Interference Functionals in Poisson Networks

Udo Schilcher, Stavros Toumpis, Martin Haenggi, Alessandro Crismani, Günther Brandner, Christian Bettstetter

Abstract

We propose and prove a theorem that allows the calculation of a class of functionals on Poisson point processes that have the form of expectations of sum-products of functions. In proving the theorem, we extend the Campbell-Mecke theorem from stochastic geometry. We proceed to apply our result in the calculation of expectations involving interference in wireless Poisson networks. Based on this, we derive outage probabilities for transmissions in a Poisson network with Nakagami fading. Our results extend the stochastic geometry toolbox used for the mathematical analysis of interference-limited wireless networks.

Index Terms

Wireless networks, stochastic geometry, interference, correlation, Poisson point process, Rayleigh fading, Nakagami fading, time diversity.

I. INTRODUCTION AND CONTRIBUTIONS

INTERFERENCE in wireless networks occurs if the communication from a transmitter to a receiver is disturbed by additional nodes transmitting in the vicinity of the receiver on the same frequency band and at the same time. Interference can be mitigated or even exploited [1], [2] in networks with central entities using scheduling and signal processing techniques, such as multiuser detection [3] and interference cancellation [4]. In non-centralized systems, however, when no dedicated control entities can regulate the access to the shared wireless medium, interference remains a performance-limiting factor, partly because it is subject to considerable uncertainty [5]. Interference also occurs in wireless networks using code division multiple access (CDMA), where multiple users are not separated in time or frequency but use different spreading codes. In this case as well, interference powers, albeit reduced by the spreading, add up at the receiver.

For these reasons, the stochastic modeling of interference in wireless networks—in particular its dynamic behavior over time and space [6]–[8], which we will refer to in this work as the interference dynamics—recently attracted the interest of the research community. Temporal and spatial dependencies introduced by interference cause a correlation of different transmissions, which in turn influences system performance. It leads to reduced diversity [9] and degraded performance of many communication techniques, such as cooperative relaying, multiple-input multiple-output (MIMO), and medium access protocols [8], [10], [11].

When modeling interference and its dynamics in wireless networks, researchers often use tools from stochastic geometry [12]. These tools comprise the Campbell-Mecke theorem, Campbell’s theorem, and expressions for the probability generating functional (pgfl) (see [13]–[15]) applied to Poisson point processes (PPPs). A comprehensive overview on applying stochastic geometry to the analysis of wireless networks can be found in books by Baccelli and Blaszczyszyn [16], [17] and by Haenggi [13].

The article at hand extends the tools of stochastic geometry by calculating general sum-product functionals for PPPs. While proving our results, we propose an extended version of the Campbell-Mecke theorem applied to PPPs. Further, we apply our results to calculate expected values that occur in the analysis of the interference in wireless networks. Notably, we derive link outage probabilities in a Poisson network with Nakagami fading [18] caused by multipath propagation.

A. Related Work

Mathematical expressions for the temporal and spatial correlation of interference are presented in [6], [7], [19], [20]. Analytical studies of cooperative diversity under correlated interference are performed in [8], [10], [11], [21], [22] using different assumptions concerning diversity combining (selection combining and maximum ratio combining) and small-scale fading (Rayleigh and Nakagami fading). All these articles assume a Poisson network model, i.e., the nodes are placed according to a PPP and no carrier sensing is employed for medium access. This set of assumptions permits the derivation of analytic expressions for outage probabilities.

In Poisson networks, many different research works study the impact of interference dynamics on network performance. The article [23] investigates the effects of channel model and scheduling on the SIR, the outage probability, and the transmission

Udo Schilcher, Günther Brandner, and Christian Bettstetter are with the Institute of Networked and Embedded Systems, University of Klagenfurt, Klagenfurt, Austria. E-Mail: udo.schilcher@uni-klu.ac.at

Stavros Toumpis is with the Department of Informatics, Athens University of Economics and Business, Athens, Greece.

Martin Haenggi is with the Department of Electrical Engineering, University of Notre Dame, IN, USA and with the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

Alessandro Crismani was with the Institute of Networked and Embedded Systems, University of Klagenfurt, Klagenfurt, Austria, and is now with u-blox, Trieste, Italy.
capacity. From a more theoretical perspective, the diversity gain of retransmissions under correlated interference is analyzed in [9] by means of diversity polynomials. Results show that the diversity gain is equal to unity even for lightly correlated interference despite independently fading channels in each transmission. The impact of mobility of nodes on interference dynamics is investigated in [24]. The authors conclude that mobility reduces the temporal correlation of interference, but also has other implications on its statistics (e.g., it changes the expected value of interference).

Similar results can also be derived for cellular networks, if we assume Poisson distributed base stations. In this case, as well, interference is correlated across time and space, and its dynamics should be carefully taken into consideration when designing a system. For example, in [25] it is shown how inter-cell interference coordination and intra-cell diversity impact the performance of a cellular network. In particular, it is shown that, depending on the SIR regime under consideration, one or the other of these techniques should be selected. Further, in [26] coordinated multipoint transmissions in cellular networks are analyzed. By employing the coverage probability as a performance metric, the authors show that multipoint transmissions are more beneficial for the worst-case user than for the average user.

There is currently not much theoretical work available on interference dynamics for Poisson networks employing carrier-sense multiple access (CSMA). When modeling CSMA, a minimum distance between sending nodes is introduced, which is typically modeled by hard-core processes.

Matérn’s model is applied for such scenarios in many different publications: The authors of [17] derive theoretical results on these modeling assumptions, although a comprehensive analysis of the interference dynamics is still subject to future work. The mean interference in CSMA networks is discussed in [27]. An analysis of coverage and throughput per user in IEEE 802.11 networks based on Matérn’s model is presented in [28]. Additionally, these results are used further to solve some optimization problems. In [29] an analysis of dense CSMA networks is presented. The authors employ performance metrics such as average throughput to show that different spatial models lead to a significant change in network performance.

Approaches not based on Matérn’s model have also been considered. For example, a modified hard-core point process is proposed in [30] to model the transmitters in a CSMA network; the authors derive closed-form solutions that approximate mean and variance of interference; A simulation shows the accuracy of their approximations. Also, in [31] the authors discuss how to model the spatial distribution of transmitting nodes showing that simple sequential inhibition processes are more suitable for modeling CSMA networks than Matérn’s model.

The impact of correlated interference on protocol design is still a rather unsolved problem. For example, in [32] its impact on MAC protocol design is discussed. We therefore work toward a better understanding of the impact of correlated interference by presenting very general results on interference functionals.

In the article at hand we present mathematical tools that allow to further generalize the modeling assumptions when modeling interference dynamics. This allows to gain insights on interference dynamics in realistic scenarios.

B. Summary of Contributions

The main contributions of this article are as follows. Firstly, in Section II we provide and prove a theorem for calculating a functional that has the form of the expected value of a combined sum and product of functions over a PPP: Let us consider a PPP Φ on \mathbb{R}^n with intensity measure Λ and the $q + 1$ non-negative measurable functions $f_i, g : \mathbb{R}^n \times X \rightarrow \mathbb{R}$ with $X \subseteq \mathbb{R}$, $i \in [q] = \{1, \ldots, q\}$, and $g(x, \chi) \leq 1$ for all $x \in \mathbb{R}^n$ and $\chi \in X$. Let the exponents p_i for $i \in [q]$ ($q \in \mathbb{N}$) be non-negative integers. We assume $0 \in \mathbb{N}$ throughout the article. Finally, let $X = (X_u)$ for all $x \in \mathbb{R}^n$ be a family of X-valued i.i.d. random variables. Our contribution is to calculate the functional

$$E_{\Phi, X} \left[\prod_{i=1}^{q} \left(\sum_{u \in \Phi} f_i(u, X_u) \right)^{p_i} \prod_{u \in \Phi} g(u, X_u) \right]. \tag{1}$$

In the following, we call functionals of this form sum-product functionals. The expression we arrive at is given in (12) of Theorem 1. As part of the proof, we also present a generalized version of the Campbell-Mecke theorem applied to PPPs in Lemma 1.

