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Abstract—We propose and prove a theorem that allows the
calculation of a class of functionals on Poisson point processes
that have the form of expected values of sum-products of
functions. In proving the theorem, we present a variant of the
Campbell-Mecke theorem from stochastic geometry. We proceed
to apply our result in the calculation of expected values involving
interference in wireless Poisson networks. Based on this, we
derive outage probabilities for transmissions in a Poisson network
with Nakagami fading. Our results extend the stochastic geometry
toolbox used for the mathematical analysis of interference-limited
wireless networks.

Index Terms—Wireless networks, stochastic geometry, inter-
ference, correlation, Poisson point process, Rayleigh fading,
Nakagami fading, time diversity.

I. INTRODUCTION AND CONTRIBUTIONS

INTERFERENCE in wireless networks occurs if the com-
munication from a transmitter to a receiver is disturbed by

additional nodes transmitting in the vicinity of the receiver on
the same frequency band and at the same time. Interference
occurs even if code division multiple access (CDMA) is used,
in which case multiple users are not separated in time or
space but though the use of spreading codes; in this case,
as well, interference powers, albeit reduced by the spread-
ing, add up at the receiver. Interference can be mitigated
or even exploited [1], [2] in networks with central entities
using scheduling and signal processing techniques, such as
multiuser detection [3] and interference cancellation [4]. In
non-centralized systems, however, when no dedicated control
entities can regulate the access to the shared wireless medium,
interference remains a performance-limiting factor, partly be-
cause it is subject to considerable uncertainty [5].

For these reasons, the stochastic modeling of interference
in wireless networks — in particular its dynamic behavior over
time and space [6]–[8], which we will refer to in this work as
the interference dynamics — has recently attracted the interest
of the research community. Temporal and spatial dependencies
introduced by interference cause the events that different
transmissions are correctly decoded to be dependent, which
in turn influences system performance. It leads to reduced
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diversity [9] and degraded performance of many communica-
tion techniques, such as cooperative relaying, multiple-input
multiple-output (MIMO), and medium access protocols [8],
[10], [11].

When modeling interference and its dynamics in wireless
networks, researchers often use tools from stochastic geom-
etry [12]. These tools include the Campbell-Mecke theorem,
Campbell’s theorem, and expressions for the probability gener-
ating functional (pgfl) (see [13]–[15]) applied to Poisson point
processes (PPPs). A comprehensive overview on applying
stochastic geometry to the analysis of wireless networks can
be found in books by Baccelli and Błaszczyszyn [16], [17]
and by Haenggi [13].

The article at hand extends the tools of stochastic ge-
ometry by calculating general sum-product functionals for
PPPs. While proving our results, we present a variant of the
Campbell-Mecke theorem applied to PPPs. Furthermore, we
apply our results to calculate expected values that occur in
the analysis of the interference in wireless networks. Notably,
we derive link outage probabilities in a Poisson network with
Nakagami fading [18] caused by multipath propagation.

A. Related Work
In networks, in which the nodes’ locations are modeled

via a Poisson point process and that employ ALOHA, the
interferers’ locations form a Poisson point process. Therefore,
we call such networks Poisson networks. This class of net-
works was the first in which the correlation of interference
levels at different times and locations was analytically studied.
Notably, mathematical expressions for interference dynamics
are presented in [6], [7], [19], [20]. Analytical studies of
cooperative diversity under correlated interference are per-
formed in [8], [10], [11], [21], [22] using different assump-
tions concerning diversity combining (selection combining and
maximum ratio combining) and small-scale fading (Rayleigh
and Nakagami fading). In Poisson networks, many different
research works study the impact of interference dynamics
on network performance. The article [23] investigates the
effects of the channel model and scheduling on the SIR, the
outage probability, and the transmission capacity. From a more
theoretical perspective, the diversity gain of retransmissions
under correlated interference is analyzed in [9] by means of
diversity polynomials. Results show that the diversity gain
is equal to unity even for lightly correlated interference
despite independently fading channels in each transmission.
The impact of node mobility on interference dynamics is
investigated in [24]. The authors conclude that mobility not
only reduces the temporal correlation of the interference but
affects other statistics as well (e.g., it changes the expected
value of interference).
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Similar results can also be derived for cellular networks, if
we assume Poisson distributed base stations. In this case, as
well, interference is correlated across time and space, and its
dynamics should be carefully taken into consideration when
designing a system. For example, in [25] it is shown how inter-
cell interference coordination and intra-cell diversity impact
the performance of a cellular network. In particular, it is shown
that, depending on the SIR regime under consideration, one
or the other of these techniques should be selected. Further,
in [26] coordinated multipoint transmissions in cellular net-
works are analyzed; by employing the coverage probability
as a performance metric, the authors show that multipoint
transmissions are more beneficial for the worst-case user than
for the average user.

There is currently not as much theoretical work available on
interference dynamics for Poisson networks employing carrier-
sense multiple access (CSMA). When modeling CSMA, a
minimum distance between sending nodes is introduced, which
is typically modeled by hard-core processes.

Matérn’s model is based on a dependent thinning process
of a PPP, where each point is marked with a random num-
ber and the point with the highest number within a certain
range is sustained; the others are removed. It is applied for
modeling CSMA networks in many different publications:
The authors of [17] derive some theoretical results on this
modeling assumption, although a comprehensive analysis of
the interference dynamics is still subject to future work. The
mean interference in CSMA networks is discussed in [27]. An
analysis of coverage and throughput per user in IEEE 802.11
networks based on Matérn’s model is presented in [28]; the
results of this analysis are also used to solve some optimization
problems. In [29] an analysis of dense CSMA networks is
presented; the authors employ performance metrics such as
average throughput to show that different spatial models lead
to a significant change in network performance.

Approaches not based on Matérn’s model have also been
considered. For example, a modified hard-core point process
is proposed in [30] to model the transmitters in a CSMA
network; the authors derive closed-form solutions that approx-
imate mean and variance of the interference; a simulation
shows the accuracy of their approximations. Also, in [31]
the authors discuss how to model the spatial distribution of
transmitting nodes showing that simple sequential inhibition
processes are more accurate for modeling CSMA networks
than Matérn’s model.

Work on how to design protocols that take advantage of the
knowledge about interference correlation is still very sparse.
For example, in [32] its impact on MAC protocol design is
discussed. We therefore work toward a better understanding
of the impact of correlated interference by presenting very
general results on interference functionals.

In the article at hand we present mathematical tools that
allow researchers to further generalize the modeling assump-
tions when studying interference dynamics. This allows to gain
insights on interference dynamics in realistic scenarios.

B. Summary of Contributions

The main contributions of this article are as follows. Firstly,
in Section II we provide and prove a theorem for calculating
a functional that has the form of the expected value of
a combined sum and product of functions over a PPP. In
particular, let us consider a PPP Φ on Rn with a locally
finite and diffuse intensity measure Λ and q + 1 non-negative
measurable functions fi, g : Rn × X → R with X ⊆ R,
i ∈ [q] = {1, . . . , q}, and g(x, χ) ≤ 1 for all x ∈ Rn
and χ ∈ X . Let the exponents pi for i ∈ [q] (q ∈ N)
be non-negative integers. We assume 0 ∈ N throughout the
article. Finally, let X = (Xu) for all u ∈ Φ be X -valued
i.i.d. random marks to the points in Φ. These marks can be
used to model, e.g., the effects of multi-path propagation in
an wireless network. Throughout this article, the notation EX
indicates that the expected value is calculated with respect to
X . Our contribution is to calculate the functional

EΦ,X

[
q∏
i=1

(∑
u∈Φ

fi(u,Xu)

)pi ∏
u∈Φ

g(u,Xu)

]
. (1)

In the following, we call functionals of this form sum-product
functionals. The expression we arrive at is given in (16) of
Theorem 1. As part of the proof, we also present a variant of
the Campbell-Mecke theorem applied to PPPs in Lemma 1.

