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The Local Delay in Poisson Networks
Martin Haenggi,Senior Member, IEEE

Abstract—Communication between two neighboring nodes is a
very basic operation in wireless networks. Yet very little research
has focused on thelocal delay in networks with randomly placed
nodes, defined as the mean time it takes a node to connect to its
nearest neighbor. We study this problem for Poisson networks,
first considering interference only, then noise only, and lastly
and briefly, interference plus noise. In the noiseless case,we
analyze four different types of nearest-neighbor communication
and compare the extreme cases of high mobility, where a new
Poisson process is drawn in each time slot, and no mobility,
where only a single realization exists and nodes stay put forever.
It turns out that the local delay behaves rather differently in the
two cases. We also provide the low- and high-rate asymptotic
behavior of the minimum achievable delay in each case. In the
cases with noise, power control is essential to keep the delay
finite, and randomized power control can drastically reducethe
required (mean) power for finite local delay.

Index Terms—Poisson point process, stochastic geometry, ad
hoc networks, interference, delay, power control.

I. I NTRODUCTION

Delay and reliability are important performance indicators
that measure the quality-of-service provided by a network;
they complement the quantity-of-service, usually denotedby
throughput or capacity. The triplet of throughput, delay, and
reliability (TDR) forms a comprehensive metric for a net-
work’s capability to deliver information [1]. The focus of this
paper is thelocal delay, defined as the mean time (in numbers
of time slots) until a packet is successfully received over a
link between nearest neighbors. In terms of the TDR metric,
the local delay spans a plane in the TDR space where the
reliability is set to 100% and the delay is a function of the
throughput or rate. It lower bounds all other types of delays
such as single-hop, end-to-end, or round-trip delays, which
makes it a fundamental quantity to study. If it is infinite, there
is little hope that the network provides any useful service to
its users. Furthermore, the local delay is a sensitive indicator
of the diversity present in a network model; in particular, it
measures the interference correlation in network models with
interference.

Focusing on the case where nodes are distributed on the two-
dimensional plane as a homogeneous Poisson point process
(PPP), we tackle the problem in three steps. First, we analyze
the local delay in a Poisson network with interference but
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without noise. The channel fading and the transmit/receive
states are assumed iid over time, while the nodes are either
highly mobile, in which case a new realization of the PPP
is drawn in each time slot, or completely static, in which
case only a single realization exists, and the nodes stay fixed
forever.

Secondly, we ignore interference but consider random link
distances. so that the “network” is just a collection of inde-
pendent (orthogonal) links. We take the distances to be static
(but random) and derive the mean delay (ensemble average)
over the links for different types of fading and power control
strategies.

Thirdly, we combine noise and interference and present
bounds on the local delay.

A mathematical framework for the analysis of the local
delay in Poisson networks is provided in [2, Sect. 17.5] and
[3], where it was first observed that the local delay may be
infinite for certain network parameters; this phenomenon is
called wireless contention phase transition. We build on this
framework and our preliminary work in [4], [5] to obtain
concrete results for the local delay for all four basic types
of nearest-neighbor transmission.

Specifically, the main contributions of this paper are:

• Closed-form expressions or bounds on the local delay
for the most practical scenarios, including the case where
both interference and noise are considered

• Derivation of the optimum ALOHA transmit probabilities
and minimum achievable local delays

• Derivation of the delay asymptotics in the low- and high-
rate limits

• A systematic comparison of the performance of the four
cases of nearest-neighbor communication

• Analysis of the effects of random power control in noise-
limited networks

II. H IGHLY MOBILE AND STATIC NETWORKS WITHOUT

NOISE

A. Network Model

We consider a marked Poisson point process (PPP)Φ̂ =
{(xi, txi)} ⊂ R

2 ×{0, 1}, whereΦ = {xi} is a homogeneous
PPP of intensityλ, and the markstxi are iid Bernoulli with
P(t = 1) = p = 1 − q. A mark of 1 indicates that the node
transmits whereas a0 indicates listening. The large-scale path
loss is assumed to berα over distancer. A transmission from
a nodex to a nodey is successful if the signal-to-interference
ratio (SIR) exceeds a thresholdθ. For a transmission from
x ∈ Φ to y ∈ Φ, the SIR is

SIRxy ,
Sxy

Ixy
,
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whereSxy , txhxy‖x − y‖−α and

Ixy ,
∑

(z,tz)∈Φ̂\{(x,tx)}

tzhzy‖z − y‖−α .

This definition implies that the transmit powers are normalized
to 1, that I = ∞ if ty = 1 (y is itself transmitting), and
SIR = 0 if tx = 0. The power fading coefficientshxy are
exponential with mean1 and iid for all x, y ∈ Φ and over
time (block Rayleigh fading). Time is slotted, and transmission
attempts are synchronized.

The (normalized) rate of transmission (or spectral effi-
ciency) R is, slightly optimistically, assumed to be related
to the thresholdθ by R = log2(1 + θ).

We consider two extremes cases of mobility, thehigh-
mobility case, where a new realization of̂Φ is drawn in each
time slot, and thestatic case, whereΦ (the node locations)
stays fixed forever. The main event of interest is the event
that the typical node, situated at the origino , (0, 0) ∈ R

2,
successfully connects to its nearest neighbor in a single time
slot. In the high-mobility case, we denote this event byC. In
the static case, we first focus on the success eventconditioned
on the point processΦ, which we callCΦ. Success events in
different time slots are independent, so there is no need to add
a time index to this event. Conditioning onΦ having a point
at the origino implies that the relevant probability measure
is the Palm probabilityPo, and that expectations that involve
the point process are taken with respect toP

o and denoted
by E

o [6]. The partner nodey of the origin will be chosen
according to one of the four basic cases of nearest-neighbor
communication: nearest-receiver transmission (NRT), nearest-
neighbor transmission (NNT), nearest-transmitter reception
(NTR), and nearest-neighbor reception (NNR).

In the highly mobile case, we havePo(C) = P
o(SIRuv > θ)

and in the static case,Po(CΦ) = P
o(SIRuv > θ | Φ), where

u = o, v = y for NRT and NNT, andu = y, v = o for NTR
and NNR. The link distanceR = ‖u−v‖ is itself a (Rayleigh
distributed) random variable. The local delayD is the mean
number of slots needed until success. Formally,

NRT, NNT: D , E
o
(

min
{

k ∈ N : 1k

(

o → NN(o)
)

})

NTR, NNR: D , E
o
(

min
{

k ∈ N : 1k

(

NN(o) → o
)

})

,

where1k(x → y) = 1 if SIRxy > θ in time slot k, and 0
otherwise.NN(o) denotes the origin’s nearest node (for NNT
and NNR), its nearest receiver (NRT), or its nearest transmitter
(NTR).

In the high-mobility case, the local delay is simplyP
o(C)−1;

in the static case, the success events are only conditionally
independent, hence the conditional local delay is geometric
with meanP

o(CΦ)−1, and the expectation with respect to the
point process yields the local delay:

High-mobility: D = P
o(C)−1 (1)

Static: D = E
o
Φ

(

1

Po(CΦ)

)

(2)

In our approach for the static case, we will decondition on
Φ in two steps, first with respect to the interferers and then

with respect to the link distance. This method can be used
whenever conditioning onΦ also fixes the link distance. The
static NRT and NTR cases as described above do not meet this
requirement, as the link distance would also depend on who
is transmitting. So we will make a small amendments to the
network model in these cases, namely a fixed partitioning of
the point process into point processes of potential transmitters
and receivers of the appropriate densities.

ConsideringD as a function of the transmit probabilityp,
we define theminimum delayas

Dmin , min
p

{D(p)} ,

the optimum transmit probabilityas

popt , arg min
p

{D(p)} ,

and thecritical transmit probabilityas

pc , sup{p : D(p) < ∞} .

