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Abstract—In mobile networks, distance variations caused by node
mobility generate fluctuations in the channel gains. Such fluctuations
can be treated as another type of fading besides multi-path effects. In
this paper, the interference statistics in mobile random networks are
characterized by mapping the distance variations of mobile nodes to
the channel gain fluctuations. The network performance is evaluated
in terms of the outage probability. Compared to a static network, the
interference distribution in a single snapshot does not change under
uniform mobility models, but random waypoint mobility increases the
interference. Furthermore, due to the correlation of the node locations,
the interference and outage are temporally and spatially correlated. We
quantify the temporal correlation of the interference and outage in mobile
Poisson networks in terms of the correlation coefficient and conditional
outage probability, respectively. The results show that it is essential that
routing, MAC, and retransmission schemes be smart (i.e,. correlation-
aware) to avoid bursts of transmission failures.

Index Terms—Correlation, interference, mobility, Poisson point process.

1 INTRODUCTION

1.1 Motivation
In wireless networks, interference is one of the
central elements in system design, since network
performance is often limited by competition of users
for common resources [1]. There are four major sources
of randomness that affect the interference in large
networks. The first is multi-path fading, which is the
time variation of the channel strengths due to small-
scale effects. The second one is node placement. In
mobile networks, a random model of spatial locations
is necessary to facilitate the network analysis. A well-
accepted model for the node distribution in wireless
networks is the homogeneous Poisson point process
(PPP) [2], [3], where the number of nodes in a certain
area of size A is Poisson distributed with parameter
λA, where λ is defined as node intensity. The numbers
of nodes in disjoint areas are mutually independent.
The third one is power control, which helps in the
interference management, energy optimization, and
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connectivity [4], [5]. When power control is implemented
locally, the receiver is not aware of the power levels of
other interfering transmitters and transmit levels become
a source of randomness in wireless networks. In this
paper, however, we do not consider power control. The
fourth one is data traffic. ALOHA [6] and CSMA [7]
are two classes of well-accepted random and distributed
medium access control (MAC) protocols.

For the sake of mathematical tractability and
simplicity, the statistics of the above four sources
of randomness are often assumed identically and
independently distributed (i.i.d.). For example, the
channels are often assumed to be memoryless; if mobility
is at all considered, the nodes are highly mobile so
that the realizations of node locations are independent
in different time slots; the node activities are not
affected by previous activities. Are those assumptions
realistic? In wireless networks, the i.i.d. assumptions
for multi-path channel realizations, transmit power
levels, and data traffic statistics are reasonable, if nodes
transmit in short bursts. Furthermore, some broadband
transmission techniques, such as frequency-hopping
spread-spectrum, nullify the channel memories as well.
For node placement, however, the situation is different.
The correlation between node locations in different
time slots is zero only if a completely new realization
of the node placement is drawn in each time slot.
Network models assuming independent realizations are
impractical since the node velocities cannot be infinite. If
the node placement follows a certain type of distribution
such as a PPP in each time slot and the nodes do not have
infinite mobility, the node locations in different time slots
are correlated. An extreme case is a static but random
network, where the correlation is equal to one, since
nodes do not move after their initial placement.

How does mobility affect network structure and
performance? First, it is well known that multi-path
fading is induced by microscopic mobility. A slight
position change of a node induces randomness in
channel gain. On the other hand, when distance
is considered in wireless transmission, a significant
change in the transmission distance, macroscopic mobility,
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gives rise to another degree of uncertainty: path-
loss uncertainty. In this paper, we denote the multi-
path fading simply as fading, and large-scale path-loss
uncertainty as large-scale fading. Both types of fading are
induced by mobility. Second, mobility induces temporal
and spatial correlation. Unless the node speed is infinite,
the locations of a node always show a certain degree of
correlation in different time slots. The quantification of
such correlation is important, since it greatly affects the
network performance.

1.2 Related work

There is a growing body of literature of large wireless
networks with randomly distributed nodes. Stochastic
geometry [8] and the theory of random geometric
graphs [9] are two increasingly widely used analysis
tools, which have been summarized in [2]. Interference
and outage statistics are obtained in the case where
nodes are Poisson distributed without multi-path fading
[10], [11] and in the presence of fading [12], [13]. For
the node placement models other than homogeneous
Poisson, distance statistics in finite uniformly random
networks are obtained in [14]. Interference and outage
in clustered ad hoc networks are discussed in [15]. Inter-
ference results for ad hoc networks with general motion-
invariant node distribution are presented in [16]–[18].
The interference distribution in doubly Poisson cognitive
networks is analyzed in [19]. In [20], the hardcore point
process is approximated by a non-homogeneous PPP to
evaluate the outage. The performance of spatial relay
networks is analyzed in [21], [22]. Routing in ad hoc
networks is discussed in [12], [23]–[25]. The throughput
and capacity in interference-limited networks have been
derived in [26]–[28]. The spatio-temporal correlation of
the interference and outage in static random networks
has been studied in [29]. The spatial distribution of link
outages in static random networks has been derived in
[30].