Secondly, in Section III we apply this result to derive
expressions for certain functionals related to interference in
wireless networks with slotted ALOHA. In particular, we
consider a setting where the interference power at the origin o
at time slot i is Ii =

∑
u∈Φ hi(u) `(u)1

(
u ∈ Φi) with hi(u)

being the fading coefficient for node u at time slot i (assumed
to be temporally and spatially i.i.d.), `(u) being the path gain
of node u, and 1

(
u ∈ Φi) being the indicator function with

Φi ⊆ Φ denoting the nodes transmitting at time slot i. We are
able to calculate

EΦ,h,1

[
q∏
i=1

Ipii exp
(
− cIi

)]
(2)

for some constant c ∈ R and p = (p1, . . . , pq) ∈ Nq . Here, the
expectation is taken over the PPP Φ, the fading coefficients
h, and the indicator function 1. We call functionals of this
form interference functionals. The result is given in (23) of
Theorem 2. We then highlight some special cases particularly
useful to wireless communications by employing commonly
used models for path loss and small-scale fading into the
general result of (2). For example, for a stationary PPP, the
singular path loss model `s(u) = ‖u‖−α2 with path loss
exponent α, Rayleigh fading, and slotted ALOHA, we obtain

EΦ,h,1[I exp(−I)] =
δ2λπ2 exp

(
− δλπ2

sin(δπ)

)
sin (δπ)

(3)

with δ = 2
α . Other examples can be obtained by substituting

the expressions presented in Table III into (25).
Finally, in Section IV we show how these results can be

used in the performance analysis of wireless networks. For
example, we derive the probability of a successful reception in
a Poisson network with Nakagami fading, where the reception
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is successful iff the signal-to-interference ratio (SIR) is above
a certain threshold θ. The result is given in (35). We also
derive the joint probability for the successful reception of two
transmissions at the same receiver in different time slots.

II. SUM-PRODUCT FUNCTIONALS ON PPPS

A. Theorems from Stochastic Geometry

Let Φ denote a PPP on Rn with a locally finite and diffuse
intensity measure Λ. Stochastic geometry provides a set of
helpful tools to calculate certain expected values involving
Φ. One well-known tool is Campbell’s theorem (see [13],
Section 4.5), which states that

EΦ

[∑
u∈Φ

f(u)

]
=

∫
Rn
f(x) Λ(dx) (4)

for any non-negative measurable function f on Rn. Another
tool is the following theorem on probability generating func-
tionals (pgfls) of PPPs (see [13], Section 4.6):

EΦ

[ ∏
u∈Φ

g(u)

]
= exp

(
−
∫
Rn

(
1− g(x)

)
Λ(dx)

)
(5)

for any measurable function g on Rn with 0 ≤ g(x) ≤ 1
for all x such that the integral in (5) is finite. A third tool is
the following form of the Campbell-Mecke theorem (see [13],
Section 8.4), which is a combination of (4) and (5) and states

EΦ

[∑
u∈Φ

f(u)
∏
v∈Φ

g(v)

]
= (6)

exp

(
−
∫
Rn

(
1− g(x)

)
Λ
(
dx
))∫

Rn
f(x)g(x) Λ

(
dx
)
.

These theorems are very helpful in the analysis of wireless
networks and many other systems. None of them, however,
can be applied to calculate an expected value of the form
given in (1). Such expected values are required in the analysis
of wireless networks with interference, e.g., when calculating
the outage probabilities under Nakagami fading. We therefore
provide an expression for (1) in this section.

B. Higher-order Campbell-Mecke Theorem for PPPs

In the following we prove two variants of the higher-order
Campbell-Mecke theorem [13] for PPPs (which is a special
case of Corollary 9.2.3 in [16]).

Lemma 1 (Higher-order Campbell-Mecke Theorem for
PPPs): Let Φ denote a PPP with a locally finite and diffuse
intensity measure Λ. Further, let f : Rnd ×N → R+ denote
a measurable function, where N is the space of counting
measures. Then we have

EΦ

 6=∑
u∈Φd

f(u,Φ)

 = (7)∫
Rn
. . .

∫
Rn

∫
N
f(x, ϕ)P{x1,...,xd}(dϕ)Λ(dx1) · · ·Λ(dxd) ,

where the symbol 6= on top of the sum denotes summing only
over u = (u1, . . . , ud) with ui 6= uj for all i 6= j. Further, x =

(x1, . . . , xd) and P{x1,...,xd} denotes the Palm distribution of
Φ with respect to the points x1, . . . , xd.

Proof: We get the result by iteratively applying the
Campbell-Mecke theorem [13]:

EΦ

 6=∑
u∈Φd

f(u,Φ)

 (8)

(a)
= EΦ

[ ∑
u1∈Φ

∑
u2∈Φ\{u1}

· · ·
∑

ud∈Φ\{u1,...,ud−1}

f
(
(u1, . . . , ud),Φ

)]
(b)
=

∫
N

∑
u1∈Φ

∑
u2∈Φ\{u1}

· · ·
∑

ud∈Φ\{u1,...,ud−1}

f
(
(u1, . . . , ud), ϕ

)
P (dϕ)

(c)
=

∫
Rn

∫
N

∑
u2∈ϕ

· · ·
∑
ud∈ϕ

f
(
(x1, u2, . . . , ud), ϕ

)
P{x1}(dϕ)Λ(dx1)

(d)
=

∫
Rn
· · ·
∫
Rn

∫
N
f
(
(x1, . . . , xd), ϕ

)
P{x1,...,xd}(dϕ)Λ(dx1) · · ·Λ(dxd) ,

where (a) holds due to the definition of
∑6=; in (b) we

substitute the definition of the expected value over Φ; and
in (c) and (d) we apply the Campbell-Mecke theorem.

Corollary 1: With the same assumptions as in Lemma 1 and
f : Rn ×N → R+ we have

EΦ

 ∑
U⊆Φ
|U|=d

∏
u∈U

f(u,Φ)

 (9)

=
1

d!

∫
Rn
. . .

∫
Rn

∫
N

d∏
i=1

f(xi, ϕ)P{x1,...,xd}(dϕ)

Λ(dx1) · · ·Λ(dxd) .

Proof: We have

EΦ

 ∑
U⊆Φ
|U|=d

∏
u∈U

f(u,Φ)

 =
1

d!
EΦ

 6=∑
u∈Φd

d∏
i=1

f(ui,Φ)

 ,

(10)
since the sum on the right hand side considers each product
of the left hand side exactly d! times due to the ordering of
the elements and since the coordinates are distinct. Applying
Lemma 1 yields the result.

C. Sum-Product Functionals on PPPs

In this section we derive an expression for the expected
value given in (1). The following lemma serves as preparation.