An important parameter that will be used throughout the paper
is the spatial contentionγ, introduced in [7] and generalized
in [8], [9], which measures a network’s capability of spatial
reuse by quantifying how quickly the success probability ofa
transmission (over fixed distance) decreases when the density
of interfering nodes is increased. It is defined as the slope of
the outage probability of a transmission over unit distanceas
a function of the interferer density at density zero [8, Def.2].
It depends on the path loss exponentα, the SIR thresholdθ,
and the network geometry. For a transmission over distance
R in a Poisson field of interferers with Rayleigh fading, the
success probability is [10]

ps|R = exp(−C(α)θ2/αpλR2) , (3)

where C(α) , 2π2/(α sin(2π/α)). Asymptotically, as the
transmitter densityλp → 0, ps|1 ∼ 1 − C(α)θ2/αpλ, thus
the spatial contention is

γ = θδC(α) = θδπ
πδ

sin(πδ)
= θδπΓ(1 + δ)Γ(1 − δ) , (4)

whereδ , 2/α. For α = 4, γ =
√

θπ2/2, and for α = 3,
γ = θ2/34π2/(3

√
3). As α ↓ 2, γ → ∞, since the interference

is infinite a.s. forα ≤ 2.
The asymptotic regimes considered areθ → 0 andθ → ∞,

or, equivalently,R → 0 and R → ∞. Since γ increases
monotonically withθ, we may also writeγ → 0 andγ → ∞.

B. High-Mobility Networks

To analyze the four cases of nearest-neighbor transmission,
we need the following lemma:

Lemma 1 Let H ⊂ R
2 and

I =
∑

(x,tx)∈Φ̂

txhx‖x‖−α . (5)

The conditional Laplace transform ofI given thatH does not
contain any nodes ofΦ is

LI(s | H ∩ Φ = ∅) = exp

(

−λp

∫

R2\H

s

s + ‖x‖α
dx

)

. (6)
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The success probability for a transmission over distanceR is
obtained by replacings by θRα, i.e., P

o(C | R) = LI(θR
α |

H ∩ Φ = ∅).

Proof: The conditional Laplace transform follows from
the probability generating functional for PPPs [6]. The success
probability is the Laplace transform evaluated atθRα, since
for Rayleigh fading, givenR,

P(SIR > θ) = P(hR−α > θI) = EI exp(−θRαI).

The distributional properties of the interferenceI, defined
in (5), do not depend on where it is measured. IfH = ∅, the
success probability of a transmission between two nodes at
distanceR is (cf. (3))

P
o(C | R)=pqE

o(e−θRαI)=pqLI(θR
α)=pq exp(−γpλR2) ,

1) Nearest-receiver transmission (NRT):In this case, the
destination node is always listening, so

P
o(CNRT | R) = p exp(−γpλR2) .

Since the point process of receivers has intensityλq, the link
distanceR is is Rayleigh distributed with mean1/(2

√
qλ)

[11], i.e., fR(r) = 2qλπr exp(−qλπr2). Hence

P
o(CNRT) = E

(

P
o(CNRT | R)

)

=
pπ

π + γpq−1

and
DNRT =

1

Po(CNRT)
=

1

p
+

γ

πq
. (7)

The optimum transmit probability is

pNRT
opt =

π −√
πγ

π − γ
. (8)

The local delay is always finite forp ∈ (0, 1), so pc = 1 (as
for all high-mobility cases). The minimum delay only depends
on the spatial contention:

DNRT
min = 1 + 2

√

γ

π
+

γ

π
. (9)

2) Nearest-neighbor transmission (NNT):Let y be the
typical node’s nearest neighbor andR = ‖y‖. In this case
R is distributed asfR(r) = 2λπr exp(−λπr2), and having
the nearest neighbor at distanceR implies that there is no
interferer in the ball Bo(R) centered ato with radius R.
So y sees the conditional interference, conditioned on the
disk Bo(R) being empty, and the interference observed at the
receiver is smaller than at a typical node, or, in other words, the
spatial contention is smaller. The following theorem provides
bounds on the absolute gain in the spatial contention:

Theorem 1 The success probability of nearest-neighbor
transmission givenR is

P
o(C | R) = pq exp(−γNNTpλR2) , (10)

with γNNT denoting the spatial contention for nearest-
neighbor transmission.γNNT is bounded as follows:

(a) γ > γNNT > γ − π, whereγ is the unconditioned spatial
contention given in(4). Also, limθ→∞ γ − γNNT = π.

(b) Letting δ = 2/α and denoting byHδ(x) the Gauss
hypergeometric function

Hδ(x) , 2F1(1, δ; 1 + δ; x) ,

we have

γ − γNNT <
2π

3
Hδ(−2α/θ) +

π

4
Hδ(−3α/2/θ)+

π

6
Hδ(−2α/2/θ) +

π

6
Hδ(−1/θ) (11)

γ − γNNT >
π

2
Hδ(−3α/2/θ) +

π

6
Hδ(−2α/2/θ)+

π

12
Hδ(−1/θ) (12)

(c) A lower bound without special functions is

γ−γNNT >
3π

4
− π

6θ(2 + α)

(

2 · 31+α/2 + 21+α/2 + 1
)

.

(13)

The proof is provided in the appendix.
Remarks:

(i) By construction, the simpler lower bound (13) is looser
than (12).

(ii) Since H1(x) = − log(1 − x)/x and H0(x) ≡ 1,
simplified expressions can be obtained for the cases
where α ↓ 2 (or δ ↑ 1) and α → ∞ (or δ ↓ 0),
respectively.

(iii) While the absolute gain in the spatial contention in-
creases withθ, the relative gain decreases withθ and
approaches1 as θ → ∞, see Fig. 1 (a). The plot shows
that for smallθ, γNNT ≈ γ/2 (for α = 4). In fact, the
upper bound on the difference (11) results in a lower
bound on the ratioγNNT/γ that approaches1/2 as
θ → 0. This follows from

Hδ(−x) ∼ x−δ πδ

sin(πδ)
, x → ∞ . (14)

In particular, forα = 4 (δ = 1/2),

lim
θ↓0

H1/2(−t/θ)√
θ

=
π

2
√

t
.

Using this limit in (11) yields γNNT/γ =
γNNT/(

√
θπ2/2) > 1/2. Applied to (12), we obtain

γNNT/γ < 2/3 (upper bound in Fig. 1 (a)).
(iv) The qualitative behavior of the spatial contention canalso

be explained as follows: For smallθ, only the closest
interferers are relevant. The interference-free region (or
hole) H essentially removes half of them. For largeθ,
a large area around the receiver must be interferer-free,
much larger thanH. So the relative gain is small, while
the absolute gain is just proportional to the area of the
hole.

The local delay follows from integration with respect toR,
which is Rayleigh with mean1/(2

√
λ) in this case:

DNNT =
pγNNT + π

πpq
=

1

pq
+

γNNT

πq
(15)

The delay is composed of two parts, theaccess delay1/(pq),
which is the time it takes for the transmitter to transmit andthe
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Fig. 1. Relative (a) and absolute (b) values of the spatial contention in the
high-mobility case forα = 4. The bounds are obtained from (11) and (12).
In the left figure, the bounds reach1/2 and2/3, respectively, asθ → 0.

receiver to listen, and theservice time, which is proportional
to the spatial contentionγNNT. Compared with the nearest-
receiver case, we observe the following:

Corollary 1 For a fixed p and finite θ, DNRT < DNNT.
Asymptotically, the delays are identical,i.e., DNRT ↑
DNNT as θ → ∞.