Secondly, in Section III we apply this result to derive expressions for certain functionals related to interference in wireless networks. In particular, we consider a setting where the interference power at the origin o at time slot i is defined as $I_i = \sum_{u \in \Phi} h_i(u) \ell(u) \mathbf{1}(u \in \Phi_i)$ with $h_i(u)$ being the fading coefficient for node u at time slot i (assumed to be temporally and spatially i.i.d.); $\ell(u)$ being the path gain of node u; and $\mathbf{1}(u \in \Phi_i)$ being the indicator function. We are able to calculate

$$E_{\Phi, h, \ell} \left[\prod_{i=1}^{q} \ell_i \exp \left(- c I_i \right) \right], \tag{2}$$

for some constant $c \in \mathbb{R}$ and $p = (p_1, \ldots, p_q) \in \mathbb{N}^q$. We call functionals of this form interference functionals. The result is given in (19) of Theorem 2.

We then highlight some special cases particularly useful to wireless communications by employing commonly used models for path loss and small-scale fading into the general result of (2). For example, for a stationary PPP, the singular path loss
where P model $\ell_2(\|u\|^2_2)$ with path loss exponent α, Rayleigh fading, and slotted ALOHA, we obtain

$$E_{\Phi,\delta,1}[I \exp(-I)] = \frac{\delta^2 \lambda^2 \pi^2 \exp \left(-\frac{\delta \lambda \pi^2}{\sin(\delta \pi)} \right)}{\sin(\delta \pi)}$$

(3)

with $\delta = \frac{2}{\alpha}$. Other examples can be obtained by substituting the expressions presented in Table III into (21).

Finally, in Section IV we show how these results can be used in the performance analysis of wireless networks. For example, we derive the probability of a successful transmission in a Poisson network with Nakagami fading, where the reception is successful iff the signal-to-interference ratio (SIR) is above a certain threshold θ. The result is given in (30). We also derive the joint probability for the successful reception of two transmissions.

II. SUM-PRODUCT FUNCTIONALS ON PPPs

A. Theorems from Stochastic Geometry

Let Φ denote a PPP on \mathbb{R}^n with a locally finite intensity measure Λ. Stochastic geometry provides a set of helpful tools to calculate certain expected values. One well-known tool is Campbell’s theorem (see [13], Section 4.5), which states that

$$E_{\Phi} \left[\sum_{u \in \Phi} f(u) \right] = \int_{\mathbb{R}^n} f(x) \Lambda(dx)$$

(4)

for any non-negative measurable function f on \mathbb{R}^n. Another tool is the following theorem on probability generating functionals (pgf) of PPPs (see [13], Section 4.6):

$$E_{\Phi} \left[\prod_{u \in \Phi} g(u) \right] = \exp \left(-\int_{\mathbb{R}^n} (1 - g(x)) \Lambda(dx) \right)$$

(5)

for any measurable function g on \mathbb{R}^n with $0 \leq g(x) \leq 1$ for all x such that the integral in (5) is finite. A third tool is the following form of the Campbell-Mecke theorem (see [13], Section 8.4), which is a combination of (4) and (5) and states

$$E_{\Phi} \left[\sum_{u \in \Phi} f(u) \prod_{v \in \Phi} g(v) \right] = \exp \left(-\int_{\mathbb{R}^n} (1 - g(x)) \Lambda(dx) \right) \int_{\mathbb{R}^n} f(x)g(x) \Lambda(dx) .$$

(6)

These theorems are very helpful in the analysis of wireless networks and many other systems. None of them, however, can be applied to calculate an expected value of the form given in (1). Such expected values are required in the analysis of wireless networks with interference, e.g., when calculating the outage probabilities under Nakagami fading. We therefore provide a solution to (1) in this section.

B. Generalized Campbell-Mecke Theorem for PPPs

In the following we show a generalized version of the Campbell-Mecke theorem [13] that is applicable to PPPs.

Lemma 1 (Generalized Campbell-Mecke Theorem for PPPs): Let Φ denote a PPP with intensity measure Λ. Further, let $f : \mathbb{R}^{n d} \times \mathcal{N} \to \mathbb{R}^+$ denote a measurable function, where \mathcal{N} is the space of counting measures. Then we have

$$E \left[\sum_{u \in \Phi} f(u, \Phi) \right] = \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} \int_{\mathcal{N}} f(x, \varphi) P_{\{x_1, \ldots, x_d\}}(d\varphi) \Lambda(dx_1) \cdots \Lambda(dx_d) ,$$

(7)

where $P_{\{x_1, \ldots, x_d\}}$ denotes the Palm distribution of Φ and $x = (x_1, \ldots, x_d)$. The symbol \neq on top of the sum denotes summing only over $u = (u_1, \ldots, u_d)$ with $u_i \neq u_j$ for all $i \neq j.$

Proof: We get the result by iteratively applying the Campbell-Mecke theorem:

$$E \left[\sum_{u \in \Phi} f(u, \Phi) \right] = E \left[\sum_{u_1 \in \Phi} \cdots \sum_{u_d \in \Phi} \sum_{u \in \Phi \setminus \{u_1, \ldots, u_{d-1}\}} f((u_1, \ldots, u_d), \Phi) \right]$$

(8)

$$= \int_{\mathcal{N}} \cdots \int_{\mathcal{N}} \int_{\mathbb{R}^n} f(x_1, \varphi) P_{\{x_1\}}(d\varphi) \Lambda(dx_1)$$

$$= \cdots = \int_{\mathbb{R}^n} \cdots \int_{\mathcal{N}} f((x_1, \ldots, x_d), \varphi) P_{\{x_1, \ldots, x_d\}}(d\varphi) \Lambda(dx_1) \cdots \Lambda(dx_d) .$$
C. Sum-Product Functionals on PPPs

In this section we derive an expression for the expected value given in (1). The following lemma serves as preparation.

Lemma 2: Let $U \subseteq \mathbb{R}^n$ be a countable set and let $v \in \mathbb{N}$. Let the vector of the exponents be $p = (p_1, \ldots, p_v) \in \mathbb{N}^v$ with $\|p\|_1 = \sum_{i=1}^v p_i$. We assume $\|p\|_1 > 0$. Further, let $p^r(i) = \sum_{j=1}^i p_j$ for all $i \in [q]$ be the cumulative sum of the exponents p_i; we set $p^r(0) = 0$. Let $u = (u^{(1)}, \ldots, u^{(q)}) \in U^{|p|_1}$ with $u^{(i)} = (u^{(i-1)}+1, \ldots, u^{(i)})$. Finally, let $f_i : \mathbb{R}^n \to \mathbb{R}$ with $1 \leq i \leq q$ be non-negative functions. Then we have

$$
\sum_{u \in U^{|p|_1}} \prod_{i=1}^q \prod_{j=1}^{p_i} f_i \left(u^{(i)}_j \right) = \prod_{i=1}^q \frac{1}{\prod_{j=1}^{p_i} m_{ij}!} \sum_{M \in \mathcal{M}} \sum_{M' \in \mathcal{M}} \sum_{M'' \in \mathcal{M}} \prod_{i=1}^l \prod_{j=1}^{l} f_i^{m_{ij}} \left(v_j \right),
$$

(9)

where $\mathcal{M}_p = \{ U \times \cdots \times U \}$ is the class of all $q \times l$ matrices for which the columns $\|e_j\|_1 > 0$ for $j = 1, \ldots, l$ and the rows $\|r_i\|_1 = p_i$ for all $i = 1, \ldots, q$. Furthermore, $M = (m_{ij})$ with $1 \leq i \leq q$ and $1 \leq j \leq l$, and $v = (v_1, \ldots, v_l)$. The variable C_M is defined as $C_M = \prod_{i=1}^q \prod_{j=1}^{p_i} m_{ij}!$.