Lemma 2: Let U ⊆ Rn be a countable set and q ∈ N. Let
the vector of exponents p = (p1, . . . , pq) ∈ Nq with ‖p‖1 =∑q
i=1 pi. We assume ‖p‖1 > 0. Further, let pc(i) =

∑i
j=1 pj

for all i ∈ [q] be the cumulative sum of the exponents pi;
we set pc(0) = 0. Let u =

(
u(1), . . . , u(q)

)
∈ U‖p‖1 with



4

u(i) =
(
upc(i−1)+1, . . . , upc(i)

)
. Finally, let fi : Rn → R with

1 ≤ i ≤ q be non-negative functions. Then we have∑
u∈U‖p‖1

q∏
i=1

pi∏
j=1

fi

(
u

(i)
j

)
(11)

=

min(‖p‖1,|U |)∑
l=1

∑
M∈Mp

l

CM
∑
V⊆U
|V |=l

q∏
i=1

l∏
j=1

f
mij
i

(
vj
)
,

where Mp
l ⊆ Nq×l is the class of all q× l matrices for which

the columns ‖m·j‖1 > 0 for j = [l] and the rows ‖mi·‖1 = pi
for all i = [q], M = (mij) with 1 ≤ i ≤ q and 1 ≤ j ≤ l,
and V = {v1, . . . , vl} without any specific ordering and the
variable CM is defined as

CM =

q∏
i=1

pi!∏l
j=1mij !

. (12)

Proof: We prove the lemma by showing that the same
products are summed on the left and on the right hand side.
Note that all terms in each sum are non-negative and hence the
sums on both sides are either absolutely convergent or diverge
to infinity irrespective of the order of the summation; in both
cases we can exchange the order of the summation.

We define the function F (u) = (l, V,M), as follows: l is
the number of distinct coordinates of u, i.e., l = |{ui | 1 ≤ i ≤
‖p‖1}|. Clearly, 1 ≤ l ≤ min(‖p‖1, |U |), covering the range
from all ui being the same to all ui being different. The set V
is the set of all distinct elements in u, i.e., V = {ui | 1 ≤ i ≤
‖p‖1}. Hence, V ⊆ U with |V | = l. We denote the elements
of V = {v1, . . . , vl} without any specific ordering. The matrix
M is of size q × l with entries mij , defined as follows: mij

is the number of coordinates in the vector u(i) that are equal
to vj , i.e., mij = |{k |u(i)

k = vj , 1 ≤ k ≤ pi}|. Note that
these numbers must sum to

∑l
j=1mij = pi for all i ∈ [q],

and each element vj must occur at least once in the product,
i.e.,

∑q
i=1mij > 0 for all j ∈ [l].

The function F (u) is not injective, i.e., there can be different
vectors u 6= u′ with F (u) = F (u′). Let (l, V,M) be arbitrary,
but fixed. In the following we calculate the size of the preim-
age F−1(l, V,M). Toward this goal, let u ∈ F−1(l, V,M) be
an arbitrary member of this preimage. Further, let us use the
notation

f⊗i
(
u(i)
)

=

pi∏
j=1

fi

(
u

(i)
j

)
. (13)

Observe that the product
∏q
i=1 f

⊗
i

(
u(i)
)

is invariant to per-
mutations inside the vectors u(i). For each u(i), the number
of such permutations is pi!, but whether such permutations
actually result in a different u(i) (and thus u) depends on how
many distinct elements of U appear in u(i). This is determined
by the ith row of M . Hence, the number of permutations
resulting in a different u(i) is

di =
pi!∏l

j=1mij !
. (14)

The number of permutations of u, which lead to the
same products (13) is hence CM =

∏q
i=1 di. Hence, the

preimage F−1(l, V,M) of a given vector (l, V,M) contains
|F−1(l, V,M)| = CM =

∏q
i=1 di elements. Note that the

union of all these preimages gives U‖p‖1 .
Each of the elements in a preimage leads to the same

product on the left hand side of (11), i.e.,

q∏
i=1

f⊗i
(
u(i)
)

=

q∏
i=1

l∏
j=1

f
mij
i

(
vj
)
. (15)

Hence, in the right hand side we sum over all combinations
(l, V,M), for each combination multiplying one element of
the corresponding preimage F−1(l, V,M) by the size CM of
this preimage.

Next, we state our main result on sum-product functionals
on PPPs of the general form (1).

Theorem 1 (Sum-product functionals for PPPs): Let Φ be
a PPP with a locally finite and diffuse intensity measure Λ.
Also, let fi, g : Rn × X → R with X ⊆ R and 1 ≤ i ≤ q
be non-negative measurable functions with g(x) ≤ 1 for all
x ∈ Rn and pi ∈ N with ‖p‖1 > 0. Furthermore, let X· =
(Xu : u ∈ Φ) be a family of X -valued i.i.d. random marks of
the points in Φ. Then we have

EΦ,X·

[
q∏
i=1

(∑
u∈Φ

fi(u,Xu)

)pi ∏
v∈Φ

g(v,Xv)

]
(16)

= exp

(
−
∫
Rn

(
1− EX

[
g(x,X)

])
Λ(dx)

)
E|Φ|

[
min(‖p‖1,|Φ|)∑

l=1

∑
M∈Mp

l

CM
l!

l∏
i=1

∫
Rn

EX

[
g(x,X)

q∏
j=1

f
mij
j (x,X)

]
Λ(dx)

]
,

where X denotes a random variable with the same distribution
as the i.i.d. random variables Xu. Further,Mp

l is the class of
all q × l matrices with non-negative integer entries for which
the columns ‖m·j‖1 > 0 for j ∈ [l] and the rows ‖mi·‖1 = pi
for all i ∈ [q], and CM =

∏q
r=1

pr!∏l
s=1 mrs!

. Note that the

expected value E|Φ| can be omitted iff Λ
(
Rn
)

=∞ a.s.
Proof:

EΦ,X·

[
q∏
i=1

(∑
u∈Φ

fi(u,Xu)

)pi ∏
v∈Φ

g(v,Xv)

]
(17)

(a)
= EΦ,X·

 ∑
u∈Φ‖p‖1

q∏
i=1

pi∏
j=1

fi

(
u

(i)
j , X

u
(i)
j

) ∏
v∈Φ

g(v,Xv)


(b)
= EΦ,X·

[
min(‖p‖1,|Φ|)∑

l=1

∑
M∈Mp

l

CM
∑
U⊆Φ
|U|=l

q∏
i=1

l∏
j=1

f
mij
i

(
uj , Xuj

) ∏
v∈Φ

g
(
v,Xv

)]

(c)
= EK

min(‖p‖1,K)∑
l=1

∑
M∈Mp

l

CMEΦ,X·

[ ∑
U⊆Φ
|U|=l

q∏
i=1

l∏
j=1
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f
mij
i

(
uj , Xuj

) ∏
v∈Φ

g
(
v,Xv

) ∣∣∣∣ |Φ| = K

]
(d)
= EK

min(‖p‖1,K)∑
l=1

∑
M∈Mp

l

CMEΦ,X·

[ ∑
U⊆Φ
|U|=l

l∏
j=1

g
(
uj , Xuj

) q∏
i=1

f
mij
i

(
uj , Xuj

)
∏

v∈Φ\{uk}lk=1

g(v,Xv)

∣∣∣∣ |Φ| = K

]
(e)
= EK

min(‖p‖1,K)∑
l=1

∑
M∈Mp

l

CMEΦ

[ ∑
U⊆Φ
|U|=l

l∏
j=1

EX·

[
g
(
uj , Xuj

) q∏
i=1

f
mij
i

(
uj , Xuj

)]
∏

v∈Φ\{uk}lk=1

EX· [g(v,Xv)]

∣∣∣∣ |Φ| = K

]
(f)
= EK

min(‖p‖1,K)∑
l=1

1

l!

∑
M∈Mp

l

CM
∫
Rn
. . .