Proof: The maximum differenceγ−γNNT is π, achieved
as θ → ∞. Sincep(γ − π) = pγ + πq, the two delays are
then identical. For finiteθ, the difference is smaller and thus
DNRT < DNNT.

So at high rates, the gain in the spatial contention in the NNT
case is exactly offset by the fact that the nearest neighbor
is only listening with probabilityq. The optimum transmit
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Fig. 2. Optimum transmit probability (a) and minimum achievable local
delay (b) in the high-mobility case forα = 4.

probability is

pNNT
opt =

√

1 + γNNT/π − 1

γNNT/π
, (16)

and the minimum delay is

DNNT
min =

g2

g + 2(1 −√
1 + g)

, (17)

whereg = γNNT/π. As θ → 0,

DNNT
min ∼ 4 +

2γNNT

π
∼ 4 + cγ/π , (18)

where c ∈ (1, 4/3). Fig. 2 shows the optimum transmit
probabilityp and the minimum delay. Asθ → 0, the optimum
transmit probability for NRT approaches1, whereas for NNT,
it approaches1/2. The difference is due to the fact that the
receiverdensity is less critical in NRT. In the delay plot, it is
observed thatDNNT > 4, since1/(pq) is at least4.
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When comparing the NRT and NNT schemes, it also needs
to be factored in that the distance to the nearest receiver isa
factor q−1/2 larger than the distance to the nearest neighbor.
So a significant advantage of NRT is that more distance is
covered. It is, however, an opportunistic scheme since the
receiver may change from slot to slot, and it can therefore not
be used in standard routing algorithms, where routing tables
are maintained at relay nodes.

3) Nearest-transmitter reception (NTR):Next we consider
the case where the typical node ato receives from its nearest
transmitter, sayy. This implies that there are no interferers
in the disk of radiusR = ‖y‖ around the receiver. So in
this case, we apply Lemma 1 withH = Bo(R). Using the
hypergeometric function defined in Thm. 1,

2π

∫ R

0

rs

rα + s
dr = πR2Hδ(−Rα/s) ,

so γNTR = γ − πHδ(−1/θ) and

P
o(CNTR | R) = q exp

(

−λpπR2(γ − πHδ(−1/θ))
)

.

As θ → ∞, the gain in the spatial contention approachesπ,
as in the NNT case, henceγNTR ∼ γ − π ∼ γ. This is to
be expected, since for largeθ, an area much larger than the
disk of radiusR needs to be free of interferers, so it does not
matter whether the disk is centered at the receiver or translated
by R. As θ → 0, it follows from (14) thatπHδ(−1/δ) → γ,
which indicates that the spatial contention vanishes faster than
θδ. In fact,

γNTR ∼ 2π

α − 2
θ =

δπ

1 − δ
, θ → 0 . (19)

The two asymptotic regimes are clearly visible in Fig. 1 (b)
in the caseα = 4. For θ < 1, the slope is about one (or
10dB/decade), whereas forθ > 1 it is about 5dB/decade. For
α = 4, the success probability simplifies to

P
o(CNTR | R) = q exp

(

−λpπR2
√

θ

[

π

2
− arctan

(

1√
θ

)])

.

(20)
In the NTR case, R is distributed as fR(r) =

2πpλr exp(−pλπr2). Integration and inversion yields

DNTR =
1

q
+

γNTR

πq
, (21)

which is monotonically decreasing asp ↓ 0. This indicates
that, without noise, the benefit of reducing the interferer
density compensates for the increased transmission distance.
(For p = 0, the delay is undefined since there is no nearest
transmitter in this case.) For smallθ, we have the particularly
simple result

DNTR
min ∼ 1 +

2

α − 2
θ = 1 +

δ

1 − δ
θ , θ → 0 .

4) Nearest-neighbor reception (NNR):This case is quite
similar to NTR, with the difference that the nearest neighbor
is at distance1/(2

√
λ) on average and that the delay increases

by a factor1/p since the nearest neighbor only transmits with
probabilityp. So γNNR = γNTR, and

DNNR =
1

pq
+

γNNR

πq
.

The expression has the same form as the one for NNT, the only
difference being the spatial contention. So the optimump and
the minimum delay follow from (16) and (17), respectively,
with γNNR instead ofγNNT. As θ → 0,

DNNR
min ∼ 4 +

4

α − 2
θ = 4 +

2δ

1 − δ
θ . (22)

The results for all four cases are shown in Fig. 2.

C. Static Networks

In the static case, only a single realization of the point
process is drawn. Comparing (1) and (2), we obtain a bound
on the local delay in the static case by Jensen’s inequality:
D > P(C)−1. As we shall see, this bound is often very loose.
In particular, the actual delay may be infinite while the lower
bound is always finite. The reason is the correlation of the
interference in the static case [12]. To analyze static networks,
we need a lemma similar to Lemma 1:

Lemma 2 LetI denote the interference as defined in(5), H ⊂
R

2, and let

LI(s | Φ,H) = E
o(exp(−sI | Φ, Φ ∩H = ∅))

be the conditional Laplace transform givenΦ and given that
there is no transmitter inH. Then

E
o

(

1

LI(s | Φ,H)

)

= exp

(

λ

∫

R2\H

ps

sq + ‖x‖α
dx

)

,

(23)

which forH = ∅ evaluates to

= exp

(

pλC(α)sδ

q1−δ

)

,

with C(α) as defined in(4). The local delay conditioned on
a link distanceR is obtained by replacings by θRα.

Proof: Follows from [2, Lemma 17.30 and Prop. 17.31].
1) Nearest-receiver transmission (NRT):Here we consider

the case where the partitioning into potential transmitters and
receivers is fixed,i.e., the transmitters are chosen fromΦ with
probabilityp, as before, but there exists another, independent
PPP of receiversΦr of intensity λr = qλ. So, in this model,
the nodes inΦ that do not transmit are not available as
receivers. This assumption maintains the same density of
(actual) transmitters and receivers as in the other models.As
pointed out at the beginning of this section, the reason for
this slightly modified model is that the NRT scheme where
transmitters and receivers are chosen dynamically from the
same point process cannot be analyzed in the same way since
the link distance would not be fixed ifΦ was fixed.

Theorem 2 For independent point processeŝΦ of intensity
λ of potential transmitters andΦr of intensityλr = qλ of
receivers, letDNRT be the local delay from the typical node
in Φ to its nearest neighbor inΦr. We have

DNRT =
1

p

π

π − γpqδ−2
, pqδ−2 < π/γ (24)
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and the boundsDNRT < DNRT < D
NRT

where

D
NRT

=
1

p

π

π − γpq−2
, γp < q2π (25)

DNRT =
1

p

π

π − γpq−1
, γp < qπ . (26)

Proof: Replacings in (23) by θRα yields the success
probability given a link distanceR. SinceC(α)(θRα)2/α =
γR2, deconditioning onR yields

DNRT =
1

p
2πqλ

∫ ∞

0

exp

(

λpγr2

q1−δ

)

r exp(−πqλr2)dr ,

(27)

which evaluates to (24). Sinceδ−2 ∈ (−2,−1), we obtain up-
per and lower bounds for the delay by replacing the exponent
δ − 2 by −1 and−2, respectively.
Remarks.

(i) The upper delay bound becomes tight asα increases (δ ↓
0), whereas the lower delay bound becomes tight asα ↓ 2
(δ ↑ 1).

(ii) Interestingly, the lower boundDNRT is the delay that
would result from using the unconditional Laplace trans-
form of I instead of the conditional one (23). This would
be the delay resulting from a network model with highly
mobile interferers but static (yet random) link distance
R.

The local delay together with the bounds are illustrated in
Fig. 3.