Proof: We prove the lemma by showing that the same products are summed on the left and on the right hand side. Note that all terms in each sum are non-negative and hence the sums on both sides are either absolutely convergent or diverge to infinity irrespective of the order of the summation. In both cases we can exchange the order of the summation.

We define the function $F(u) = (l, v, M)$, as follows: l is the number of distinct coordinates of u, i.e., $l = \{ |u_i| 1 \leq i \leq \|p\|_1 \}$. Clearly, $1 \leq l \leq \min(\|p\|_1, \|\{ u_i \} |)$. The vector v is the vector of all distinct elements in u in the order of their first appearance in u. Hence, $v \in U^l$. The matrix M is of size $q \times l$ with entries m_{ij}. They are defined as follows: m_{ij} is the number of coordinates in the vector $u^{(i)}$ that are equal to v_j, i.e., $m_{ij} = \{ k | u_i(k) = v_j, 1 \leq k \leq p_i \}$. Note that for each i these numbers must sum to $\sum_{j=1}^l m_{ij} = p_i$ for all $i \in [q]$, and each element v_j must occur at least once in the product, i.e., $\sum_{j=1}^l m_{ij} > 0$ for all $j \in [l]$.

The function $F(u)$ is not injective, i.e., there can be different vectors $u \neq u'$ with $F(u) = F(u')$. Let (l, v, M) be arbitrary, but fixed. In the following we calculate the size of the preimage $F^{-1}(l, v, M)$. Therefore, let $u \in F^{-1}(l, v, M)$ be an arbitrary member of this preimage. Further, let

$$
f_i^{\otimes}(u^{(i)}) = \prod_{j=1}^{p_i} f_i \left(u^{(i)}_j \right).
$$

(10)

Then, the product $\prod_{i=1}^q f_i^{\otimes}(u^{(i)})$ is invariant to permutations inside the vectors $u^{(i)}$. For each $u^{(i)}$, the number of such permutations is $p_i!$, but whether such permutations actually result in a different $u^{(i)}$ (and thus u) depends on how many distinct elements of U appear in $u^{(i)}$. This is determined by the ith row of M. Hence, the number of permutations resulting in a different $u^{(i)}$ is

$$
d_i = \frac{p_i!}{\prod_{j=1}^{p_i} m_{ij}!}.
$$

(11)

The number of permutations of u, which lead to the same products (10) is hence $C_M = \prod_{i=1}^q d_i$. Since the order of the coordinates in v is based on their first appearance in u, these permutations may lead to a permuted v and hence a different vector (l, v, M). To account for this, we have to divide the number of permutations of u by the number of permutations of v, which is given by $l!$. Hence, the preimage $F^{-1}(l, v, M)$ of a given vector (l, v, M) contains $|F^{-1}(l, v, M)| = \frac{C_M}{l!} = \frac{\prod_{i=1}^q p_i!}{l!} m_{ij}!$ elements.

Since each of the elements in a preimage leads to the same product on the left hand side of (9), in the right hand side we sum over all combinations (l, v, M), for each multiplying one element of the corresponding preimage $F^{-1}(l, v, M)$ by the size C_M of this preimage. Note that the union of all these preimages gives $U^{|p|_1}$.

Next, we state our main result on sum-product functionals on PPPs of the general form (1).

Theorem 1 (Sum-product functionals for PPPs): Let Φ be a PPP with intensity measure Λ. Also, let $f_i, g : \mathbb{R}^n \times X \to \mathbb{R}$ with $X \subseteq \mathbb{R}$ and $1 \leq i \leq q$ be non-negative measurable functions with $g(x) \leq 1$ for all $x \in \mathbb{R}^n$ and $p_i \in \mathbb{N}$ with $\|p\|_1 > 0$. Furthermore, let $X = (X_x)$ for all $x \in \mathbb{R}^n$ be a family of X-valued i.i.d. random variables. Then we have

$$
E_{\Phi \times \Lambda} \left[\prod_{i=1}^q \sum_{u \in \Phi} f_i(u, X_u) \prod_{v \in \Phi} g(v, X_v) \right] = \exp \left(- \int_{\mathbb{R}^n} \left(1 - \sum_{i=1}^q E_X \left[g(x, X_x) \right] \right) \Lambda(dx) \right) \prod_{i=1}^q \sum_{M \in \mathcal{M}_p} \sum_{M' \in \mathcal{M}_p} \sum_{M'' \in \mathcal{M}_p} \prod_{i=1}^l \prod_{j=1}^q E_X \left[g(x, X_x) \prod_{j=1}^q f_i^{m_{ij}}(x, X_x) \right] \Lambda(dx),
$$

where $\mathcal{M}_p = \{ U \times \cdots \times U \}$ is the class of all $q \times l$ matrices for which the columns $\|e_j\|_1 > 0$ for $j \in [l]$ and the rows $\|r_i\|_1 = p_i$ for all $i \in [q]$, and $C_M = \prod_{i=1}^q \prod_{j=1}^{p_i} m_{ij}!$. Note that the expected value $E_{\Phi}\Phi$ can be omitted iff $\Lambda(\mathbb{R}^n) = \infty$ a.s.
Proof:

\[
E_{\Phi,X} \left[\prod_{i=1}^{q} \left(\sum_{u \in \Phi} f_i(u, X_u) \right)^{p_i} \prod_{v \in \Phi} g(v, X_v) \right] \tag{13}
\]

\[(a) \quad E_{\Phi,X} \left[\sum_{u \in \Phi} \prod_{i=1}^{q} \prod_{j=1}^{p_i} f_i(u^{(i)}, X_{u^{(i)}}) \prod_{v \in \Phi} g(v, X_v) \right] \]
\[(b) \quad E_{\Phi,X} \left[\min(\|p\|_1, \|\Phi\|) \prod_{i \in M} \prod_{j=1}^{l} f_i^m(u_j, X_{u_j}) \prod_{v \in \Phi} g(v, X_v) \right]
\]
\[(c) \quad E_K \left[\sum_{l=1}^{\min(\|p\|_1, K)} \frac{1}{l!} \sum_{M \in \mathcal{M}^l} C_M \sum_{u \in \Phi} \prod_{i=1}^{q} \prod_{j=1}^{l} f_i^{m_{i,j}}(u_j, X_{u_j}) \prod_{v \in \Phi} g(v, X_v) \right]
\]
\[(d) \quad E_K \left[\sum_{l=1}^{\min(\|p\|_1, K)} \frac{1}{l!} \sum_{M \in \mathcal{M}^l} C_M E_{\Phi,X} \left[\sum_{u \in \Phi} \prod_{i=1}^{q} f_i^{m_{i,j}}(u_j, X_{u_j}) \prod_{v \in \Phi} g(v, X_v) \mid \|\Phi\| = K \right] \right]
\]
\[(e) \quad E_K \left[\sum_{l=1}^{\min(\|p\|_1, K)} \frac{1}{l!} \sum_{M \in \mathcal{M}^l} C_M \left(\prod_{j=1}^{l} E_X \left[g(u_j, X_{u_j}) \prod_{i=1}^{q} f_i^{m_{i,j}}(u_j, X_{u_j}) \prod_{v \in \Phi} g(v, X_v) \mid \|\Phi\| = K \right] \right) \right] \]
\[(f) \quad E_K \left[\sum_{l=1}^{\min(\|p\|_1, K)} \frac{1}{l!} \sum_{M \in \mathcal{M}^l} C_M \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} \prod_{j=1}^{l} E_X \left[g(x_j, X_{x_j}) \prod_{i=1}^{q} f_i^{m_{i,j}}(x_j, X_{x_j}) \right] \right]
\]
\[(g) \quad E_K \left[\sum_{l=1}^{\min(\|p\|_1, K)} \frac{1}{l!} \sum_{M \in \mathcal{M}^l} C_M \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} \prod_{j=1}^{l} E_X \left[g(x_j, X_{x_j}) \prod_{i=1}^{q} f_i^{m_{i,j}}(x_j, X_{x_j}) \right] \right]
\]

