
finite delay.

(i) For b = 2, the delay is decreasing (to 1) with increasing
mif 8/a < 1 and increasing (diverging te) if 6/a > 1.
This is intuitive since without fading, the delay isif
f/a < 1, in which case transmissions always succeed,
and infinity otherwise.

For b < 0 the mean delay is infinite. Hence we have the
following fact.

Fact 1 With Nakagamim fading, power control is needed as

In this result, the transmit powers are adjusted according 300N as the path loss exponent is larger thain other words,

n, so the nearest-neighbor and the second-nearest-neighfif constant power is not sufficient to keep the mean delay
delays, related by[T58), are achieved using different pswefinite if o > 2.

If the transmit power is chosen according to the distance

to the second-nearest neighbor, the time to connect to e Induced fading: Random power control

nearest neighbor is bounded &% (a,0) <
D1(a,2) < Do(a,2) since Ry > Ry a.s.
The mean transmit power for generalb is
n+a/2+b/2-1)
I'(n) '

Ds(a,0) and

aE(Rg_Hb) _ a()\ﬂ)l—a/2—b/2 F(
(59)

We focus on the case of Rayleigh distances. Comparing the
expression for temporally iid link distancel/Er(p, ), and
the expression for the static cadéz(1/p, r), it is apparent
from Jensen’s inequality that much can be gained by temporal
fluctuations in the received power. With static link distasic
such an effect can be realized lndom power contrgleven
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if no fading is present. It seems plausible that inducingrfad 60
by randomly varying the transmit power would help keep th
mean delay finite. Since heavier-tailed distributions can |
expected to yield better results due to their larger vaganc
we use the Pareto distribution given by

— Pareto
- - -Rayleigh

50

40
P(H > x) = (kk_ 1

k

> , k>, x>1-1/k,
z 0 30
parametrized with a single parametersuch thatE(H) = 1
for all £ > 1. The transmit power is then chosen to b g
P = HR*"**b with H temporally independently Pareto.
Assuming no channel fading, we thus have the followin
result.

- . . 0 ‘ ‘ ‘ ‘
Proposition 4 (Pareto power control) Without fading but e 10 15 20 25 30
Pareto power control, a
k
( k; 1b ) for R2-b > a(k—1) Fig. 9. The mean delay for Rayleigh fading case and Paredoramower
ps(R) = kOR?="/a Ok control (¢ = 2) for b = 0, & = 10, A = 1/4 (such that the mean link
1 otherwise. distanceE(R) = 1). The phase transition in the Rayleigh case occurs at

a=0/(Ar) =40/7 ~ 12.7.
For b = 0 and integerk > 2, the mean delay is of the form

D(a,0) =1+ Q(£) exp <_E) ’ which is again minimized fok = 2. The asymptotic scaling
k& with respect to# is not improved by the largeb. The
a _ 2 ko fact that D(a,2) = ©(6*) is interesting; it confirms that
\g(r)]lslgeogm_ialeég‘)\grz)escn\?vi?r](i)o;ﬁ?éiz:t?g tetaliisa the delay scaling is .closgly .tied. to how fast the tail qf the
(complementary) fading distribution decays. In conclasio
kit I'k—1)
(k—1)"1T(k—5+1)’

Cj =

Je{l2,...k}. Fact 2 Drawing the transmit power from a Pareto distribution

) ] in an iid fashion in each time slot drastically reduces theame
Proof: Straightforward (yet somewhat tedious) calculabOWer required to keep the delay finite.
[ |

tion.

Unlessa >> 6, which is impractical, the minimum mean delayintuitively, the reason why random power control yields b-su

is attained atc = 2, as expected, since this (integer) choicetantially lower delay at low mean power is that transmissio

of & produces the heaviest tail. In this case, at low fixed power are bound to fail. Hence the only way

to achieve a finite mean delay is to occasionally transmit at
D(a,0) =1+ (4& + 86%) exp(—1/(2€)) , higher power. Essentially the delay-minimizing strategyd

which is finite for all choices of anda, andD(a, 0) = ©(62), maxi_rr!ize the variance of the receive(_JI power, as explajned in

6 — oo! So, inducing fading with a polynomial-tail distribu—de'[all In [15], [16]. The same conclu5|o_n was reached in [17]

tion ensures the finiteness of the mean delay for all choic®¥ & d|ff_erent network model and metric. . .

of parameters, and it achieves much better asymptoticngrali The disadvantage 9f Pareto power control is the high peak-

of the delay with respect t@ than Rayleigh fading, where to-average power ratio.

the delay scales at least exponentiallyéinSo we observe

that fading with exponential tail appears to result in a delay!V- STATIC NETWORKS WITHNOISE AND INTERFERENCE

that increases at least exponentially #) whereas fading In this section, we add interference back to the network

with a polynomial tail results in a delay that increases onlynodel and re-focus on Rayleigh fading. First, we address

polynomially ind. the case of fixed transmit power, then the case where only a
Fig.d shows a comparison of the mean delay in the casesifigle node selfishly uses power control, and lastly the oise