∫
Rn

∫
NK

l∏
j=1

EX·

[
g
(
xj , Xj

) q∏
i=1

f
mij
i

(
xj , Xj

)]
∏

v∈ϕ\{xk}lk=1

EX· [g(v,Xv)]P{xk}lk=1
(dϕ)

Λ(dx1) · · ·Λ(dxl)


(g)
= EK

min(‖p‖1,K)∑
l=1

1

l!

∑
M∈Mp

l

CM
∫
Rn
. . .

∫
Rn

l∏
j=1

EX·

[
g
(
xj , Xj

) q∏
i=1

f
mij
i

(
j,Xxj

)]
∫
NK

∏
v∈ϕ

EX· [g(v,Xv)]P (dϕ)Λ(dx1) · · ·Λ(dxl)


= EK

min(‖p‖1,K)∑
l=1

1

l!

∑
M∈Mp

l

CM
l∏

j=1

∫
Rn

EX

[
g
(
x,X

) q∏
i=1

f
mij
i

(
x,X

)]

EΦ

[∏
v∈Φ

EX [g(v,Xv)]

∣∣∣∣ |Φ| = K

]
Λ(dx)

 .
In (a) we apply Lemma 3 presented in Appendix A, where
U = j(i) is defined as in Lemma 2. In (b) we have u =
{u1, . . . , u‖p‖1} and Lemma 2 is applied; in (c) we condition
on the number of points |Φ|; in (d) we factor out all g(v)

from the rightmost product for which v = uj for some j.
This is possible since all uj are distinct (This property made
necessary the use of Lemma 2). In (e) we move the expected
value of the random variables X inside the sum/product since
the X are i.i.d. In (f), X and Xj denote i.i.d. random variables
with the same distribution as the marks Xu of Φ. Further, we
apply Corollary 1, and P{xk}lk=1

denotes the Palm distribution
of Φ conditioning on the points xk, k = 1, . . . , l. The symbol
NK denotes the space of counting measures with at most K
points in all Borel sets B. Note that NK ⊆ N . (g) holds due
to Slivnyak’s theorem.

Calculating the probability generating functional according
to (5) yields the result.

Note that in Theorem 1 there is no requirement that the fi are
different. Hence, without loss of generality we could set all
pi = 1 and q = ‖p‖1 instead. We decided, however, to present
the more general case, since it reduces the number of terms
that have to be evaluated on the right hand side due to the
powers mij .

D. Some Special Cases

We now highlight some special cases of Theorem 1, which
are of interest for the following sections.

Corollary 2 (Stationary PPPs): When the PPP is stationary
with intensity λ, under the same assumptions as in Theorem 1,
we have

EΦ,X

[
q∏
i=1

(∑
u∈Φ

fi(u,Xu)

)pi ∏
u∈Φ

g(u,Xu)

]
(18)

= exp

(
−λ
∫
Rn

(
1− EX

[
g(x,Xx)

])
dx

) ‖p‖1∑
l=1

∑
M∈Mp

l

CM
l!

l∏
i=1

λ

∫
Rn

EX

[
g(x,Xx)

q∏
j=1

f
mij
j (x,Xx)

]
dx ,

where Mp
l is the class of all q × l matrices with non-

negative integer entries for which the columns ‖m·j‖1 > 0
for j ∈ [l] and the rows ‖mi·‖1 = pi for i ∈ [q], and
CM =

∏q
r=1

pr!∏l
s=1 msr!

.
Proof: Substituting Λ(B) = λµ(B) for all Borel sets

B ⊆ Rn, where µ(B) denotes the Lebesgue measure of B, in
Theorem 1 yields the result.

Corollary 3 (Stationary PPPs with q = 1): When the PPP
is stationary with q = 1, under the same assumptions as in
Theorem 1, we have

EΦ,X

[(∑
u∈Φ

f(u,Xu)

)p ∏
u∈Φ

g(u,Xu)

]
(19)

= exp

(
−λ
∫
Rn

(
1− EX

[
g(x,Xx)

])
dx

) p∑
l=1

∑
M∈Mp

l

CM
l!

l∏
i=1

λ

∫
Rn

EX

[
g(x,Xx)fmi(x,Xx)

]
dx ,
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whereMp
l is the class of all vectors of length l having strictly

positive integer coordinates which sum up to p, and CM =
p!∏l

s=1 ms!
.

Proof: Substituting q = 1 in Corollary 2 yields the result.

Corollary 4 (Stationary PPPs with q = 1 and p = 1):
When the PPP is stationary and q = 1, p = 1, under the
same assumptions as in Theorem 1, we have

EΦ,X

[∑
u∈Φ

f(u,Xu)
∏
u∈Φ

g(u,Xu)

]
(20)

= exp

(
−λ
∫
Rn

(
1− EX

[
g(x,Xx)

])
dx

)
λ

∫
Rn

EX

[
f(x,Xx)g(x,Xx)

]
dx .

Proof: Substituting p = 1 in Corollary 3 implies that
Mp

l = {(1)} and CM = 1.
Note that Corollary 4 also follows from the Campbell-Mecke
theorem [13] as given in (6).

III. INTERFERENCE FUNCTIONALS

A. Modeling Assumptions

We consider a wireless network with interferers distributed
according to a PPP Φ with a locally finite and diffuse intensity
measure Λ. All interferers transmit with the same transmission
power, which we set to one. Time is slotted, and slotted
ALOHA is employed for medium access control, i.e., each
node in Φ accesses the channel in each time slot independently
with a certain probability ℘. Let Φi ⊆ Φ denote the set of
interferers that are active in slot i. The interference power
received at the origin o in slot i is modeled by

Ii =
∑
u∈Φ

hi(u)`(u)1
(
u ∈ Φi) . (21)

Here, 1 denotes the indicator function, i.e.,

1
(
u ∈ Φi) =

{
1, u ∈ Φi,

0, else.
(22)

The term `(u) denotes the path gain from node u to o,
which is assumed to be a non-negative function that decreases
monotonically with ‖u‖2 with lim‖u‖2→∞ `(u) = 0. Table I
summarizes some commonly used models for the path gain,
where u ∈ Φ is an arbitrary point, α is the path loss
exponent, and ε > 0. The fading coefficient hi(u) denotes
the channel fading state, i.e., hi(u) is a random variable that
follows some distribution that depends on the fading model.
Note that hi(u) are i.i.d. for different points u or different
time slots i. We assume that the fading coefficients have an
expected value E[hi(u)] = 1. Table II shows various well-
known fading models. The symbol Bk(x) denotes the second
modified Bessel function.

TABLE I
PATH GAIN MODELS

Model Expression

Singular model `s(u) = ‖u‖−α2

Minimum model `m(u) = min(1, ‖u‖−α2 )

ε model `ε(u) = 1
ε+‖u‖α2

Distance+1 model `d(u) = 1
(1+‖u‖2)α

TABLE II
FADING MODELS

Fading model Probability density function of the power, x ≥ 0

Rayleigh fh(x) = exp(−x)

Erlang fh(x) = xk−1 exp(−x)
(k−1)!

for k ∈ N\{0}

Rice fh(x) = exp(−(x+ ψ)/2)
(
x
ψ

) k
4
− 1

2
B k

2
−1

(
√
ψx)

2

for k ∈ N and ψ ∈ R+

Nakagami fh(x) = xm−1 exp(−xm)
Γ(m)

mm for m ∈ R+

B. The General Case

In the following we derive an expression for the expected
value E

[∏q
i=1 I

pi
i exp

(
− cIi

)]
with general models for fad-

ing and path loss. This is an important result for analyzing
interference in wireless networks, as it occurs in the derivation
of transmission success probabilities in many scenarios. An
example is the success probability in Poisson networks with
Nakagami fading, as is presented in Section IV.