where \(u = (u_1, \ldots, u_{\|p\|_1}) \). In (a) we apply Lemma 3 presented in Appendix A, where \(u_j^{(i)} \) is defined as in Lemma 2. In (b) we apply Lemma 2; in (c) we condition on the number of points \(|\Phi| \); in (d) we factor out all \(g(v) \) from the rightmost product for which \(v = u_j \) for some \(j \). This is possible since all \(u_j \) are distinct. In (e) we move the expected value of the random variables \(X \) inside the sum/product since the \(X \) are i.i.d. In (f) we apply Lemma 1, and \(P^{(x_k)}_{(x_1)} \) denotes the Palm distribution of \(\Phi \) conditioning on the points \(x_k \), \(k = 1, \ldots, l \). The symbol \(\mathcal{N} \) denotes the space of counting measures with at most \(K \) points in all Borel sets \(B \). Note that \(\mathcal{N} \) is held due to Slivnyak’s theorem.

Calculating the pgf according to (5) yields the result.

\[\quad \]

D. Some Special Cases

We now highlight some special cases of Theorem 1, which are of interest for the following sections.

Corollary 1 (Stationary PPPs): When the PPP is stationary with intensity \(\lambda \), under the same assumptions as in Theorem 1, we have

\[
E_{\Phi,X} \left[\prod_{i=1}^{q} \left(\sum_{u \in \Phi} f_i(u, X_u) \right)^{p_i} \prod_{u \in \Phi} g(u, X_u) \right] \tag{14}
\]

\[= \exp \left(-\lambda \int_{\mathbb{R}^n} \left(1 - E_X [g(x, X_x)] \right) dx \right) \sum_{l=1}^{\min(\|p\|_1, K)} \sum_{M \in \mathcal{M}_l} C_M \frac{\prod_{i=1}^{l} \lambda^{m_{i,j}}}{l!} \int_{\mathbb{R}^n} \prod_{v \in \Phi} E_X \left[g(x, X_x) \prod_{j=1}^{q} f_j^{m_{i,j}}(x, X_x) \right] dx , \]
where \mathcal{M}_l^p is the class of all $q \times l$ matrices for which the columns $\|c_j\|_1 > 0$ for $j \in [l]$ and the rows $\|r_i\|_1 = p_i$ for all $i \in [q]$, and $C_M = \prod_{l=1}^p \frac{p_i}{M_{i,l}}$.

Proof: Substituting $\Lambda(U) = \lambda\mu(U)$ for all Borel sets $U \subseteq \mathbb{R}^n$ in Theorem 1 yields the result.

Corollary 2 (Stationary PPPs with $q = 1$): When the PPP is stationary with $q = 1$, under the same assumptions as in Theorem 1, we have

$$\mathbb{E}_{\Phi,X} \left[\left(\sum_{u \in \Phi} f(u, X_u) \right)^p \prod_{u \in \Phi} g(u, X_u) \right] = \exp \left(-\lambda \int_{\mathbb{R}^n} \left(1 - \mathbb{E}_X \left[g(x, X_x) \right] \right) \, dx \right) \prod_{l=1}^p \frac{C_M}{\lambda^l} \prod_{i=1}^l \frac{\lambda}{\mathbb{E}_X \left[g(x, X_x) f^{m_i}(x, X_x) \right]} \, dx ,$$

where \mathcal{M}_l^p is the class of all vectors of length l having strictly positive coordinates which sum up to p, and $C_M = \prod_{l=1}^p \frac{p_i}{M_{i,l}}$.

Proof: Substituting $q = 1$ in Corollary 1 yields the result.

Corollary 3 (Stationary PPPs with $q = 1$ and $p = 1$): When the PPP is stationary and $q = 1$, $p = 1$, under the same assumptions as in Theorem 1, we have

$$\mathbb{E}_{\Phi,X} \left[\sum_{u \in \Phi} f(u, X_u) \prod_{u \in \Phi} g(u, X_u) \right] = \exp \left(-\lambda \int_{\mathbb{R}^n} \left(1 - \mathbb{E}_X \left[g(x, X_x) \right] \right) \, dx \right) \lambda \int_{\mathbb{R}^n} \mathbb{E}_X \left[f(x, X_x) g(x, X_x) \right] \, dx .$$

Proof: Substituting $p = 1$ in Corollary 2 implies that $\mathcal{M}_l^p = \{ (1) \}$ and $C_M = 1$.

Note that Corollary 3 also follows from the Campbell-Mecke theorem [13] as given in (6).

III. Interference Functionals

A. Modeling Assumptions

We consider a wireless network with interferers distributed according to a PPP Φ with intensity measure Λ. All interferers transmit with the same transmission power, which we set to one. Time is slotted, and slotted ALOHA is employed for medium access control, i.e., each node in Φ accesses the channel in each time slot independently with a certain probability φ. Let $\Phi_i \subseteq \Phi$ denote the set of interferers that are active in slot i. The interference power received at the origin o in slot i is modeled by

$$I_i = \sum_{u \in \Phi} h_i(u) \ell(u) 1(u \in \Phi_i) .$$

Here, 1 denotes the indicator function, i.e.,

$$1(u \in \Phi_i) = \begin{cases} 1, & u \in \Phi_i, \\ 0, & \text{else}. \end{cases}$$

The term $\ell(u)$ denotes the path gain from node u to o, which is assumed to be a non-negative function that decreases monotonically with $\|u\|_2$ with $\lim_{\|u\|_2 \to \infty} \ell(u) = 0$. Table I summarizes some commonly used models for the path gain, where $u \in \Phi$ is an arbitrary point, $\alpha > 2$ is the path loss exponent, and $\epsilon > 0$. The fading coefficient $h_i(u)$ denotes the channel fading state, i.e., $h_i(u)$ is a random variable that follows some distribution that depends on the fading model. Note that $h_i(u)$ are i.i.d. for different points u or different time slots i. We assume that the fading coefficients have an expected value $\mathbb{E}[h_i(u)] = 1$. Table II shows various well-known fading models. The symbol $B_k(x)$ denotes the second modified Bessel function.

TABLE I

<table>
<thead>
<tr>
<th>Model</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular model</td>
<td>$\ell_s(u) = |u|_2^{-\alpha}$</td>
</tr>
<tr>
<td>Minimum model</td>
<td>$\ell_m(u) = \min(1, |u|_2^{-\alpha})$</td>
</tr>
<tr>
<td>ϵ model</td>
<td>$\ell_\epsilon(u) = \frac{1}{\epsilon + |u|_2^2}$</td>
</tr>
<tr>
<td>Distance+1 model</td>
<td>$\ell_{d+1}(u) = \frac{1}{(1 + |u|_2)^2}$</td>
</tr>
</tbody>
</table>
TABLE II
FADECING MODELS

<table>
<thead>
<tr>
<th>Fading model</th>
<th>Probability density function of the power, $x \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayleigh</td>
<td>$f_k(x) = \exp(-x)$ for $k \in \mathbb{N}\setminus{0}$</td>
</tr>
<tr>
<td>Erlang</td>
<td>$f_k(x) = x^{k-1} \exp(-x) / (k-1)!$ for $k \in \mathbb{N}\setminus{0}$</td>
</tr>
<tr>
<td>Rice</td>
<td>$f_k(x) = \exp(-\psi_x/\psi) \left(\frac{x}{\psi} \right)^{k-1} \frac{\psi_x}{\psi}^{k-1} \exp\left(-\frac{\psi_x}{\psi} x \right)$ for $k \in \mathbb{N}$ and $\psi \in \mathbb{R}^+$</td>
</tr>
<tr>
<td>Nakagami-m</td>
<td>$f_k(x) = x^{m-1} \exp(-xm) / (1(m)) m^m$ for $m \in \mathbb{R}^+$</td>
</tr>
</tbody>
</table>

B. The General Case

In the following we derive an expression for the expected value $E \left[\prod_{i=1}^q P_i \exp \left(-c I_i \right) \right]$ with general models for fading and path loss. This is an important result for analyzing interference in wireless networks, as it occurs in the derivation of transmission success probabilities in many scenarios. An example is the success probability in Poisson networks with Nakagami fading, as is derived in Section IV.