Rayleigh fading and Pareto induced fading. For small powaetwork-wide power control. We focus on the case of nearest-

levels, only the Pareto delay is finite, where for larger powgeceiver transmission (NRT).

levels, the Rayleigh delay is slightly smaller. In the lijras

the power increases, the delay approachesboth cases, as ao. Fixed Transmit Power

exgsftljei. 9 With_ noise, we have seen i_n Section 1l that constant
' transmit power only result in finite local delay for = 2 if
(kg/a)k it 0k > a(k — 1) interference is ignored. But fax = 2, the spatial contention
D(a,2) = k-1 ~ = 00, S0 the local delay with interference is trivially infinite.
1 otherwise. So we can state the following result.
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Fig. 10. The local delay in the NRT case with noise and interfee as a

function of the power control factaz. The solid curve (top) is a simulation,
the dashed curve below is obtained by numerical integratibif6d). The
dash-dotted curve is the local delay if noise is ignored,civhis independent
of a. The bottom curve is the delay if interference and channet¢ss delays
are ignored. The potential transmitter densitylis= 1/4, and the receiver
density isA; = 2. Other parameters afe = 0, p = 1/5, a = 4, and
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where

)
B Ap((qxw)lfa/z‘*b/?r(am n b/2)) ”
- q1*5 :

Fig[I0 shows a simulation result and the result of the
numerical integration of{#4). As expected, the analytiealilt
is a lower bound on the delay. For comparison, also shown are
the curves for the cases where noise and interference oaly ar
considered.

€3

V. CONCLUSIONS
A. General remarks

We have provided a comprehensive analysis of the local
delay in Poisson networks. The stochastic geometry-based
mathematical framework permits the derivation of concrete
results for different types of nearest-neighbor commuidca
and mobility levels. While we focused on the two-dimensiona
case, the results can be extended to an arbitrary number of
dimensiongl in a fairly straightforward manner. In most cases,
the only necessary changes are to define the parameter
d/a and to replace the factor in the spatial contention by
the volume of thed-dimensional unit ball. The condition for

6 = 10. The local delay is lower bounded by the ALOHA channel acceinite interference is stils < 1

delay1/p = 5.

Fact 3 In a static network with noise and interference wit
the same transmit power at all nodes, the local delay is it&in

for all path loss exponents, rates, and transmit probaibiit

Clearly, power control is needed.

B. Power Control at a Single Transmitter

B. Interference only

nn the noise-free case, we observe the following:

1) None of the delays depend on the node density. The
increased interference in a network of higher density is
exactly offset by the decreased transmission distance.

2) In the highly mobile cases, the local delay is finite for all
values of the SIR threshol@ and the access probability

If only the node under consideration uses the power control
schemeP = aR®*~%*" while the other nodes transmit at
unit constant power, the interference is unchanged, and the
local delay (with noise and interference) follows from the 3)
combination of [B4) and(27):

DNRT (g, b) = 27Tq/\/ exp (QTQZ’) .
0 a

)\pafé,y,,,4/a72b/a
exp g2/

> rexp(—mgAr?)dr, (63)

which is finite whenevery > 2 andb > 0 or, if « > 2 and
b =0, for small enouglp and large enough. Forb = 2, the
first two exponentials do not depend snand the local delay
is given by their product. Of course this is a selfish approach
that only works for a single transmitter in the network. )
4

C. Power Control at All Nodes

Since it appears impossible to get an exact closed-form
solution for the case with full power control, we replace the
interferer’s transmit powers by their averaded (59) tfot 1),
which, due to the convexity of the exponential and by Jerssen’
inequality, yields a lower bound on the local delay: 5)

DN (a,b) = lIER <exp <€T2_b> exp(037’(4_2b)/0‘))
D a
(64)

p. It decomposes into a sum of access delay and service
time. The optimum transmit probability is proportional to
~v~1/2 or =%/2 in the NRT, NNT, and NNR cases.