The condition for a finite upper delay boundD yields a
lower bound forpc, and vice versa. Therefore,pc > pc > p

c
for

pNRT
c =

π

γ + π
; pNRT

c
= 1 +

γ

2π

(

1 −
√

1 +
4π

γ

)

. (28)

SincepNRT
c ∼ π/γ and pNRT

c
∼ π/γ as γ → ∞, we have

pNRT
c ∼ π/γ. For the caseα = 4, for which δ − 2 = −3/2 is

exactly in between the two extremes−2 and−1, pc can be
calculated in closed form as the solution to a cubic equation.
It lies quite exactly in between the two bounds.

Asymptotically, asγ → 0 (or θ → 0), the exactpc can
be obtained from(1 − pc)

2−2α = (γ/π)α, sincepc → 1 as
γ → 0. This yields

pNRT
c ∼ 1 −

(γ

π

)
1

2−δ

, γ → 0 .

Minimizing the lower boundDNRT(p) yields an upper
bound on the optimump:

pNRT
opt = 1 −

√

γ

γ + π
.

HencepNRT
opt ∼ π/(2γ) as γ → ∞. Minimizing the upper

bound yields a solution of a cubic equation with the same
asymptotic behavior, from which we conclude thatpNRT

opt ∼
π/(2γ) = pNRT

c /2 asymptotically. For finiteγ, this is an upper
bound onpNRT

opt , which is quite tight as soon asγ > 13dB.
So a good rule of thumb is to choose the transmit probability
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Fig. 3. The local delay for the static NRT case as a function ofthe channel
access probabilityp for α = 4 andθ = 1, 10, 100. The dashed lines are the
upper and lower bounds (25) and (26), respectively.

slightly smaller thanπ/(2γ). For α = 4, this isp / 1/(π
√

θ)
if θ > 10. As γ → 0, we have

pNRT
opt ∼ 1 −

√

γ

π
; pNRT

opt
∼ 1 −

(

2γ

π

)1/3

, (29)

so there is a gap between the bounds.
The expression for the minimum delayDNRT

min = D(popt) is
not very compact and therefore omitted. Asymptotically, since
popt ∼ π/(2γ),

DNRT
min ∼ 4

(

1 − 1

α
+

γ

π

)

, γ → ∞ . (30)

On the other hand, asγ → 0, the minimum delay is smaller
than the delay achieved ifp is chosen from either of the two
bounds (29). From the series expansions of the two resulting
expressions,

DNRT
min = 1 + O(γmax{1/3,1/α}) , γ → 0 . (31)

2) Nearest-neighbor transmission (NNT):Applying
Lemma 2 to the case whereH = B(R,0)(R) gives for the
local delay givenR

DNNT
R =

1

pq
exp

(

λpR2(γ/q1−δ − κNNT)
)

,

where

κNNT =

∫

H

s

sq + ‖x‖α
dx .

Apart from the additional factorq in the denominator, this is
the same integral as in the highly mobile NNT case, cf. (66).
Using the hypergeometric function, we can express the integral
in polar form as

∫ b

0

rs

sq + rα
dr =

b2

2q
Hδ(−bα/(sq)) . (32)
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Theorem 3 The local delay of nearest-neighbor transmission
in static networks givenR can be expressed as

DNNT
R =

1

pq
exp(λpR2(γ/q1−δ − κNNT)) , (33)

whereκNNT depends onq, δ, andθ and accounts for the hole.
κNNT is bounded as follows:

(a) 0 < κNNT < π/q, and limθ→∞ κNNT = π/q.
(b) Lettingθ′ = θq, we have

qκNNT <
2π

3
Hδ(−2α/θ′) +

π

4
Hδ(−3α/2/θ′)+

π

6
Hδ(−2α/2/θ′) +

π

6
Hδ(−1/θ′) (34)

qκNNT >
π

2
Hδ(−3α/2/θ′) +

π

6
Hδ(−2α/2/θ′)+

π

12
Hδ(−1/θ′) (35)

(c) A lower bound without special functions is

qκNNT >
3π

4
− π

6θ′(2 + α)

(

2 · 31+α/2 + 21+α/2 + 1
)

.

(36)

Proof: The proof is similar to the proof of Thm. 1. The
form of the expression (33) follows from Lemma 2 and (32).
The bounds (a) follow fromlims→∞ A(R, s, q) = πR2/q. The
bounds (b) and (c) follow from (32) and the inner and outer
bounds on the hole shown in Fig. 11.
Remarks.

(i) As θq → 0, it follows from (14) that

π

3
θδqδ−1 πδ

sin(πδ)
< κNNT <

π

2
θδqδ−1 πδ

sin(πδ)
,

or
1

3

γ

q1−δ
< κNNT <

1

2

γ

q1−δ
. (37)

So the gain due to the hole is asymptotically between a
factor1/3 to 1/2 in the exponent, as in the highly-mobile
NNT case.

(ii) Better bounds that do not contain special functions can
be obtained by including more terms from the expansion
(67) of the hypergeometric function.

Deconditioning onR yields the local delay

DNNT =
1

pq
· π

π − p(γ/q1−δ − κNNT)
. (38)

The bounds on the local delay obtained from (34) and (35)
are shown in Fig. 4.

Due to the different exponents ofp and q and the de-
pendence ofκ on p, (38) does not lend itself easily for the
derivation of the optimum transmit probability and minimum
achievable delay. Asymptotically, as in the NRT case, it can
be shown thatpNNT

c ∼ π/γ. This is not surprising since the
relative effect of the hole vanishes asγ increases.

For the optimump, settingδ = 0 andκNNT = π/q yields

pNNT
opt,θ→∞ =

1

2

π

γ
. (39)
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Fig. 4. Bounds on the local delay for the static NNT case as a function of the
channel access probabilityp for α = 4 and θ = 1, 10, 100. The bounds are
obtained by inserting the bounds onκNNT in Thm. 3 in the delay expression
(38).

And for δ = 1,

pNNT
opt,θ→∞ =

1

3

(

1 −
√

1 − 3π

γ

)

. (40)

Again the scaling is the same, sopNNT
opt ∼ π/(2γ). Numeri-

cally obtained bounds onpNNT
opt and the asymptotic expressions

are illustrated in Fig. 5. Inserting the asymptotic value inthe
delay expression, we find

DNNT
min ∼ 4γ

π
, γ → ∞ . (41)

On the other hand, for smallγ (small θ), the limiting value
of γ/q1−δ − κNNT is less than2γ/(3q1−δ) by (37). Setting
δ = 0 yields the simple asymptotic lower bound

pNNT
opt,θ→0

=
3π

6π + 2γ
. (42)

As γ → 0, DNNT
min = 4 + Θ(γ). The numerically obtained

DNNT
min and its asymptotic behavior are shown in Fig. 6.
Generally, asγ → ∞, there is no difference between

the NRT and NNT in terms of interference, but only in the
availability of the destination node as a receiver and in the
link distance distribution.

3) Nearest-transmitter reception (NTR):Similarly to the
static NRT case, we pre-partition transmitters and receivers.
In this case, receivers do not matter (except for the typical
receiver considered). We take a fixed point process of transmit-
ters of intensityλp, which implies there is no actual ALOHA
involved, or, in terms of the marked point processΦ̂, we take
the marks to be fixed also.