Theorem 2 (Interference Functionals): Let $c \in \mathbb{R}$ be some constant, $p = (p_1, \ldots, p_q) \in \mathbb{N}^q$ with $||p||_1 > 0$, and let I_i denote the interference at the origin o at time slot i as defined in (17). Then we have

$$E_{\Phi,1} \left[\prod_{i=1}^q P_i \exp \left(-c I_i \right) \right]$$

$$= \exp \left(- \int_{\mathbb{R}^n} \left(1 - \prod_{j=1}^q \left(\phi \exp \left(-c h_j(x) \ell(x) \right) \right) \right) \Lambda(dx) \right) E_{\Phi} \left[\min(||p||_1, \Phi) \sum_{M \in \mathcal{M}_p} \frac{C_M}{l!} \right]$$

$$= \exp \left(- \sum_{i=1}^l \int_{\mathbb{R}^n} \left(1 - \prod_{j=1}^q \left(\phi \exp \left(-c h_j(x) \ell(x) \right) \right) \right) \Lambda(dx) \right) E_{\Phi} \left[\min(||p||_1, \Phi) \sum_{M \in \mathcal{M}_p} \frac{C_M}{l!} \right]$$

where \mathcal{M}_p is the class of all $q \times l$ matrices for which the columns $\|c_j\|_1 > 0$ for $j = 1, \ldots, l$ and the rows $\|r_i\|_1 = p_i$ for all $i = 1, \ldots, q$.

Note that the term $(1 - \phi) 1(m_{i,j} \in \{0\})$ can be omitted if $q = 1$, since all exponents $m_{i,j} > 0$.

Proof: The proof is based on Theorem 1. We have

$$E_{\Phi,1} \left[\prod_{i=1}^q P_i \exp \left(-c I_i \right) \right]$$

$$= E_{\Phi,1} \left[\prod_{i=1}^q P_i \prod_{j=1}^q \exp \left(-c I_j \right) \right]$$

$$= E_{\Phi,1} \left[\prod_{i=1}^q P_i \exp \left(-c \sum_{j=1}^q I_j \right) \right]$$

$$= E_{\Phi,1} \left[\prod_{i=1}^q \left(\sum_{u \in \Phi} h_i(u) \ell_i(u) 1(u \in \Phi_i) \right) \prod_{j=1}^q \exp \left(-c \sum_{v \in \Phi} h_j(v) \ell_j(v) 1(v \in \Phi_j) \right) \right]$$

$$\overset{(a)}{=} \exp \left(- \int_{\mathbb{R}^n} \left(1 - E_{h(x),1} \left[\exp \left(-c \sum_{j=1}^q h_j(x) \ell_j(x) 1(x \in \Phi_j) \right) \right] \right) \Lambda(dx) \right) E_{\Phi} \left[\min(||p||_1, \Phi) \sum_{M \in \mathcal{M}_p} \frac{C_M}{l!} \right]$$

Note that the term $(1 - \phi) 1(m_{i,j} \in \{0\})$ can be omitted if $q = 1$.

Proof: The proof is based on Theorem 1. We have

$$E_{\Phi,1} \left[\prod_{i=1}^q P_i \exp \left(-c I_i \right) \right]$$

$$= E_{\Phi,1} \left[\prod_{i=1}^q P_i \prod_{j=1}^q \exp \left(-c I_j \right) \right]$$

$$= E_{\Phi,1} \left[\prod_{i=1}^q P_i \exp \left(-c \sum_{j=1}^q I_j \right) \right]$$

$$= E_{\Phi,1} \left[\prod_{i=1}^q \left(\sum_{u \in \Phi} h_i(u) \ell_i(u) 1(u \in \Phi_i) \right) \prod_{j=1}^q \exp \left(-c \sum_{v \in \Phi} h_j(v) \ell_j(v) 1(v \in \Phi_j) \right) \right]$$

$$\overset{(a)}{=} \exp \left(- \int_{\mathbb{R}^n} \left(1 - E_{h(x),1} \left[\exp \left(-c \sum_{j=1}^q h_j(x) \ell_j(x) 1(x \in \Phi_j) \right) \right] \right) \Lambda(dx) \right) E_{\Phi} \left[\min(||p||_1, \Phi) \sum_{M \in \mathcal{M}_p} \frac{C_M}{l!} \right]$$
TABLE III

EXPECTED VALUES FOR DIFFERENT FADING MODELS. VALUES CAN BE SUBSTITUTED INTO (21).

<table>
<thead>
<tr>
<th>Fading model</th>
<th>$E_{h(x)}[\exp {-h(x)\ell(x)}]$</th>
<th>$E_{h(x)}[h(x)\ell(x)\exp {-h(x)\ell(x)}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayleigh</td>
<td>$\frac{1}{1+\ell(x)}$</td>
<td>$\frac{\ell(x)}{(1+\ell(x))^2}$</td>
</tr>
<tr>
<td>Erlang with $k = 2$</td>
<td>$\frac{1}{(1+\ell(x))^2}$</td>
<td>$\frac{\ell(x)}{(1+\ell(x))^2}$</td>
</tr>
<tr>
<td>Erlang</td>
<td>$\exp \left(-\frac{\psi(x)}{1+2\ell(x)}\right)(1 + 2\ell(x))^{-\frac{1}{2}}$</td>
<td>$\exp \left(-\frac{\psi(x)}{1+2\ell(x)}\right)(\frac{k+\psi+2h(x)}{(1+2\ell(x))^{2+\frac{1}{2}}}\ell(x))$</td>
</tr>
<tr>
<td>Rice</td>
<td>$\exp \left(-\frac{\psi(x)}{1+2\ell(x)}\right)(1 + 2\ell(x))^{-\frac{1}{2}}$</td>
<td>$\exp \left(-\frac{\psi(x)}{1+2\ell(x)}\right)(\frac{k+\psi+2h(x)}{(1+2\ell(x))^{2+\frac{1}{2}}}\ell(x))$</td>
</tr>
<tr>
<td>Nakagami-m</td>
<td>$\left(\frac{m}{m+\ell(x)}\right)^m\ell(x)$</td>
<td>$\left(\frac{m}{m+\ell(x)}\right)^{m+1}\ell(x)$</td>
</tr>
</tbody>
</table>

\((\ell)\) holds due to Theorem 1 with substituting $f_i(u, h_i(u)) = h_i(u)\ell_i(u)$, $g(u, h(v)) = \exp \left(-c\sum_{j=1}^q h_j(v)\ell_j(v)\right)$, and $h(v) = (h_1(v), \ldots, h_q(v))$. The terms $1(x \in \Phi_j)$ denote Bernoulli random variables with $E[1(x \in \Phi_j)] = \psi$. \((\ell)\) holds due to the independence of the fading coefficients $h_j(x)$ and $1(x \in \Phi_j)$.

Note that, similar to Theorem 1, we can omit E_{ϕ_1} if $\Lambda(\mathbb{R}^n) = \infty$ a.s.