Related work on mobile networks includes [31], where
a network of mobile nodes is mapped to a network of
stationary nodes with dynamic links. In [32], different
mobility models and their effects to ad hoc networks
are compared. Stochastic properties of random walk and
random waypoint mobility models are analyzed in [33]
and [34]–[37], respectively. Another way of combining
micro- and macroscopic path loss uncertainty has been
explored in [38], where small-scale fading is interpreted
as a distortion of the point process in modeling the node
locations.

1.3 Our contribution

The main contributions of this paper are:
1) We characterize interference and outage statistics

in mobile random networks and investigate
the affects of different mobility models such
as constrained i.i.d. mobility (CIM), random

(a) Finite network (b) Infinite network

Fig. 1: Illustrations of finite and infinite mobile networks.
The small circles denote mobile nodes, and the arrows
show the directions in which they will move in the next
time slot. In (a), the nodes bounce back when they reach
the boundary. In (b), all nodes move freely.

walk (RW), Brownian motion (BM), and random
waypoint (RWP) to the network performance.

2) We quantify the temporal correlation of inter-
ference and outage in mobile random networks,
with concrete results on correlation coefficient of
interference and conditional outage probability,
respectively.

The rest of the paper is organized as follows. System
and mobility models are introduced in Section 2. In
Section 3, the single-snapshot analysis of the interference
and outage in mobile random networks is discussed.
The temporal correlation of the interference and outage
is analyzed in Section 4. Conclusions are presented in
Section 5.

2 SYSTEM MODELS
2.1 Network model
We consider the link between a typical transmitter-
receiver pair in a wireless network. Without loss of
generality, the link distance is normalized to one. We set
the origin o at the receiver. The initial node placement
follows a Poisson point process Φ(0) on a domain D with
intensity λ. The Poisson model implies the independence
of the numbers of the nodes in disjoint regions. In a finite
network as shown in Fig. 1 (left), D = B(o,R), where
B(o,R) is a disk of radius R. The number of nodes M
inside B(o,R) is Poisson distributed with mean λπR2. In
an infinite network as shown in Fig. 1 (right), D = R2.

At any time, all nodes move independently of each
other by updating their positions at the beginning of
each time slot. In a finite network, the nodes bounce
back when they reach the boundary so that M remains
constant. In an infinite network, all nodes move freely.
Hence, the locations of potential interferers follow a
homogeneous or non-homogeneous PPP Φ(t) = {xi(t)}
at any time t ∈ N0.

2.2 Mobility models
Different mobility models lead to different spatial
properties of the networks and, in turn, affect the
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network performance differently [32]. In this part, we
introduce several well-accepted models in the literature.
For a fair comparison between different models, we first
define the average speed of the nodes and set it to the
same level. The speed of node i in one time slot is
defined as vi(t) = ‖xi(t)− xi(t− 1)‖, where t ∈ N0 and
‖·‖ is the Euclidean distance. We define

v̄ , E[vi(t)]. (1)

v̄ is the mean speed averaged over all nodes, or
equivalently, over all times for a fixed node. Here the
time slot is measured at the time scale of mobility, which
is indicated Fig. 2(a). v̄ is much larger than the radio
signal wavelength. The communication time scale, which
will be introduced in the next subsection, is at the level
of mobility or much shorter. Due to ergodicity and node
homogeneity, the space averages are equal to the time
averages.

2.2.1 Constrained i.i.d. mobility (CIM)
The constrained i.i.d. mobility (CIM) model is first
introduced in [31]. Here, we consider an identical model
except for the first time slot at t = 0. The node location
xi(t) is

xi(t) = yi + v̄wi(t), (2)

where the home locations of the nodes Ψ = {yi} form a
PPP, and wi(t) is uniformly at random in B(yi, v̄RCIM).
Using results from [37], we calculate the normalized
mobile range1 RCIM = 45π/128 ≈ 1.1045. The CIM
model is non-Markov. However given yi, xi(t) and
xi(t+ s) are i.i.d. for all s > 0.

2.2.2 Random walk (RW)
Under the random walk (RW) model, a mobile node
selects a new direction and speed randomly and
independently in each time slot. Hence, the spatial node
distribution remains uniform [33]. Mathematically, the
location of node i at time t+ 1 for t ∈ N0 is

xi(t+ 1) = xi(t) + v̄wi(t), (3)

where the distribution of wi(t) is uniformly at random
in B(xi(t), v̄RRW). The normalized mobile range RRW =
1.5, which is straightforward. In finite networks, the
node is bounced (reflected) back when it meets the
boundary2.