Recall from the high-mobility case that here the interferer-
free hole is centered at the receiver, so we apply Lemma 2
with H = Bo(R). From (32) we have

DNTR
R =

1

q
exp

(

λpR2(γ/q1−δ − κNTR)
)

,
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Fig. 5. The optimum transmit probability for the staticNNT case as a
function of the SIR thresholdθ for α = 4. The numeric bounds are obtained
by numerically optimizing overp when the upper and lower bounds from
Thm. 3 for κNNT are used. The lower and upper bounds for largeθ are the
ones in (39) and (40), respectively. The asymptotic lower bound asθ → 0 is
from (42).
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Fig. 6. The minimum local delay for the static NNT and NNR cases as a
function of the SIR thresholdθ for α = 4. The curves are very close; at small
θ, the delay for NNT is slightly larger. The asymptote is4γ/π, per (41), in
both cases. It is quite tight as soon asθ > 1.

with κNTR = π
q Hδ(−1/(θq)). For α = 4, this simplifies to

DNTR
R =

1

q
exp

(

λpπR2

√

θ

q

[

π

2
− arctan

(

1√
θq

)]

)

.

(43)
From (23) follows that, for generalα,

γ/q1−δ − κNTR ∼ 2π

α − 2
θ , θ → 0 . (44)

Deconditioning onR yields

DNTR =
1

q

π

π − γ/q1−δ + κNTR
, γ/q1−δ − κNTR < π .

(45)
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Fig. 7. The local delay for the static NNR case as a function ofthe channel
access probabilityp for α = 4 and θ = 1, 10, 100. The delay is given in
(48).

Since the delay is monotonically decreasing asp ↓ 0 (and thus
q ↑ 1),

DNTR
min =

π

π − γ + κNTR
=

1

1 + Hδ(−1/θ)− γ/π
. (46)

What is interesting about this case is that there is ahard
phase transition in the sense that a finite local delay cannotbe
achieved for anyp as soon asθ exceeds some critical value
θc, determined by1+Hδ(−1/θc)−γ/π = 0. While reducing
p reduces the interference, it also increases the link distance
in proportion top−1/2, and the net gain is negative ifθ is
larger thanθc. For α = 4, θc ≈ 1.351. So, the maximum rate
that can be supported for finite local delay isRmax ≈ 1.2333.
As α decreases,θc decreases also. Sinceα < 4.95 in most
environments, the rate supported by NTR cannot exceed 4/3
bits/s/Hz. Therefore the high-θ asymptotics do not exist. The
NTR case is relevant for the downlink of cellular networks
when mobile users connect to the nearest base station [13].
For smallθ, it follows from (46) and (44) that

DNTR
min ∼ 1 +

2

α − 2
θ = 1 +

δ

1 − δ
θ , θ → 0 . (47)

4) Nearest-neighbor reception (NNR):In this case, pre-
partitioning is unnecessary. As in the highly mobile case,
the difference to NTR is the factor1/p in the delay
and the link distance distribution. We haveDNNR

R =
1
pq exp

(

λpR2(γ/q1−δ − κNNR)
)

with κNNR = κNTR, and
deconditioning yields

DNNR =
1

pq
· π

π − p(γ/q1−δ − κNNR)

for p(γ/q1−δ − κNNR) < π . (48)

This expression has the same form as (38), so for largeθ, all
bounds derived in the NNT section apply. For smallθ, the
difference betweenκNNT and κNNR becomes significant, as
in the highly mobile case. Fig. 7 shows the local delay as a
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Fig. 8. The optimum transmit probability for the static NNR case as a
function of the SIR thresholdθ for α = 4. The numeric curve is obtained
by numerically optimizing overp. The lower and upper bounds for largeθ
are the ones in (39) and (40), respectively (same as for the NNT case). The
asymptotic lower bound asθ → 0 is from (50).

function of p. Certainly pNNR
opt → 1/2 as θ → 0, hence we

have

DNNR
min ∼ 4

(

1 +
δ/2

1 − δ
θ

)

. (49)

For α = 4, the sharper expression

pNNR
opt ∼ 1

3

(

1 +
1

θ
−
√

1 − 1

θ
+

1

θ2

)

, θ → 0, (50)

can be derived. In this case,DNRT
min ∼ 4 + 2θ.

The numerically optimized transmit probability is shown in
Fig. 8, together with the asymptotic curves, and the resulting
minimum delay is plotted in Fig. 6.

D. Asymptotic Delays

We first summarize the results on the asymptotic delays in
a theorem.

Theorem 4 As θ → ∞, the minimum local delay in all four
highly mobile cases scales asγ/π or

Dmin ∼ θδ πδ

sin(πδ)
.

In the static NRT, NNT, and NNR cases, the scaling behavior
is 4γ/π or

Dmin ∼ 4θδ πδ

sin(πδ)
.

The exception is the static NTR case, where the delay becomes
infinite for all values ofp as soon asθ exceeds some critical
valueθc.

As θ → 0, the scaling laws of the minimum local delay are
listed in Table I.

Remarks.
(i) The benefits of the interferer-free disk around the trans-

mitter or receiver are apparent asθ → 0. Compared

High mobility Static
NRT 1 + 2

p

γ/π; 1 + Θ(θ1/α) 1 + O(γmax{1/3,1/α})

NNT 4 + cγ/π; 4 + Θ(θδ) 4 + Θ(γ); 4 + Θ(θδ)

NTR 1 + δ
1−δ

θ 1 + δ
1−δ

θ

NNR 4 + 2δ
1−δ

θ 4 + 2δ
1−δ

θ

TABLE I
SCALING BEHAVIOR OF THE MINIMUM LOCAL DELAY AS θ → 0.

WITHOUT A O OR Θ SYMBOL, THE ASYMPTOTIC RESULTS ARE SHARP,
i.e., “∼”. T HE CONSTANTc DEPENDS ONα AND ASSUMES VALUES

c ∈ (1, 4/3).

to NRT, where interferers can be located anywhere, the
delay scaling improves fromθ1/α to θ2/α for the NNT
case, where the hole is centered at the transmitter, and
further toθ for the NTR and NNR cases, where the hole
is centered at the receiver.

(ii) It does not matter for smallθ whether the nodes are static
or highly mobile when the disk around the receiver is
known to be interferer-free.

Expressed in terms of the transmission rate, the scaling
behavior can be summarized as follows.

Corollary 2 Irrespective of the level of mobility in the net-
work and the choice of the nearest-neighbor transmission
scheme, the minimum local delay scales at high rates as

Dmin = Θ(2δR) , R → ∞ .

Again the exception is the staticNTR case. AsR → 0,

Dmin = K + O(R1/α) and Dmin = K + Ω(R) ,

whereK = 1 for NRT and NTR andK = 4 for NNT and
NNR.

The constantK is the minimum achievable access delay. If one
of the nodes is known to be transmitting or listening,K = 1.

E. Delay Distributions

1) Highly mobile networks:Let ∆ be the delay random
variable, s.t.D = E(∆). The delay∆ is geometric, since
each transmission attempt is independent. For nearest-receiver
transmission (NRT),

P(∆NRT = k) = (1 − ξ)k−1ξ , ξ =
πp

π + γp/q
.

2) Static networks:Let D(R) be the local delay as a
function of the link distance random variableR.

For NRT, P(R2 ≤ x) = 1 − exp(−λπqx), hence in the
static case, the delayD(R) has a continuous distribution with
a heavy tail:

P(DNRT(R) ≤ x) = 1 −
(

1

xpq

)

πq2−2/α

pγ

, x ≥ 1/(pq) .

(51)
In any case DNRT(R) is finite, but the local delay
ER(DNRT(R)) does not exist ifπq2−2/α ≤ pγ, which
recovers the condition in Thm. 3. While the distribution (51)
is not the delay distribution, since it includes averaging over
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the point process (given the link distance), it indicates that
the delay distribution is fundamentally different in the static
than in the highly mobile case in two aspects: It is continuous,
and it has a heavy tail. Both are consequences of the temporal
dependence of the transmission success events, as analyzedin
[12].