C. Case Studies: Results for Specific Fading and Path Loss Models

In the following we calculate the expected value $E_{\Phi, h, 1}[I \exp(-I)]$ for a stationary PPP Φ with intensity λ. This expression has to be evaluated when analyzing the outage probability in certain scenarios, e.g., in the case of Nakagami fading with $m = 2$. We have

$$E_{\Phi, h, 1}[I \exp(-I)] = \exp \left(-\varphi \lambda \int_{\mathbb{R}^n} \left(1 - E_{h(x)}[\exp \{-h(x)\ell(x)\}]\right) \text{d}x\right) \varphi \lambda \int_{\mathbb{R}^n} E_{h(x)}[h(x)\ell(x)\exp \{-h(x)\ell(x)\}] \text{d}x \quad (21)$$

as a special case of Theorem 2 with $q = 1$, $p_1 = 1$, and $c = 1$.

The expected values within the integrals depend on the specific fading model. The results for the fading models in Table II and the singular path gain are presented in Table III. Substituting these expressions yields the final results.

As an example, for Rayleigh fading, the singular path gain, and a two-dimensional stationary PPP Φ with intensity λ we have

$$E_{\Phi, h, 1}[I \exp(-I)] = \varphi \lambda \int_{\mathbb{R}^2} \frac{\ell(x)}{1 + \ell(x)} \text{d}x \exp \left(-\varphi \lambda \int_{\mathbb{R}^2} \left(1 - \frac{1}{1 + \ell(x)}\right) \text{d}x\right) \quad (22)$$

where $\delta = \frac{2}{\pi}$, $\kappa = \frac{\varphi \lambda \pi}{\text{sinc}(\varphi)}$, and $\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$. Fig. 1 shows a plot of (22) over the intensity λ for different path loss exponents α with $\varphi = 1$. As can be seen, the expected value possesses a peak at a certain density of interferers, which depends on α. For increasing densities the expected value approaches zero, i.e., $\lim_{\lambda \to \infty} E[I \exp(-I)] = 0$ for all $\alpha > 2$.

For the special case of $\alpha = 4$ (i.e., $\delta = \frac{1}{2}$) we get

$$E_{\Phi, h, 1}[I \exp(-I)] = \frac{1}{4} \varphi \lambda \pi^2 \exp \left(-\frac{\varphi \lambda \pi^2}{2}\right),$$

which coincides with the result calculated using the pdf of the interference (Equation (3.22) in [5]).

Next, we generalize this result by computing the expected value $E[I^k \exp(-I)]$ for $k \in \mathbb{N}$. As an intermediate result, for $i \in \mathbb{N}$, the expected value $E_{h(u)}[(h(u)\ell(u))^i \exp \{-h(u)\ell(u)\}]$ is given by

$$E_{h(u)}[(h(u)\ell(u))^i \exp \{-h(u)\ell(u)\}] = \frac{i! \ell^i(u)}{(1 + \ell(u))^{i+1}}.$$ (24)

Substituting this expression into (19) allows the calculation of $E_{\Phi, h, 1}[I^k \exp(-I)]$. Some example expressions for $k = 2, 3, 4$ are presented in (25), (26), and (27), respectively. Here, again $\delta = \frac{2}{\pi}$, $\kappa = \frac{\varphi \lambda \pi}{\text{sinc}(\varphi)}$, and $\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$.
Fig. 1. Expected value $E[I \exp(-I)]$ given in (22) over the intensity of interferers for different path loss exponents α with $\varphi = 1$.

\[
E[I^2 \exp(-I)] = \exp(-\kappa) \kappa \left(\delta(1-\delta) + 2\kappa \delta \right).
\] (25)

\[
E[I^3 \exp(-I)] = \exp(-\kappa) \kappa \delta^2 \alpha \left(\alpha - 1 \right) \left(\alpha - 2 \right) + 2\kappa (2\alpha - 2)(3\alpha - 2) + 2\kappa (2\alpha - 2)(11\alpha - 14) + 8\kappa (3\alpha(\alpha - 2) + \kappa \alpha) \right).
\] (26)

\[
E[I^4 \exp(-I)] = \exp(-\kappa) \kappa^4 \alpha \left(6(\alpha - 2) + 4\kappa \right) \alpha .
\] (27)

D. Derivations using the Laplace Transform

An alternative approach for deriving the expected value $E[I_k \exp(-sI)]$, for $k \in \mathbb{N}$ and $s \in \mathbb{R}^+$, which is a special case of the results derived in the previous sections, is by applying the Laplace transform of the interference (cf. [5]). We have

\[
E_{\Phi, h, 1}[I^k \exp(-sI)] = (-1)^k L_I^{(k)}(s),
\] (28)

where $L_I(s)$ is the Laplace transform of the interference.

As an example, we consider the Laplace transform for the singular path-loss model and Rayleigh fading (see [5], (3.21)) with transmitter density $\varphi \lambda$ given by

\[
L_I(s) = \exp \left(-\varphi \lambda \pi s^\delta \frac{\pi \delta}{\sin(\pi \delta)} \right),
\] (29)

with $\delta = 2/\alpha$. When taking the first derivative of this expression and evaluate $-L_I'(1)$, this yields (22). For the second, third and fourth derivative we get (25)-(27).

IV. TEMPORAL DEPENDENCE OF OUTAGE UNDER NAKAGAMI FADING

The temporal correlation of link outages under Rayleigh fading has been derived in [9]. In the following we derive the result for the more general Nakagami fading model. For simplification we assume $m \in \mathbb{N}$ throughout this section.

A. Derivation of Outage Probabilities

In this section we apply the following network model: A source S transmits data packets to a destination D within a stationary Poisson field Φ of interferers with intensity λ. Let $d = \|D - S\|$ denote the distance between S and D. Slotted ALOHA is employed, i.e., each interferer transmits in each slot with probability φ. Fading is assumed to be Nakagami with parameter m, i.e., $h \sim \Gamma(m, \frac{1}{m})$ with $m > 0$. Let A_k denote the event that a transmission from S to D is successful at slot k. We assume that the event A_k occurs iff SIR $\geq \theta$ for some constant threshold θ, where SIR = $\frac{h_k \ell(d)}{I_k}$ denotes the signal-to-interference ratio. Here, I_k is defined as in (17). Further, let $\theta_{sd} = \theta \ell(d)$ denote the receiver threshold divided by the path gain from S to D. We start by deriving an expression for $P[A_k]$.

Theorem 3 (Transmission success probability): The success probability of a single transmission assuming Nakagami fading is

\[
P[A_k] = \exp \left(-\varphi \lambda \int_{\mathbb{R}^2} \left(1 - \left(1 + \theta_{sd} \ell(x) \right)^{-m} \right) dx \right)
\] (30)
where M is a vector of length l.

Proof: The probability of the event A_k in an arbitrary time slot k is given by

$$P[A_k] = P[h_k > \theta_{sd} I_k]$$

(31)

(a) $\sum_{i=0}^{m-1} \int_{\mathbb{R}^2} \left(\varphi (1 + \theta_{sd} \ell(x))^{-m} + 1 - \varphi \right)^2 \, dx \left(1 + \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \frac{1}{i+j} \right)$

(b) $\sum_{l=1}^{||\rho||} \sum_{M \in \mathcal{M}_l^p} \frac{C_M}{l!} \prod_{k=1}^{l} \lambda \int_{\mathbb{R}^2} \left(\varphi \frac{\Gamma(m + m_{k1})(\theta_{sd} \ell(x))^{m_{k1}}}{\Gamma(m)(1 + \theta_{sd} \ell(x))^{m + m_{k1}}} + (1 - \varphi) \mathbf{1}(m_{k1} \in \{0\}) \right) \left(\varphi \frac{\Gamma(m + m_{k2})(\theta_{sd} \ell(x))^{m_{k2}}}{\Gamma(m)(1 + \theta_{sd} \ell(x))^{m + m_{k2}}} + (1 - \varphi) \mathbf{1}(m_{k2} \in \{0\}) \right) \, dx$.

Here, $\mathbf{1}(m_{k1} \in \{0\})$ denotes the indicator variable being one for $m_{k1} = 0$, and else zero.