Theorem 2 (Interference functionals): Let c ∈ R be a
constant, p = (p1, . . . , pq) ∈ Nq with ‖p‖1 > 0, and let Ii
denote the interference at the origin o at time slot i as defined
in (21). Then we have

EΦ,h,1

[
q∏
i=1

Ipii exp
(
− cIi

)]
(23)

= exp

(
−
∫
Rn

(
1−

q∏
j=1

(
℘Ehj(x)

[
exp

(
− chj(x)`(x)

)]
+1− ℘

))
Λ(dx)

)
E|Φ|

[
min(‖p‖1,|Φ|)∑

l=1

∑
M∈Mp

l

CM
l!

l∏
i=1

∫
Rn

q∏
j=1

(
℘Ehj(x)

[
exp

(
− chj(x)`(x)

)
(
hj(x)`(x)

)mij ]
+ (1− ℘)1(mij = 0)

)
Λ(dx)

]
,

where Mp
l is the class of all q× l matrices with non-negative

integer entries for which the columns ‖cj‖1 > 0 for j =
1, . . . , l and the rows ‖ri‖1 = pi for all i = 1, . . . , q.
Note that the term (1−℘)1(mij = 0) can be omitted if q = 1,
since all exponents mij > 0.
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TABLE III
EXPECTED VALUES FOR DIFFERENT FADING MODELS. VALUES CAN BE SUBSTITUTED INTO (25).

Fading model Eh(x)[exp
(
−h(x)`(x)

)
] Eh(x)[h(x)`(x) exp

(
−h(x)`(x)

)
]

Rayleigh 1
1+`(x)

`(x)

(1+`(x))2

Erlang with k = 2 1
(1+`(x))2

2`(x)

(1+`(x))3

Erlang 1
(1+`(x))k

k`(x)

(1+`(x))k+1

Rice exp
(
− ψ`(x)

1+2`(x)

) (
1 + 2`(x)

)− k
2 exp

(
− ψ`(x)

1+2`(x)

)
`(x)

k+ψ+2k`(x)(
1+2`(x)

)2+ k
2

Nakagami
(

m
m+`(x)

)m
`(x)

(
m

m+`(x)

)m+1

Proof: The proof is based on Theorem 1. We have

EΦ,h,1

[
q∏
i=1

Ipii exp
(
− cIi

)]
(24)

= EΦ,h,1

 q∏
i=1

Ipii

q∏
j=1

exp
(
− cIj

)
= EΦ,h,1

 q∏
i=1

Ipii exp

(
− c

q∑
j=1

Ij

)
= EΦ,h,1

[
q∏
i=1

(∑
u∈Φ

hi(u)`i(u)1
(
u ∈ Φi)

)pi

exp

(
− c

q∑
j=1

∑
v∈Φ

hj(v)`j(v)1
(
v ∈ Φj)

)]

= EΦ,h,1

[
q∏
i=1

(∑
u∈Φ

hi(u)`i(u)1
(
u ∈ Φi)

)pi
∏
v∈Φ

exp

(
− c

q∑
j=1

hj(v)`j(v)1
(
v ∈ Φj)

)]
(a)
= exp

(
−
∫
Rn

(
1− Eh(x),1

[
exp

(
− c

q∑
j=1

hj(x)

`j(x)1
(
x ∈ Φj)

)])
Λ(dx)

)
E|Φ|

[
min(‖p‖1,|Φ|)∑

l=1∑
M∈Mp

l

CM
l!

l∏
i=1

∫
Rn

Eh(x),1

[
exp

(
− c

q∑
j=1

hj(x)`j(x)

1
(
x ∈ Φj)

) q∏
k=1

(
hk(x)`k(x)1

(
x ∈ Φk)

)mik]Λ(dx)

]
(b)
= exp

(
−
∫
Rn

(
1−

q∏
j=1

(
℘Ehj(x)

[
exp

(
− chj(x)

`(x)
)]

+ 1− ℘
))

Λ(dx)

)
E|Φ|

[
min(‖p‖1,|Φ|)∑

l=1

∑
M∈Mp

l

CM
l!

l∏
i=1

∫
Rn

q∏
j=1

(
℘Ehj(x)

[
exp

(
− chj(x)`(x)

)
(
hj(x)`(x)

)mij]
+ (1− ℘)1(mij = 0)

)
Λ(dx)

]
,

where (a) holds due to Theorem 1 with substi-
tuting fi

(
u, hi(u)

)
= hi(u)`i(u), g

(
u, h(v)

)
=

exp
(
−c
∑q
j=1 hj(v)`j(v)

)
, and h(v) =

(
h1(v), . . . , hq(v)

)
.

The terms 1
(
x ∈ Φj) denote Bernoulli random variables with

E
[
1
(
x ∈ Φj)

]
= ℘. (b) holds due to the independence of the

fading coefficients hj(x) and 1
(
x ∈ Φj).

Note that, as in Theorem 1, we can omit E|Φ| iff Λ
(
Rn
)

=
∞ a.s.

C. Case Studies: Results for Specific Fading and Path Loss
Models

In the following we calculate the expected value
EΦ,h,1[I exp(−I)] for a stationary PPP Φ with intensity λ.
This expression has to be evaluated when analyzing the outage
probability in certain scenarios, e.g., in the case of Nakagami
fading with m = 2. We have

EΦ,h,1[I exp(−I)] (25)

= exp

(
−℘λ

∫
Rn

(
1− Eh(x)

[
exp

(
− h(x)`(x)

)])
dx

)
℘λ

∫
Rn

Eh(x)[h(x)`(x) exp
(
− h(x)`(x)

)
] dx

as a special case of Theorem 2 with q = 1, p1 = 1, and c = 1.
The expected values within the integrals depend on the

specific fading model. The results for the fading models in
Table II and the singular path gain are presented in Table III.
Substituting these expressions yields the final results.

As an example, for Rayleigh fading, the singular path gain,
and a two-dimensional stationary PPP Φ with intensity λ we
have

EΦ,h,1[I exp(−I)] (26)

= ℘λ

∫
R2

`(x)

(1 + `(x))2
dx

exp

(
−℘λ

∫
R2

(
1− 1

1 + `(x)

)
dx

)
= δκ exp (−κ) ,

where δ = 2
α , κ = ℘λπ

sinc(δ) , and sinc(x) = sin(πx)
πx . Fig. 1

shows a plot of (26) over the intensity λ for different path
loss exponents α with ℘ = 1. As can be seen, the expected
value possesses a peak at a certain density of interferers,
which depends on α. For increasing densities the expected
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Fig. 1. Expected value E[I exp(−I)] given in (26) over the intensity of
interferers for different path loss exponents α with ℘ = 1.

value approaches zero, i.e., limλ→∞ E[I exp(−I)] = 0 for all
α > 2.

For the special case of α = 4 (i.e., δ = 1
2 ) we get

EΦ,h,1[I exp(−I)] =
1

4
℘λπ2 exp

(
−℘λπ

2

2

)
, (27)

which coincides with the result calculated using the pdf of the
interference (Equation (3.22) in [5]).