III. STATIC NETWORKS WITHOUT INTERFERENCE

In this section, we consider noise but not interference. This
scenario is appropriate if the links use orthogonal channels or,
more generally, if the distance between concurrent transmitters
is much larger than the distance of the typical link. The
resulting network is a collection of independent wireless links.

A. System Model

The links have random distances that are spatially iid but
temporally fixed or static, and they are subject to fading that
is iid across both space and time. In the presence of noise, the
transmit power, denoted byP , becomes relevant. Focusing on
a single link, the received power isPr = PhR−α, whereh
is the (power) fading coefficient andR is the link distance.
We will allow h to be more general than Rayleigh fading
in this section, but always iid temporally and across links.
The transmission is assumed successful ifPr > θ for some
thresholdθ that is proportional to the noise power. GivenR,
the success probability is

ps|R = P(h > θRα/P ) = 1 − Fh(θRα/P ) ,

whereFh(x) = P(h ≤ x) is the cumulative fading distribution
function. Since each node has a pre-defined partner, we referto
the mean delay until success simply as the mean delay instead
of the local delay. We also ignore channel access delays, which
are trivial in the interference-free case. The mean delay of
successful transmission, conditioned onR, is p−1

s|R. If R was
also temporally iid, the (unconditioned) mean delay would
simply be

D = 1/ER(ps|R) .

In this case, we could definẽh , hR−α and consider
the fading coefficient to bẽh, combining the distance and
fading uncertainties [14]. Here we focus on the case of fixed
R, in which case the mean delay is the ensemble average
D = ER(1/ps|R). This static case is more interesting and
practical.

B. The gamma/Rayleigh case

We first consider the case where the link distance is gamma
distributed, parametrized by an integern:

fRn(r) =
2

Γ(n)
(λπ)nr2n−1 exp(−λπr2) r ≥ 0, n ∈ N

We will refer to this link distance model as the gamma(n)
model. The fading is Rayleigh.

The gamma distribution models the case where a node
transmits to itsn-th nearest neighbor in a Poisson network
[11]. The mean isE(Rn) =

√

n/λ/2. The local delay as
a function of n is denoted byDn. We start with the case

n = 1, where the distance is Rayleigh distributed, and then
relate the local delay for generaln to the casen = 1.
The success probability of a transmission over distanceR1

is ps|R1
= exp(−θRα

1 /P ). For constantP , the mean delay

D1 = 2πλ

∫ ∞

0

exp(θrα/P )r exp(−λπr2)dr

diverges to infinity as soon asα > 2. For α = 2 and all
constantP , we have

D1 =
λπ

λπ − θ/P
. (52)

For α > 2, the transmit power needs to be chosen as
a function of the link distanceR1. So we will henceforth
assume that the transmitter knowsR1, which is a reasonable
assumption given that the distance remains constant forever,
and that it chooses its transmit power as

P , aRα−2+b
1 , (53)

where a the power control factor, and b the power con-
trol exponent. In this case, the success probability becomes
ps|R1

= exp(− θ
aR2−b

1 ), and the mean delay, now a function
of a andb, is

D1(a, b) = 2λπ

∫ ∞

0

exp

(

θ

a
r2−b

)

r exp(−λπr2)dr . (54)

For b < 0, the integral diverges for all values of the remain-
ing parameters (not enough power if the nearest neighbor is
far). Forb > 2, the integral diverges since there is not enough
power for receivers that are very close (R ≪ 1). This second
type of divergence is due to the singularity of the path loss law
at the origin. If a bounded path loss law is used, say(1+R)−α

(and the corresponding transmit power), the first exponential
in (54) is to be replaced byexp( θ

a (1 + r)2−b), which results
in a finite delay for allb ≥ 0. This integral does not admit
a closed-form expression, though. We will therefore continue
with the unbounded path-loss law and restrict ourselves to the
regime b ∈ [0, 2], knowing that for bounded path loss the
delay could be further reduced by choosingb > 2, i.e., by
over-compensatingfor the large-scale path loss.

1) b = 0: We obtain

D1(a, 0) =
λπ

λπ − θ/a
, θ < aλπ , (55)

which shows that the mean delay exhibits a phase tran-
sition even in the interference-free case. There is tension
between the delay given the distancer, call it D1(r), for
which log D1(r) = c2r

2, and the densityfR1
(r), for which

log fR1
(r) ∼ −c1r

2 asr → ∞. Hence the local delay is finite
if c1 > c2, which is exactly the condition in (55).

So, if the power control factora is large enough, the local
delay will be finite even if the power is adjusted in proportion
to Rα−2

1 only — thus the compensation for the large-scale path
loss does not have to be complete. In particular, forα = 2,
the transmit power can be chosen to be the same for all nodes,
irrespective of their nearest-neighbor distance (see (52)). As
a consequence, the distances do not need to be known at the
transmitter forα = 2.
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2) b = 2: With complete compensation for the large-scale
path loss, the integration in (54) becomes obsolete since the
success probability does not depend on the distanceR1, and
we obtain immediately

D1(a, 2) = exp

(

θ

a

)

. (56)

In this case, the delay increases exponentially inθ, or log D1 =
Θ(θ) asθ → ∞.

3) b = 1: Let t , θ

2a
√

λπ
. Then

D1(a, 1) = 1 +
θ exp(t2) (1 + erf t)

2a
√

λ

= 1 +
√

πt exp(t2)(1 + erf t) . (57)

So in this case,log D1 = Θ(θ2). We observe that there is no
phase transition forb = 1 or b = 2.

4) Generalb ∈ (0, 2]:

Proposition 1 (Rayleigh distance distribution and Ray-
leigh fading) If P ∝ Rα−2+b

1 , for any 0 < b ≤ 2, the links
can support arbitrary rates at finite mean delays.

Proof: Letting x , r2, the delay (54) is of the form

c1

∫ ∞

0

exp
(

− x(c1 − c2x
−b/2)

)

dx , c1, c2 > 0 .

For b ≤ 2, the integral can only diverge due to the upper
integration bound. To show that it converges even forb ≪ 1,
we compare the integrand withexp(−bx). We observe that

exp
(

−x(c1−c2x
−b/2)

)

< exp
(

−c1x

2

)

for x >

(

2c2

c1

)2/b

,

which proves finiteness of the delay for all0 < b ≤ 2, c1 > 0
and0 < c2 < ∞. c2 = θ/a is finite for all ratesR.

The delays will become extremely large asb → 0, a → 0,
and/orθ → ∞, but there is no phase transition.

For generaln, calculatingE exp( θ
aR2−b

n ), we find that the
delay increases geometrically inn:

Proposition 2 (Gamma distance distribution and Rayleigh
fading) For a transmit powerP = aRα−2

n , the mean delay
Dn is

Dn(a, 0) = (D1(a, 0))n , n ∈ N . (58)

If the path loss is fully compensated for,i.e., P = aRα
n,

Dn(a, 2) = exp(θ/a), irrespective ofn.

In this result, the transmit powers are adjusted according to
n, so the nearest-neighbor and the second-nearest-neighbor
delays, related by (58), are achieved using different powers.
If the transmit power is chosen according to the distance
to the second-nearest neighbor, the time to connect to the
nearest neighbor is bounded asD1(a, 0) <

√

D2(a, 0) and
D1(a, 2) < D2(a, 2) sinceR2 > R1 a.s.

The mean transmit power for generala, b is

aE(Rα−2+b
n ) = a(λπ)1−α/2−b/2 Γ(n + α/2 + b/2 − 1)

Γ(n)
.

(59)

C. The Rayleigh/Nakagami case

Here we restrict ourselves to Rayleigh (or gamma(1)) link
distances but allow the fading to be Nakagami-m.