Proof: We start the derivation by substituting the definition of the events A_r and A_s and get

$$P[A_r, A_s] = P[h_r > \theta_{sd} I_r, h_s > \theta_{sd} I_s]$$

(32)

$$= \frac{C_M}{l!} \prod_{k=1}^{l} \lambda \int_{\mathbb{R}^2} \left[\varphi \frac{\Gamma(m + m_{k1})(\theta_{sd} \ell(x))^{m_{k1}}}{\Gamma(m)(1 + \theta_{sd} \ell(x))^{m + m_{k1}}} + (1 - \varphi) \mathbf{1}(m_{k1} \in \{0\}) \right] \left[\varphi \frac{\Gamma(m + m_{k2})(\theta_{sd} \ell(x))^{m_{k2}}}{\Gamma(m)(1 + \theta_{sd} \ell(x))^{m + m_{k2}}} + (1 - \varphi) \mathbf{1}(m_{k2} \in \{0\}) \right] \, dx$$.

To be able to calculate this probability we have to derive an expression for the expected value in the last line. Here we distinguish two cases: For the case $i + j > 0$ we apply Theorem 2, which gives

$$E_{\Phi, h_1} \left[I_r^i I_s^j \exp(-m \theta_{sd} (I_r + I_s)) \right]$$

(34)

$$= E_{\Phi, h_1} \left[\left(\sum_{u \in \Phi} h_r(u) \ell(u) \mathbf{1}(u \in \Phi_r) \right)^i \left(\sum_{v \in \Phi} h_s(v) \ell(v) \mathbf{1}(v \in \Phi_s) \right)^j \right]$$

$$= \exp(-m \theta_{sd} \sum_{w \in \Phi} \ell(w) \mathbf{1}(w \in \Phi_r + h_s(w) \mathbf{1}(w \in \Phi_s))$$
Here, \(p = (i, j) \). In the above expression, (a) holds due to Theorem 2 and in (b) we calculated the expected values of the gamma distributed random variables \(h \sim \Gamma(m, \frac{1}{m}) \).

For the case \(i + j = 0 \) we apply (5), such that

\[
\mathbb{E}_{\varphi, h, 1} [\exp (-m \theta_{sd} (I_r + I_s))] \equiv \exp \left(-\lambda \int_{\mathbb{R}^2} \left(1 - (\varphi \mathbb{E}_{h_r(x)} [\exp (-m \theta_{sd} h_r(x) \ell(x))] + 1 - \varphi \right) \right) dx
\]

\[
\frac{\|p\|_1}{M} \sum_{l=1}^{\|p\|_1} \sum_{M \in \mathcal{M}_l} \prod_{k=1}^{l} \lambda \int_{\mathbb{R}^2} \left(\varphi \mathbb{E}_{h_r(x)} [\exp (-m \theta_{sd} h_r(x) \ell(x))] \right) (h_r(x) \ell(x))^{mk_1} + (1 - \varphi) I(mk_1 \in \{0\}) dx
\]

\[
\frac{\|p\|_1}{M} \sum_{l=1}^{\|p\|_1} \sum_{M \in \mathcal{M}_l} \prod_{k=1}^{l} \lambda \int_{\mathbb{R}^2} \left(\varphi \mathbb{E}_{h_r(x)} [\exp (-m \theta_{sd} h_s(x) \ell(x))] \right) (h_s(x) \ell(x))^{mk_2} + (1 - \varphi) I(mk_2 \in \{0\}) dx
\]

where \(p = (i, j) \). In the above expression, (a) holds due to Theorem 2 and in (b) we calculated the expected values of the gamma distributed random variables \(h \sim \Gamma(m, \frac{1}{m}) \).

If we, for example, substitute the singular path-loss model into (30), we get the following result.

Corollary 4 (Transmission success probability with singular path loss): For the singular path loss model \(\ell(x) = \|x\|_2^{-\alpha} \) we have

\[
P[A_k] = \exp \left(-\lambda \sum_{i=1}^{M-1} \mathbb{E}_{\varphi, h, 1} [\exp (-m \theta_{sd} I_r + I_s)] \left(\frac{\pi \delta_{sd} \Gamma(1 - \delta) \Gamma(m + \delta)}{\Gamma(m)} \right)^l \right)
\]

\[
\left(1 + \sum_{i=1}^{m-1} \frac{i}{\prod_{k=1}^{i} \left(\Gamma(m) \right)} \right) \left(\frac{\pi \delta_{sd} \Gamma(2m + \delta)}{\Gamma(2m)} \right)^l \sum_{M \in \mathcal{M}_l} \frac{C_M}{M} \prod_{k=1}^{l} \Gamma(m - k_1 - \delta) \right).
\]

Proof: Substituting \(\ell(x) = \|x\|_2^{-\alpha} \) and \(\varphi = 1 \) into Theorem 3 yields the result.

Next, we substitute the singular path-loss model and \(\varphi = 1 \) into (32).

Corollary 5 (Joint transmission success probability with singular path loss): For the singular path loss model \(\ell(x) = \|x\|_2^{-\alpha} \) and \(\varphi = 1 \) we have

\[
P[A_r, A_s] = \exp \left(-\lambda \frac{\pi \delta_{sd} \Gamma(1 - \delta) \Gamma(2m + \delta)}{\Gamma(2m)} \right) \left(1 + \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \frac{\lambda \delta_{sd} \Gamma(2m + \delta)}{\Gamma(2m)} \right) \left(1 + \sum_{i=1}^{m-1} \mathbb{E}_{\varphi, h, 1} [\exp (-m \theta_{sd} I_r + I_s)] \left(\frac{\pi \delta_{sd} \Gamma(2m + \delta)}{\Gamma(2m)} \right)^l \right)
\]

\[
\sum_{M \in \mathcal{M}_l} \frac{C_M}{M} \prod_{k=1}^{l} \Gamma(m + mk_1 + mk_2 - \delta) \Gamma(m + mk_1 + mk_2 + 2m) \right).
\]

Proof: Substituting \(\ell(x) = \|x\|_2^{-\alpha} \) and \(\varphi = 1 \) into Theorem 4 yields the result.
B. Outage Probability for the Singular Path Loss

In the following, plots of (36) and (37) are presented. Fig. 2 shows the outage probability $\bar{P}_{\bar{A}} = 1 - P[A_k]$ over the interferers' intensity λ. The following observations can be made: Firstly, the outage probability is higher for higher intensity λ and hence higher interference, with a non-linear dependence. In the limit, the outage probability approaches one, i.e., $\lim_{\lambda \to \infty} (1 - P[A_k]) = 1$. Secondly, for high values of the path loss exponent α the attenuation of both the received signal and the interference is higher than for low values. In the scenario presented in Fig. 2, the attenuation effect is stronger for interference than for the received signal. Hence, the outage probability is lower for high path loss exponents α.

To explore this effect in more detail, in Fig. 3 the impact of the path loss exponent α is shown. As can be seen, the dependence of $P[A_k]$ on α is monotonic for the plotted parameters. For α close to two the success probability is very low and approaching zero, as expected in case of a stationary PPP of interferers on the plane; for higher values it is monotonically increasing. If we further increase α beyond the range of the plot, the success probability approaches a limiting value, which is given by $\lim_{\alpha \to \infty} P[A_k] = \exp(-\mu)$ with $\mu = d^2 \pi \lambda$ being the expected number of interferers in a circle with radius d around D. This behavior can be explained by recalling the modeling assumptions: A successful transmission is defined as the event that the SIR is above a certain threshold, i.e., neither consider noise nor receiver sensitivity. As the path loss gets large, the success probability exhibits a hard-core behavior, since any node closer to the receiver than the transmitter would cause overwhelming interference. Hence, the success probability is equal to the probability that there is no interferer in the disk of radius d centered at the destination.