Next, we generalize this result by computing the expected
value E[Ik exp(−I)] for k ∈ N. As an intermediate result, for
i ∈ N, the expected value Eh[(h(u)`(u))i exp

(
− h(u)`(u)

)
]

is given by

Eh
[(
h(u)`(u)

)i
exp

(
− h(u)`(u)

)]
=

i! `i(u)(
1 + `(u)

)i+1
. (28)

Substituting this expression into (23) allows the calculation of
EΦ,h[Ik exp(−I)]. Some example expressions for k = 2, 3, 4
are presented in (29), (30), and (31), respectively. Here, again
δ = 2

α , κ = ℘λπ
sinc(δ) , and sinc(x) = sin(πx)

πx .
Note that the results for calculating E[Ik exp(−I)] for

k ∈ N for Rayleigh fading can be generalized to any fading
distribution with the property E[hδ] < ∞ due to the equiv-
alence of the propagation process [33]. This can be done by
replacing λ by λ′ = λ

E[hδi (x)]
Γ(δ+1) in (26), (27), and (29)-(31).

For example, in the case of Nakagami fading, where hi(x)
follows a Gamma distribution (see Table II), the corresponding
moment is given by

E[hδi (x)] = mδ Γ(δ +m)

Γ(m)
. (32)

D. Derivations using the Laplace Transform

An alternative approach for deriving the expected value
E
[
Ik exp(−sI)

]
, for k ∈ N and s ∈ R+, which is a special

case of the results derived in the previous sections, is by

applying the Laplace transform of the interference (cf. [5]).
We have

EΦ,h,1

[
Ik exp(−sI)

]
= (−1)kL

(k)
I (s) , (33)

where LI(s) is the Laplace transform of the interference.
As an example, we consider the Laplace transform for the

singular path-loss model and Rayleigh fading (see [5], (3.21))
with transmitter density ℘λ given by

LI(s) = exp

(
−℘λπsδ πδ

sin(πδ)

)
, (34)

with δ = 2/α. When taking the first derivative of this
expression and evaluate −L′I(1), this yields (26). For the
second, third and fourth derivative we get (29)-(31).

IV. TEMPORAL DEPENDENCE OF OUTAGE UNDER
NAKAGAMI FADING

The temporal correlation of link outages under Rayleigh
fading has been derived in [9]. In the following we derive
the result for the more general Nakagami fading model. For
simplicity we assume m ∈ N throughout this section.

A. Derivation of Outage Probabilities

In this section we apply the following network model: A
source S transmits data packets to a destination D within a
stationary Poisson field Φ of interferers with intensity λ. Let
d = ‖D− S‖2 denote the distance between S and D. Slotted
ALOHA is employed, i.e., each interferer transmits in each
slot with probability ℘. Fading is assumed to be Nakagami
with parameter m, i.e., h ∼ Γ(m, 1

m ) with m > 0. Let Ak
denote the event that a transmission from S to D is successful
at slot k. We assume that the event Ak occurs iff SIR ≥ θ
for some constant threshold θ, where SIR = hk`(d)

Ik
denotes

the signal-to-interference ratio. Here, Ik is defined as in (21).
Further, let θSD = θ

`(d) denote the receiver threshold divided by
the path gain from S to D. We start by deriving an expression
for P[Ak].

Theorem 3 (Transmission success probability): The success
probability of a single transmission assuming Nakagami fad-
ing is

P[Ak] (35)

= exp

(
−℘λ

∫
R2

(
1−

(
1 + θSD`(x)

)−m)
dx

)
1 +

m−1∑
i=1

1

i!

i∑
l=1

∑
M∈M(i)

l

CM
l!

l∏
j=1

℘λ
Γ(m+mj1)

Γ(m)

∫
R2

(
θSD`(x)

)mj1(
1 + θSD`(x)

)m+mj1
dx

 ,

where M(i)
l ⊆ Nl is the set of vectors M ∈ M(i)

l that have
only positive coordinates and ‖M‖1 = i.

Proof: The probability of the event Ak in an arbitrary
time slot k is given by

P[Ak] (36)



9

E[I2 exp(−I)] = exp (−κ)κ
(
δ(1− δ) + 2κδ

)
. (29)

E[I3 exp(−I)] = exp (−κ)κ
δ2(α− 1)(α− 2) + 2κ (6(α− 2) + 4κ)

α
. (30)

E[I4 exp(−I)] = exp (−κ)κ
4α(α− 1)(α− 2)(3α− 2) + 2κ (2α(α− 2)(11α− 14) + 8κ (3α(α− 2) + κα))

α5
. (31)

= P[hk > θSDIk]

(a)
= EΦ,h,1

[
m−1∑
i=0

1

i!
(mθSDIk)

i
exp (−mθSDIk)

]

=

m−1∑
i=0

1

i!
(mθSD)

i
EΦ,h,1

[
Iik exp (−mθSDIk)

]
(b)
= exp

(
−℘λ

∫
R2

(
1−

(
1 + θSD`(x)

)−m)
dx

)
1 +

m−1∑
i=1

1

i!

i∑
l=1

∑
M∈M(i)

l

CM
l!

l∏
j=1

℘λ
Γ(m+mj1)

Γ(m)

∫
R2

(
θSD`(x)

)mj1(
1 + θSD`(x)

)m+mj1
dx

 ,

where in (a) the sum representation of the ccdf of the gamma
distribution for integer m is substituted. (b) holds due to
Theorem 2 for i > 0 and (5) for i = 0. Further, we calculate
the expected values Eh (see Table III, Nakagami fading).

Note that in this section the letter m is used in two ways:
we use m as the parameter for fading while mij indicates an
element in the matrix M .

Next, we derive the joint probability of success in two
different time slots r, s.

Theorem 4 (Joint transmission success probability): Let
r, s ∈ N with r 6= s denote two time slots. Then the probability
of transmission success in both slots is given by

P[Ar, As] (37)

= exp

(
−λ
∫
R2

1−
(
℘
(
1 + θSD`(x)

)−m
+ 1− ℘

)2

dx

)
1 +

m−1∑
i=0

m−1∑
j=0
i+j>0

1

i!j!

i+j∑
l=1

∑
M∈M(i,j)

l

CM
l!

l∏
k=1

λ

∫
R2

(
℘

Γ(m+mk1)
(
θSD`(x)

)mk1

Γ(m)
(
1 + θSD`(x)

)m+mk1
+ (1− ℘)

1(mk1 = 0)

)(
℘

Γ(m+mk2)
(
θSD`(x)

)mk2

Γ(m)
(
1 + θSD`(x)

)m+mk2

+(1− ℘)1(mk2 = 0)

)
dx


with symbols defined as in Theorem 2. Here, 1(mk1 = 0)
denotes the indicator variable being one for mk1 = 0, and
else zero.

Proof: We start the derivation by substituting the defini-
tion of the events Ar and As and get

P[Ar, As] (38)
= P[hr > θSDIr, hs > θSDIs]

= EΦ,h,1

m−1∑
i=0

1

i!
(mθSDIr)

i
exp (−mθSDIr)

m−1∑
j=0

1

j!
(mθSDIs)

j
exp (−mθSDIs)


=

m−1∑
i=0

m−1∑
j=0

1

i!j!
(mθSD)

i+j

EΦ,h,1

[
IirI

j
s exp (−mθSD(Ir + Is))

]
.