In the static cases, there is a phase transitienthe local
delay becomes infinite if or 8 exceeds a certain critical
transmit probability. This is a consequence of the corre-
lation of the interference, which leads to a heavy tail in
the delay distribution. In the NRT, NNT, and NNR cases,
the optimum transmit probability,: is roughly half the
critical transmit probability. A¥YY — oo, it approaches
7/(27) in all three cases, hence it is proportionahto!
or9-9. Sop.pt decreases quadratically faster in the static
case than in the highly mobile case, which is due to
the smaller diversity in the static case that needs to be
compensated for by a smaller transmit probatfility

We focused on the two extreme cases of mobility. Any
practical level of mobility will fall in between, so we
can expect that the results obtained are upper and lower
bounds for all levels of mobility. At low rates, both
extremes behave very similarly, so any Poisson network
with finite mobility exhibits the same scaling behavior.
The NRT and NTR cases benefit from the fact that the
destination node is known to be listening (NRT) or the

1As shown in [12], the correlation coefficient of the intediece in static
networks is proportional tg.
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APPENDIX
ProOF OFTHEOREM[I

Proof: (a) By stationarity ofp, the situation is statistically
the same if the transmitter is located(d, 0) and its nearest
neighbor ato, as shown in Fig11, with the receiver at the
origin. Hence we can apply Lemnid 1 with = Bz o)(R).
The integral in[[b) is

S

—— dz = C(a)s*’* — A(R, s),
/R2\H s + [l

where A(R, s) is the integral over the interferer-free region

‘H. In polar coordinates,

7/2 2R cos ¢
rs

A(R,s) =

—m/2 0

drde. (65)

re®+s
Fig. 11. lllustration for the proof of Thmd1. The white disk ithe
interference-free region of nearest-neighbor transmisgNT). The receiver First, we note thatl( R, R*6) o R2?, and if the proportionality

is located at the origin, and the four sectors (per quadiaditate the inner iy _ ANNT ility ic i
and outer bounds on the disk that are used to obtain andlisieads on the constant isy —~ , the success prObablllw is indeed of the

spatial contention. The angles of the radial beamsmai@ /4. and=/3.  form (I0). Next, A(R,0) = 0, and for fixed R, A(R,s) is
monotonically increasing ta R? ass — oo. Using this upper

bound in the conditional success probability yields
source pode is known to be _transmlttlng (NTR). Hence P°(C | R) = paL;(OR® | Bro)(R) N® = 0)
the minimum delay a9 — 0 is K = 1 for NRT and 5
NTR, while it is & = 4 for NNT and NNR. < pgexp(—pAR(y — 7)),
6) The NTR, NNT, and NNR cases benefit from amvhich proves the first bound. (b) For the tighter bounds, we
interferer-free disk centered at the transmitter (NNT) arse

centered at the receiver (NTR and NNR). Asymptotically s & 9
asf — 0, this manifests itself in a larger exponenin dr = 2= / = 2 Hs(—b%/s) (66)
the delay expressiof + ¢* (Table[). 0o T+s o Sy (I+y) 2
to bound the integral{®5) by integrating over four sectoitf w
C. Noise only fixed radius. The four sectors degl < 7/6, 7/6 < |¢| < 7/4,

If power control of the formP = aR*~2*? is used, the 7/4 < || < 7/3, and7/3 < [¢| < 7/2, see Fid.IlL. At

local delay for Rayleigh link distances and Rayleigh fadimg € angles bordering these sectars; ¢ assumes the simple
finite for b — 0 and some conditions oy a, and \, and it is valuesyn/2, n = 0,1,2,3. For the lower (inner) bound, only

always finite forb > 0. For b = 0, a similar condition holds thrée sectors are used. For the segtor< /6, letting

for Nakagami fading. If power control is randomized with a m/6 2Rcos ¢
distribution wiFh polynomifal tail, the local _delay is finieven - A = rs drdg,
for b = 0. So, induced fading can greatly increase the stability P re+s

region. On the other hand, with a peak power constraintether _
is no power control scheme that can keep the local delay fini#€ obtain

as soon asy > 2. 2R cos(w/6) 2R
Extensions from nearest-neighbor communication nto il aTS dr < A, < f/ QTS dr.
th nearest neighbor communication are possible in a fairly 3 0 T4t 3 ) re+s

straightforward manner. These bounds can be expressed using the hypergeometric func

tion, and the bounds for the other sectors follow analogousl
D. Interference and noise The result is obtained by the substitutisn= 0R“. (The
Power control is needed to overcome the noise, whi(t,'ljiSt terms in (II) and{12) are the ones pertaining todhe .
term calculated here.) (c) For the third bound, we use aserie

complicates the analysis since it affects the interferatise . _ X
expansion of the hypergeometric functionaat= 0:

tribution. In static networks, a further difficulty is thanhly

the fading states vary in an iid fashion, whereas power obntr B > 2 kL =0,

is static over time, as the distance to the nearest neighbor Hs(x) = Z 2+ ka© Z J+ kY (67)
stays constant. (The situation would change if information F=0 ) h=0

on the channel state was also available at the transmittdfyncated ak =1, we obtain the bound

We resorted to deriving a reasonably tight lower bound by Hs(—t/6) > 1 2t 1 t>0, (68)

replacing the interferers’ actual powers by their averamas T 2+4a 0
invoking Jensen’s inequality. which, when used if{12), yields the result. [ ]
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