Another interesting observation can be made in Fig. 3: The two parameters α and m have a joint impact on the success
probability. For small \(\alpha \), more severe fading, i.e., smaller values of \(m \), leads to high success probabilities. This can be explained by the fact that small \(\alpha \) lead to strong interference, which can be partly mitigated by harsh fading conditions. Hence, in this regime fading diminishes interference stronger than it diminishes the received signal. For higher values of \(\alpha \) this trend is inverted. Here, although interference can still be reduced by severe fading, its impact on the received signal is dominant. In between there is a certain value of \(\alpha \) for which the parameter \(m \) plays no role at all. This value depends on the parameters \(\lambda \), \(\theta \), and \(d \).

C. Joint Outage Probability for the Singular Path Loss

Next, we investigate the joint outage probability of two transmissions in different time slots. Let therefore \(\tilde{A}_r \) denote the complementary event of \(A_r \), i.e., that the transmission in slot \(r \) is in outage. We can calculate the joint outage probability by \(P[\tilde{A}_r, \tilde{A}_s] = 1 - P[A_r] - P[A_s] + P[\tilde{A}_r, \tilde{A}_s] \), which is shown in Fig. 4. Overall, the plot shows similar trends as the one in Fig. 2, with the obvious difference that for the given parameters the joint outage probability \(P[\tilde{A}_r, \tilde{A}_s] \) is smaller than the outage probability \(1 - P[A_k] \) of a single transmission for all \(\lambda > 0 \).

There is one small detail, which is very interesting in Fig. 4: Similar to the impact of the fading parameter \(m \) (see Fig. 3), also the influence of the path loss exponent \(\alpha \) on the outage probability is determined by the values of other parameters. In particular, for small intensities \(\lambda \) — in the low interference regime — lower path loss exponents are beneficial (left side of the plot). For high intensities \(\lambda \) — in the high interference regime — this trend is inverted (right side of the plot). Here, high path loss exponents \(\alpha \) significantly reduce the interference; and this effect is stronger than the degradation of the received signal due to the higher \(\alpha \). Between these two extremes there is a non-monotonic dependence on \(\alpha \), as can be seen in the plot, e.g., for \(\lambda = 0.015 \).

Next, we compare the probability of two transmissions both being successful for the following two cases: Firstly, interference is dependent due to the same set of interferers. In this case the joint success probability is given by \(P[A_r, \tilde{A}_s] \). Secondly, interference is assumed to be independent. Here, the joint success probability can be simply calculated by \((P[A_k])^2 \). This case is presented for comparison reasons and to highlight the impact of correlated interference on the success probabilities. It resembles the scenario where interferers are mobile and the time slots are far away from each other. A plot of these expressions is presented in Fig. 5. We can see that for equal parameters the dependent interference case always shows higher values than the independent interference case. This effect stems from the positive correlation of interference in the two time slots \(r \) and \(s \). Similar effects occur in the case of Rayleigh fading and cooperative relaying, as shown in [10].

Finally, we investigate the probability that at least one out of two transmissions is successful, again for both the dependent and the independent interference case. This scenario is sometimes denoted as time diversity or retransmission scenario. For the dependent interference case, the probability of at least one successful transmission is given by \(P[A_r] + P[A_s] - P[A_r, A_s] \). For the independent interference case, we can calculate this probability by \(1 - (1 - P[A_k])^2 \). A plot of these probabilities is presented in Fig. 6. As can be seen, the success probabilities for independent interference are higher than the ones for the dependent interference. Note that it is the other way around in Fig. 5. This can be explained by the fact that for highly correlated interference (which is the case in the plot due to \(\phi = 1 \)) it is very likely that either both transmissions are successful or both are not. Hence, the probability of having exactly one of two transmissions being successful is relatively low in this case. Therefore, the probability of at least one transmission being successful is also reduced.

![Fig. 4. Probability of two transmissions being in outage P[\tilde{A}_r, \tilde{A}_s] given in (37) over interferer intensity \(\lambda \). Parameters are \(m = 3 \), \(\theta = 0.5 \), and \(d = 2 \).](image-url)
Fig. 5. A comparison between the dependent interference case \(P[A_r, A_s] \) (lines) given in (37) and the independent interference case \((P[A_k])^2 \) (marks) given in (36) over interferer intensity \(\lambda \). Parameters are \(m = 3 \), \(\theta = 0.5 \), and \(d = 2 \).

Note that the success probabilities monotonically depend on \(\theta \) and hence similar trends will occur for different values of \(\theta \).

V. Concluding Remarks and Future Work

Interference is considered to be one of the key factors limiting the performance of distributed wireless networks. A good model of the interference and its space-time dynamics is an important asset for performance assessments. This paper contributes to this aspect in multiple ways.

Firstly, we extended the toolbox of stochastic geometry to allow the calculation of very general functionals of PPPs. In particular, we proved a theorem that provides an expression for the general functional \(\mathbb{E}_{\Phi, X} \left[\prod_{i=1}^q (\sum_{u \in \Phi} f_i(u, X_u))^p_i \prod_{u \in \Phi} g(u, X_u) \right] \). This result can be seen as an extension of the well-known Campbell-Mecke theorem for the PPP.

Secondly, we applied this general result, which has a broad range of applications, to interference in wireless networks. This allowed us to calculate the expected value \(\mathbb{E} \left[\prod_{i=1}^q P_i \exp \left(-cI_i \right) \right] \). This result can be applied to different scenarios: Similar expressions occur, e.g., when calculating the outage probability of cooperative communications.

Thirdly, we highlighted one of these examples, namely calculating the joint outage probability of several transmissions under Nakagami fading. This derivation holds for any path loss model; as a case study, we presented the result for the singular path loss model. The intention is to sketch the path going from the general result to the final expression for a particular path loss model.
Our goal for future work is to further extend the tools of stochastic geometry for use in wireless settings. In particular, we will consider more sophisticated medium access, departing from ALOHA and aiming for CSMA. Modeling a CSMA network will involve hard-core point processes, for which fewer mathematical tools are available.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Science Fund (FWF) grant P24480-N15 (Dynamics of Interference in Wireless Networks) and KWF/EFRE grant 2014/20777/31602 (Research Days), the European social fund, a research leave grant from the University of Klagenfurt, and Greek national funds through the program “Education and Lifelong Learning” of the NSRF program “THALES investing in knowledge society through the European Social Fund”. Also the support of the U.S. NSF (grant CCF 1216407) is gratefully acknowledged.

REFERENCES

Appendix A

Lemma 3: Let \(f_i : \mathbb{R}^n \to \mathbb{R} \) with \(1 \leq i \leq k \) denote non-negative functions and \(U \subseteq \mathbb{R}^n \) be a finite or countable set. Then we have

\[
\sum_{u \in U^k} \prod_{i=1}^k f_i(u_i) = \prod_{i=1}^k \sum_{u \in U} f_i(u) .
\]

(38)

Proof: The result holds due to the law of distributivity. We prove the lemma by induction. For \(k = 1 \) the result is trivial. Let us assume the result holds for \(k \); we show that it also holds for \(k + 1 \). Thus, we have

\[
\prod_{i=1}^{k+1} \sum_{u \in U} f_i(u) = \left(\prod_{i=1}^k \sum_{u \in U} f_i(u) \right) \sum_{v \in U} f_{k+1}(v)
\]

(39)

\[
= \left(\sum_{u \in U^k} \prod_{i=1}^k f_i(u_i) \right) \sum_{v \in U} f_{k+1}(v)
\]

\[
= \sum_{v \in U} \left(\sum_{u \in U^k} \prod_{i=1}^k f_i(u_i) \right) f_{k+1}(v)
\]

\[
= \sum_{v \in U} \left(\sum_{u \in U^k} \prod_{i=1}^k f_i(u_i) \right) f_{k+1}(v)
\]

\[
= \sum_{u \in U^{k+1}} \prod_{i=1}^{k+1} f_i(u_i) ,
\]

where (a) holds due to the induction assumption.

\[\blacksquare\]