Proposition 3 (Rayleigh distance distribution and Nakaga-
mi fading) With Nakagami-m fading, m ≥ 1/2, and b = 0,
the mean delay is finite if

θ <
aλπ

m
(60)

and infinite if

θ >
aλπ

m
. (61)

For b = 2, the mean delay is

D(a, 2) =
Γ(m)

Γ(m, mθ/a)
, (62)

whereΓ(·, ·) is theupperincomplete gamma function.

Proof: Let h be a Nakagami-m (power) fading random
variable. FromP(h < x) = Γ(m,mx)

Γ(m) follows

ps|R =
Γ(m, mθR2−b/a)

Γ(m)
,

and examining the range whereE(p−1
s|R) is finite yields the

result forb = 0. For b = 2, the delay is simplyp−1
s , which is

independent ofR.
Remarks.

(i) For b = 0 it is interesting to note that the phase transition
occurs at a value ofθ that is directly proportional to the
amount of fading or the variance of the fading random
variableh. The stronger the fading (the smallerm), the
higher the threshold can be chosen while still achieving
finite delay. If m > aλπ/θ, the delay becomes infinite
due to a lack of diversity.

(ii) The condition (60) generalizes the condition in (55) for
finite delay.

(iii) For b = 2, the delay is decreasing (to 1) with increasing
m if θ/a < 1 and increasing (diverging to∞) if θ/a > 1.
This is intuitive since without fading, the delay is1 if
θ/a < 1, in which case transmissions always succeed,
and infinity otherwise.

For b < 0 the mean delay is infinite. Hence we have the
following fact.

Fact 1 With Nakagami-m fading, power control is needed as
soon as the path loss exponent is larger than2. In other words,
any constant power is not sufficient to keep the mean delay
finite if α > 2.

D. Induced fading: Random power control

We focus on the case of Rayleigh distances. Comparing the
expression for temporally iid link distances,1/ER(ps|R), and
the expression for the static case,ER(1/ps|R), it is apparent
from Jensen’s inequality that much can be gained by temporal
fluctuations in the received power. With static link distances,
such an effect can be realized byrandom power control, even
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if no fading is present. It seems plausible that inducing fading
by randomly varying the transmit power would help keep the
mean delay finite. Since heavier-tailed distributions can be
expected to yield better results due to their larger variance,
we use the Pareto distribution given by

P(H > x) =

(

k − 1

kx

)k

, k > 1, x ≥ 1 − 1/k ,

parametrized with a single parameterk such thatE(H) = 1
for all k > 1. The transmit power is then chosen to be
P = HRα−2+b, with H temporally independently Pareto.
Assuming no channel fading, we thus have the following
result.

Proposition 4 (Pareto power control) Without fading but
Pareto power control,

ps(R) =







(

k−1
kθR2−b/a

)k

for R2−b > a(k−1)
θk

1 otherwise.

For b = 0 and integerk ≥ 2, the mean delay is of the form

D(a, 0) = 1 + Q(ξ) exp

(

−k − 1

kξ

)

,

whereξ , θ/(λπa) and Q(ξ) = c1ξ + c2ξ
2 + . . . + ckξk is a

polynomial of orderk with coefficients

cj =
kj+1

(k − 1)j−1

Γ(k − 1)

Γ(k − j + 1)
, j ∈ {1, 2, . . . , k} .

Proof: Straightforward (yet somewhat tedious) calcula-
tion.
Unlessa ≫ θ, which is impractical, the minimum mean delay
is attained atk = 2, as expected, since this (integer) choice
of k produces the heaviest tail. In this case,

D(a, 0) = 1 + (4ξ + 8ξ2) exp(−1/(2ξ)) ,

which is finite for all choices ofθ anda, andD(a, 0) = Θ(θ2),
θ → ∞! So, inducing fading with a polynomial-tail distribu-
tion ensures the finiteness of the mean delay for all choices
of parameters, and it achieves much better asymptotic scaling
of the delay with respect toθ than Rayleigh fading, where
the delay scales at least exponentially inθ. So we observe
that fading with exponential tail appears to result in a delay
that increases at least exponentially inθ, whereas fading
with a polynomial tail results in a delay that increases only
polynomially inθ.

Fig. 9 shows a comparison of the mean delay in the case of
Rayleigh fading and Pareto induced fading. For small power
levels, only the Pareto delay is finite, where for larger power
levels, the Rayleigh delay is slightly smaller. In the limit, as
the power increases, the delay approaches1 in both cases, as
expected.

For b = 2,

D(a, 2) =







(

kθ/a
k−1

)k

if θk > a(k − 1)

1 otherwise.
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Fig. 9. The mean delay for Rayleigh fading case and Pareto random power
control (k = 2) for b = 0, θ = 10, λ = 1/4 (such that the mean link
distanceE(R) = 1). The phase transition in the Rayleigh case occurs at
a = θ/(λπ) = 40/π ≈ 12.7.

which is again minimized fork = 2. The asymptotic scaling
with respect toθ is not improved by the largerb. The
fact that D(a, 2) = Θ(θk) is interesting; it confirms that
the delay scaling is closely tied to how fast the tail of the
(complementary) fading distribution decays. In conclusion:

Fact 2 Drawing the transmit power from a Pareto distribution
in an iid fashion in each time slot drastically reduces the mean
power required to keep the delay finite.

Intuitively, the reason why random power control yields a sub-
stantially lower delay at low mean power is that transmissions
at low fixed power are bound to fail. Hence the only way
to achieve a finite mean delay is to occasionally transmit at
higher power. Essentially the delay-minimizing strategy is to
maximize the variance of the received power, as explained in
detail in [15], [16]. The same conclusion was reached in [17]
for a different network model and metric.

The disadvantage of Pareto power control is the high peak-
to-average power ratio.

IV. STATIC NETWORKS WITH NOISE AND INTERFERENCE

In this section, we add interference back to the network
model and re-focus on Rayleigh fading. First, we address
the case of fixed transmit power, then the case where only a
single node selfishly uses power control, and lastly the caseof
network-wide power control. We focus on the case of nearest-
receiver transmission (NRT).

A. Fixed Transmit Power

With noise, we have seen in Section III that constant
transmit power only result in finite local delay forα = 2 if
interference is ignored. But forα = 2, the spatial contention
γ = ∞, so the local delay with interference is trivially infinite.
So we can state the following result.
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Fig. 10. The local delay in the NRT case with noise and interference as a
function of the power control factora. The solid curve (top) is a simulation,
the dashed curve below is obtained by numerical integrationof (64). The
dash-dotted curve is the local delay if noise is ignored, which is independent
of a. The bottom curve is the delay if interference and channel access delays
are ignored. The potential transmitter density isλ = 1/4, and the receiver
density isλr = 2. Other parameters areb = 0, p = 1/5, α = 4, and
θ = 10. The local delay is lower bounded by the ALOHA channel access
delay1/p = 5.

Fact 3 In a static network with noise and interference with
the same transmit power at all nodes, the local delay is infinite
for all path loss exponents, rates, and transmit probabilities.

Clearly, power control is needed.

B. Power Control at a Single Transmitter

If only the node under consideration uses the power control
schemeP = aRα−2+b while the other nodes transmit at
unit constant power, the interference is unchanged, and the
local delay (with noise and interference) follows from the
combination of (54) and (27):

DNRT(a, b) = 2πqλ

∫ ∞

0

exp

(

θ

a
r2−b

)

·

exp

(

λpa−δγr4/α−2b/α

q1−2/α

)

r exp(−πqλr2)dr , (63)

which is finite wheneverα > 2 and b > 0 or, if α > 2 and
b = 0, for small enoughp and large enougha. For b = 2, the
first two exponentials do not depend onr, and the local delay
is given by their product. Of course this is a selfish approach
that only works for a single transmitter in the network.