To be able to calculate this probability we have to derive
an expression for the expected value in the last line. Here
we distinguish two cases: For the case i + j > 0 we apply
Theorem 2, which gives

EΦ,h,1

[
IirI

j
s exp (−mθSD(Ir + Is))

]
(39)

= EΦ,h,1

[(∑
u∈Φ

hr(u)`(u)1
(
u ∈ Φr)

)i
(∑
v∈Φ

hs(v)`(v)1
(
v ∈ Φs)

)j
exp

(
−mθSD

∑
w∈Φ

`(k)
(
hr(w)1

(
w ∈ Φr) + hs(w)1

(
w ∈ Φs)

))]
(a)
= exp

(
− λ

∫
R2

(
1−

(
℘Ehr(x)

[
exp

(
−mθSDhr(x)

`(x)
)]

+ 1− ℘
)(
℘Ehs(x) [exp (−mθSDhs(x)`(x))]

+1− ℘
))

dx

)
i+j∑
l=1

∑
M∈M(i,j)

l

CM
l!

l∏
k=1

λ

∫
R2

(
℘Ehr(x)

[
exp (−mθSDhr(x)`(x))

(
hr(x)`(x)

)mk1
]

+ (1− ℘)

1(mk1 = 0)

)(
℘Ehs(x)

[
exp (−mθSDhs(x)`(x))(

hs(x)`(x)
)mk2

]
+ (1− ℘)1(mk2 = 0)

)
dx

(b)
= exp

(
−λ
∫
R2

1−
(
℘
(
1 + θSD`(x)

)−m
+ 1− ℘

)2

dx

)
i+j∑
l=1

∑
M∈M(i,j)

l

CM
l!

l∏
k=1

λ

∫
R2
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℘

Γ(m+mk1)
(
θSD`(x)

)mk1

Γ(m)
(
1 + θSD`(x)

)m+mk1
+ (1− ℘)

1(mk1 = 0)

)(
℘

Γ(m+mk2)
(
θSD`(x)

)mk2

Γ(m)
(
1 + θSD`(x)

)m+mk2

+(1− ℘)1(mk2 = 0)

)
dx ,

In the above expression, (a) holds due to Theorem 2, where
p = (i, j), and in (b) we calculated the expected values of the
gamma distributed random variables h ∼ Γ

(
m, 1

m

)
.

For the case i+ j = 0 we apply (5), such that

EΦ,h,1 [exp (−mθSD(Ir + Is))] (40)

(a)
= exp

− λ ∫
R2

(
1−

(
℘Ehr(x)

[
exp

(
−mθSDhr(x)

`(x)
)]

+ 1− ℘
)

(
℘Ehs(x) [exp (−mθSDhs(x)`(x))] + 1− ℘

))
dx


(b)
= exp

(
− λ

∫
R2

1−
(
℘
(
1 + θSD`(x)

)−m
+1− ℘

)2

dx

)
.

Here, (a) holds due to (5) and in (b) we calculate the expected
values over h ∼ Γ

(
m, 1

m

)
.

If we, for example, substitute the singular path-loss model
into (35), we get the following result.

Corollary 5 (Transmission success probability with singular
path loss): For the singular path loss model `(x) = ‖x‖−α2

we have

P[Ak] = exp

(
−℘λ πθ

δ
SDΓ(1− δ)Γ(m+ δ)

Γ(m)

)
(41)(

1 +
m−1∑
i=1

1

i!

i∑
l=1

(
℘λδπθδSDΓ(m+ δ)

Γ(m)

)l
∑

M∈M(i)
l

CM
l!

l∏
j=1

Γ(mj1 − δ)

)
.

Proof: Substituting `(x) = ‖x‖−α2 into Theorem 3 yields
the result.

Next, we substitute the singular path-loss model and ℘ = 1
into (37).

Corollary 6 (Joint transmission success probability with
singular path loss): For the singular path loss model `(x) =
‖x‖−α2 and ℘ = 1 we have

P[Ar, As] (42)

= exp

(
−λπθ

δ
SDΓ(1− δ)Γ(2m+ δ)

Γ(2m)

)1 +

m−1∑
i=0

m−1∑
j=0
i+j>0

1

i!j!

i+j∑
l=1

(
λδπθδSDΓ(2m+ δ)

Γ2(m)

)l ∑
M∈M(i,j)

l

CM
l!

l∏
k=1

Γ(m+mk1)Γ(m+mk2)Γ(mk1 +mk2 − δ)
Γ(mk1 +mk2 + 2m)

 .

Proof: Substituting `(x) = ‖x‖−α2 and ℘ = 1 into
Theorem 4 yields the result.

B. Outage Probability for the Singular Path Loss

In the following, plots of (41) and (42) are presented.
Fig. 2 shows the outage probability P[Āk] = 1− P[Ak] over
the interferers’ intensity λ. The following observations can
be made: Firstly, the outage probability is higher for higher
intensity λ and hence higher interference, with a non-linear
dependence. In the limit, the outage probability approaches
one, i.e., limλ→∞(1− P[Ak]) = 1. Secondly, for high values
of the path loss exponent α the attenuation of both the received
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Fig. 2. Outage probability P[Āk] given in (41) over the interferer intensity
λ. Lines indicate the theoretical results while marks are simulation results.
Parameters are m = 3, θ = 0.5, and d = 2.

2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Path loss exponent α

Su
cc

es
s

pr
ob

ab
ili

ty
P

[A
k
]

m = 1

m = 2

m = 3

m = 4

m = 5

Fig. 3. Transmission success probability P[Ak] given in (41) over the path
loss exponent α. Parameters are λ = 0.03, θ = 1, and d = 2.
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Fig. 4. Outage probability P[Āk] given in (41) over the interferer intensity
λ. Parameters are α = 3, θ = 0.5, and d = 2.
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Fig. 5. Outage probability P[Āk] given in (41) over the path loss exponent
α. Parameters are λ = 0.01, θ = 0.5, and d = α

√
4, i.e., the mean power of

the desired signal is 1/4.

signal and the interference is higher than for low values. In the
scenario presented in Fig. 2, the attenuation effect is stronger
for interference than for the received signal. Hence, the outage
probability is lower for high path loss exponents α.

In addition to the theoretical results, Fig. 2 also shows
simulation results. As can be seen, simulations and theory do
indeed match very well. Only for the case α = 2.5 simulations
deviate slightly from the theoretical curve. This is due to the
fact that for values of α close to 2 the simulation area has to
be extremely large to obtain exact results. However, such large
areas exceed the computational capabilities of our computers.

Fig. 3 shows the impact of the path loss exponent α on the
success probability. As can be seen, the dependence of P[Ak]
on α is monotonic for the plotted parameters. For α close
to two the success probability is very low and approaching
zero, as expected in case of a stationary PPP of interferers

on the plane; for higher values it is monotonically increasing.
If we further increase α beyond the range of the plot, the
success probability approaches a limiting value, which is given
by limα→∞ P[Ak] = exp(−µ) with µ = d2πλ being the
expected number of interferers in a circle with radius d around
D. This behavior can be explained by recalling the modeling
assumptions: A successful transmission is defined as the event
that the SIR is above a certain threshold, i.e., neither consider
noise nor receiver sensitivity. As the path loss gets large, the
success probability exhibits a hard-core behavior, since any
node closer to the receiver than the transmitter would cause
overwhelming interference. Hence, the success probability is
equal to the probability that there is no interferer in the disk
of radius d centered at the destination.

Another interesting observation can be made in Fig. 3: The
two parameters α and m have a joint impact on the success
probability. For small α, more severe fading, i.e., smaller
values of m, leads to high success probabilities. This can be
explained by the fact that small α lead to strong interference,
which can be partly mitigated by harsh fading conditions.
Hence, in this regime fading diminishes interference stronger
than it diminishes the received signal. For higher values of α
this trend is inverted. Here, although interference can still be
reduced by severe fading, its impact on the received signal is
dominant. In between there is a certain value of α for which
the parameter m plays no role at all. This value depends on
the parameters λ, θ, and d.

Further, in Fig. 4 a plot of the outage probability over the
interferer intensity λ for different values of the Nakagami
parameter m is shown. Again, we see that for a certain value
of λ (which is at about λ = 0.0742), similar as for α in
Fig. 3, the curves for different m intersect at a common point.
For densities λ below this threshold outage increases with m,
while for λ above this threshold this trend is inverted.

Finally, Fig. 5 shows a plot of the outage probability over
the path loss exponent α for different values of m. The special
feature of this plot is that the distance between transmitter
and receiver d is chosen in a way such that dα = 4 over
the whole range of values for α. Again, the lines overlap
at a common point, which is at about α = 2.1. When
further increasing α, the difference of the outage probabilities
for different m increases to a maximum, and then starts
decreasing. When further increasing the path loss exponent α,
with the given parameters the outage probability approaches
the limit limα→∞ P[Āk] ≈ 0.0309276, independent of m.

C. Joint Outage Probability for the Singular Path Loss

Next, we investigate the joint outage probability of two
transmissions in different time slots. Let therefore Ār denote
the complementary event of Ar, i.e., that the transmission in
slot r is in outage. We can calculate the joint outage probability
by P[Ār, Ās] = 1 − P[Ar] − P[As] + P[Ar, As], which is
shown in Fig. 6. Overall, the plot shows similar trends as the
one in Fig. 2, with the obvious difference that for the given
parameters the joint outage probability P[Ār, Ās] is smaller
than the outage probability 1−P[Ak] of a single transmission
for all λ > 0.
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,Ā

s
]

α = 2.5

α = 3

α = 4

α = 5

Fig. 6. Probability of two transmissions being in outage P[Ār, Ās] given
in (42) over interferer intensity λ. Lines indicate theoretical results while
marks show simulation results. Parameters are m = 3, θ = 0.5, and d = 2.
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Fig. 7. A comparison between the dependent interference case P[Ar, As]
given in (42) and the independent interference case (P[Ak])2 given in (41)
over interferer intensity λ. Lines indicate analytical results while marks
indicate simulation results. Parameters are m = 3, θ = 0.5, and d = 2.

There is one small detail, which is very interesting in
Fig. 6: Similar to the impact of the fading parameter m (see
Fig. 3), also the influence of the path loss exponent α on
the outage probability is determined by the values of other
parameters. In particular, for small intensities λ — in the low
interference regime — lower path loss exponents are beneficial
(left side of the plot). For high intensities λ — in the high
interference regime — this trend is inverted (right side of the
plot). Here, high path loss exponents α significantly reduce the
interference; and this effect is stronger than the degradation
of the received signal due to the higher α. Between these two
extremes there is a non-monotonic dependence on α, as can
be seen in the plot, e.g., for λ = 0.015.

Next, we compare the probability of two transmissions
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Fig. 8. The probability that at least one out of two transmissions is
successfully received over interferer intensity λ. Lines indicate independent
interference while marks indicate dependent interference. Parameters are
m = 3, θ = 0.5, and d = 2.

both being successful for the following two cases: Firstly,
interference is dependent due to the same set of interferers. In
this case the joint success probability is given by P[Ar, As].
Secondly, interference is assumed to be independent. Here,
the joint success probability can be simply calculated by(
P[Ak]

)2
. This case is presented for comparison reasons and

to highlight the impact of correlated interference on the suc-
cess probabilities. It resembles the scenario where interferers
are mobile and the time slots a far away from each other. A
plot of these expressions is presented in Fig. 7. We can see that
for equal parameters the dependent interference case always
shows higher values than the independent interference case.
This effect stems from the positive correlation of interference
in the two time slots r and s. Similar effects occur in the case
of Rayleigh fading and cooperative relaying, as shown in [10].

Finally, we investigate the probability that at least one out of
two transmissions is successful, again for both the dependent
and the independent interference case. This scenario is some-
times denoted as time diversity or retransmission scenario. For
the dependent interference case, the probability of at least one
successful transmission is given by P[Ar]+P[As]−P[Ar, As].
For the independent interference case, we can calculate this
probability by 1− (1−P[Ak])2. A plot of these probabilities
is presented in Fig. 8. As can be seen, the success probabilities
for independent interference are higher than the ones for the
dependent interference. Note that it is the other way around
in Fig. 7. This can be explained by the fact that for highly
correlated interference (which is the case in the plot due
to ℘ = 1) the probability that at lease one transmission
is successful is approximately equal to P[Ar], and we have
P[Ar] < 1− (1− P[Ar])

2.

Note that the success probabilities monotonically depend on
θ and hence similar trends will occur for different values of θ.
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V. CONCLUDING REMARKS AND FUTURE WORK

Interference is considered to be one of the key factors
limiting the performance of wireless networks. A good model
of the interference and its space-time dynamics is an important
asset for performance assessments. This paper contributes to
this aspect in multiple ways.

Firstly, we extended the toolbox of stochastic ge-
ometry to allow the calculation of very general func-
tionals of PPPs. In particular, we proved a theorem
that provides an expression for the general functional
EΦ,X

[∏q
i=1

(∑
u∈Φ fi(u,Xu)

)pi∏
u∈Φ g(u,Xu)

]
. This re-

sult can be seen as an extension of the well-known Campbell-
Mecke theorem for the PPP.

Secondly, we applied this general result, which has a
broad range of applications, to interference in wireless net-
works. This allowed us to calculate the expected value
E
[∏q

i=1 I
pi
i exp

(
− cIi

)]
. This result can be applied to dif-

ferent scenarios: Similar expressions occur, e.g., when calcu-
lating the outage probability of cooperative communications.

Thirdly, we highlighted one of these examples, namely
calculating the joint outage probability of several transmissions
under Nakagami fading. This derivation holds for any path loss
model; as a case study, we presented the result for the singular
path loss model. The intention is to sketch the path going from
the general result to the final expression for a particular path
loss model.

Our goal for future work is to further extend the tools of
stochastic geometry for use in wireless settings. In particular,
we will consider more sophisticated medium access, departing
from ALOHA and aiming for CSMA. Modeling a CSMA
network will involve hard-core point processes, for which
fewer mathematical tools are available.
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APPENDIX A

Lemma 3: Let fi : Rn → R with i ∈ [k] denote non-
negative functions and U ⊆ Rn be a finite or countable set.
Then we have ∑

u∈Uk

k∏
i=1

fi(ui) =

k∏
i=1

∑
u∈U

fi(u) . (43)

Proof: The result holds due to the distributive law. We
prove the lemma by induction. For k = 1 the result is trivial.
Let us assume the result holds for k; we show that it also
holds for k + 1. Indeed, we have

k+1∏
i=1

∑
u∈U

fi(u) =

(
k∏
i=1

∑
u∈U

fi(u)

)∑
v∈U

fk+1(v) (44)

(a)
=

∑
u∈Uk

k∏
i=1

fi(ui)

∑
v∈U

fk+1(v)

=
∑
v∈U

fk+1(v)

∑
u∈Uk

k∏
i=1

fi(ui)


=

∑
v∈U

∑
u∈Uk

(
fk+1(v)

k∏
i=1

fi(ui)

)

=
∑

u∈Uk+1

k+1∏
i=1

fi(ui) ,

where (a) holds due to the induction assumption.
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