C. Power Control at All Nodes

Since it appears impossible to get an exact closed-form
solution for the case with full power control, we replace the
interferer’s transmit powers by their averages (59) (forn = 1),
which, due to the convexity of the exponential and by Jensen’s
inequality, yields a lower bound on the local delay:

DNRT(a, b) =
1

p
ER

(

exp

(

θ

a
r2−b

)

exp(c3r
(4−2b)/α)

)

(64)

where

c3 =
λp
(

(qλπ)1−α/2−b/2Γ(α/2 + b/2)
)δ

γ

q1−δ
.

Fig. 10 shows a simulation result and the result of the
numerical integration of (64). As expected, the analyticalresult
is a lower bound on the delay. For comparison, also shown are
the curves for the cases where noise and interference only are
considered.

V. CONCLUSIONS

A. General remarks

We have provided a comprehensive analysis of the local
delay in Poisson networks. The stochastic geometry-based
mathematical framework permits the derivation of concrete
results for different types of nearest-neighbor communication
and mobility levels. While we focused on the two-dimensional
case, the results can be extended to an arbitrary number of
dimensionsd in a fairly straightforward manner. In most cases,
the only necessary changes are to define the parameterδ as
d/α and to replace the factorπ in the spatial contention by
the volume of thed-dimensional unit ball. The condition for
finite interference is stillδ < 1.

B. Interference only

In the noise-free case, we observe the following:
1) None of the delays depend on the node density. The

increased interference in a network of higher density is
exactly offset by the decreased transmission distance.

2) In the highly mobile cases, the local delay is finite for all
values of the SIR thresholdθ and the access probability
p. It decomposes into a sum of access delay and service
time. The optimum transmit probability is proportional to
γ−1/2 or θ−δ/2 in the NRT, NNT, and NNR cases.

3) In the static cases, there is a phase transition,i.e., the local
delay becomes infinite ifp or θ exceeds a certain critical
transmit probability. This is a consequence of the corre-
lation of the interference, which leads to a heavy tail in
the delay distribution. In the NRT, NNT, and NNR cases,
the optimum transmit probabilitypopt is roughly half the
critical transmit probability. Asθ → ∞, it approaches
π/(2γ) in all three cases, hence it is proportional toγ−1

or θ−δ. Sopopt decreases quadratically faster in the static
case than in the highly mobile case, which is due to
the smaller diversity in the static case that needs to be
compensated for by a smaller transmit probability1.

4) We focused on the two extreme cases of mobility. Any
practical level of mobility will fall in between, so we
can expect that the results obtained are upper and lower
bounds for all levels of mobility. At low rates, both
extremes behave very similarly, so any Poisson network
with finite mobility exhibits the same scaling behavior.

5) The NRT and NTR cases benefit from the fact that the
destination node is known to be listening (NRT) or the

1As shown in [12], the correlation coefficient of the interference in static
networks is proportional top.
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R

Fig. 11. Illustration for the proof of Thm. 1. The white disk is the
interference-free region of nearest-neighbor transmission (NNT). The receiver
is located at the origin, and the four sectors (per quadrant)indicate the inner
and outer bounds on the disk that are used to obtain analytical bounds on the
spatial contention. The angles of the radial beams areπ/6, π/4. andπ/3.

source node is known to be transmitting (NTR). Hence
the minimum delay asθ → 0 is K = 1 for NRT and
NTR, while it is K = 4 for NNT and NNR.

6) The NTR, NNT, and NNR cases benefit from an
interferer-free disk centered at the transmitter (NNT) or
centered at the receiver (NTR and NNR). Asymptotically
as θ → 0, this manifests itself in a larger exponentν in
the delay expressionK + θν (Table I).

C. Noise only

If power control of the formP = aRα−2+b is used, the
local delay for Rayleigh link distances and Rayleigh fadingis
finite for b = 0 and some conditions onθ, a, andλ, and it is
always finite forb > 0. For b = 0, a similar condition holds
for Nakagami fading. If power control is randomized with a
distribution with polynomial tail, the local delay is finiteeven
for b = 0. So, induced fading can greatly increase the stability
region. On the other hand, with a peak power constraint, there
is no power control scheme that can keep the local delay finite
as soon asα > 2.

Extensions from nearest-neighbor communication ton-
th nearest neighbor communication are possible in a fairly
straightforward manner.

D. Interference and noise

Power control is needed to overcome the noise, which
complicates the analysis since it affects the interferencedis-
tribution. In static networks, a further difficulty is that only
the fading states vary in an iid fashion, whereas power control
is static over time, as the distance to the nearest neighbor
stays constant. (The situation would change if information
on the channel state was also available at the transmitter.)
We resorted to deriving a reasonably tight lower bound by
replacing the interferers’ actual powers by their averagesand
invoking Jensen’s inequality.

APPENDIX

PROOF OFTHEOREM 1

Proof: (a) By stationarity ofΦ, the situation is statistically
the same if the transmitter is located at(R, 0) and its nearest
neighbor ato, as shown in Fig. 11, with the receiver at the
origin. Hence we can apply Lemma 1 withH = B(R,0)(R).
The integral in (6) is

∫

R2\H

s

s + ‖x‖α
dx = C(α)s2/α − A(R, s) ,

whereA(R, s) is the integral over the interferer-free region
H. In polar coordinates,

A(R, s) =

π/2
∫

−π/2

2R cos φ
∫

0

rs

rα + s
drdφ . (65)

First, we note thatA(R, Rαθ) ∝ R2, and if the proportionality
constant isγ − γNNT, the success probability is indeed of the
form (10). Next,A(R, 0) = 0, and for fixedR, A(R, s) is
monotonically increasing toπR2 ass → ∞. Using this upper
bound in the conditional success probability yields

P
o(C | R) = pqLI(θR

α | B(R,0)(R) ∩ Φ = ∅)
< pq exp(−pλR2(γ − π)) ,

which proves the first bound. (b) For the tighter bounds, we
use
∫ b

0

rs

rα + s
dr =

sδ

α

∞
∫

sb−α

dy

yδ(1 + y)
=

b2

2
Hδ(−bα/s) (66)

to bound the integral (65) by integrating over four sectors with
fixed radius. The four sectors are|φ| ≤ π/6, π/6 < |φ| ≤ π/4,
π/4 < |φ| ≤ π/3, and π/3 < |φ| ≤ π/2, see Fig. 11. At
the angles bordering these sectors,cosφ assumes the simple
values

√
n/2, n = 0, 1, 2, 3. For the lower (inner) bound, only

three sectors are used. For the sector|φ| ≤ π/6, letting

A1 =

π/6
∫

−π/6

2R cos φ
∫

0

rs

rα + s
drdφ ,

we obtain

π

3

2R cos(π/6)
∫

0

rs

rα + s
dr < A1 <

π

3

2R
∫

0

rs

rα + s
dr .

These bounds can be expressed using the hypergeometric func-
tion, and the bounds for the other sectors follow analogously.
The result is obtained by the substitutions = θRα. (The
first terms in (11) and (12) are the ones pertaining to theA1

term calculated here.) (c) For the third bound, we use a series
expansion of the hypergeometric function atx = 0:

Hδ(x) =

∞
∑

k=0

2

2 + kα
xk =

∞
∑

k=0

δ

δ + k
xk . (67)

Truncated atk = 1, we obtain the bound

Hδ(−t/θ) ≥ 1 − 2t

2 + α
· 1

θ
, t ≥ 0 , (68)

which, when used in (12), yields the result.
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