2.2.3 Discrete-time Brownian motion (BM)
Under the discrete-time BM model, the node location at
time t+ 1 for t ∈ N0 is

xi(t+ 1) = (xi,1(t+ 1), xi,2(t+ 1)) , (4)

where xi,1(t + 1) = xi,1(t) + v̄wi,1(t) and xi,2(t +
1) = xi,2(t) + v̄wi,2(t), where wi,1(t) and wi,2(t) are

1. The term "normalized" means that the average node speed is equal
to one.

2. We consider the same border behavior as presented in [34].

  t                                  t+1                             t+2                      
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Transmission

duration

(a)

. . .

. . .

(b)

. . .

(c)

Fig. 2: Mobility and transmission time scales. The
mobility (time) slots are indicated in (a). If a node
is assigned for transmission, each transmission period,
which is presented in gray, is assumed to start at the
beginning of each mobility slot. In (b), the transmission
duration is much shorter than the mobility (time) slot;
in (c), the length of transmission time is comparable to
the mobility slot.

i.i.d. normally distributed i.e., wi,1(t), wi,2(t) ∼ N
(
0, σ2

)
.

After normalization, we have σ =
√

2/π.

Remark. From [12], [33, Lemma 2.2], and [39], the above
mobility models preserve the uniform properties of the
node distributions. Consequently for any t, the PPP Φ(t)
remains homogeneous, if Φ(0) is homogeneous.

2.2.4 Random waypoint (RWP)
This model is only strictly defined in a finite area. Nodes
are uniformly placed at t = 0. Then, each node uniformly
chooses a destination in the area and moves towards
it with randomly selected speed3. A new direction
and speed are chosen only after the node reaches the
destination. Otherwise, it keeps the same direction and
speed for several time slots. After a long running time,
its spatial node distribution converges to a non-uniform
steady distribution [35].

2.3 Channel access scheme

We assume that the transmission starts at the beginning
of each time slot, and each transmission is finished
within one time slot. Slotted ALOHA is assumed as
the MAC protocol. In every time slot t, each node
determines whether to transmit or not independently
with probability p. The transmission ends before the end
of the mobility (time) slot as shown in Fig. 2(b) and
2(c). The next transmission (if the node is assigned to
transmit) starts at the beginning of successive mobility
(time) slot. This channel access scheme minimizes the
magnitude of the correlation. Note that this model is also
suitable for the case where not all transmissions start at

3. In the simulations, the speed is chosen so that the total distance
is a multiple of the speed.
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the beginning of a mobility time slot; since spreading
out the transmissions using time division scheduling
reduces the density of interferers, this case is modeled
by reducing the transmit probability p by the appropriate
factor.

2.4 Channel model

The attenuation in the wireless channel is modeled as
the product of a large-scale path gain component and a
small-scale fading gain component. The large-scale path
loss function g(x) is given by

g(x) =
1

ε+‖x‖α , ε > 0, (5)

where α is the path loss exponent. Two categories of
models are usually considered: the singular path-loss
model where ε = 0 and the non-singular path-loss model
where ε > 0. g(x) is assumed to be square integrable, i.e.,∫ ∞

ν

g2(x)dx <∞, ∀ν > 0.

In a two-dimensional network, α > 2 is necessary and
sufficient to satisfy the integrability condition.

For the multi-path fading, we consider a deterministic
model (i.e., no fading) and the Rayleigh and Nakagami
fading models in the desired link and the interfering
links. In Rayleigh fading, the pdf of the power fading
gain h is given by

fh(x) = exp(−x).

In the more general Nakagami-m fading model, the pdf
of the power fading gain is given by

fh(x) =
mmxm−1 exp(−mx)

Γ(m)
.

If the transmission duration is relatively long, i.e.,
comparable to the length of the time slot (Fig. 2(c)), the
packet may observe a large number of realizations, since
the node covers many wavelengths in distance. With
interleaving, the fading will then have a negligible effect
only. On the other hand, if the transmissions are short
(Fig. 2(b)), fading needs to be accounted for using the
Rayleigh or Nakagami models. We consider both cases
in this paper.

2.5 Total interference

Generally, the power received at the receiver from an
interferer is given by

PR = PThxg(x), (6)

where PT is the transmit power, assumed normalized to
1 and hx is multi-path fading gain. At time t, the total
interference at the receiver is

I(t) =
∑
x∈Φ(t)

Tx(t)hx(t)g(x), (7)

where Tx(t) is i.i.d. Bernoulli with parameter p due to
ALOHA, and hx(t) has mean Eh = 1.

2.6 Outage probability
The outage probability po is one of the fundamental
performance metrics in wireless networks. In
interference-limited channels, an outage occurs if
the signal-to-interference ratio (SIR) at a receiver is
lower than a certain threshold θ i.e., po , P(SIR < θ).

3 SINGLE-SNAPSHOT ANALYSIS OF INTER-
FERENCE AND OUTAGE

In this section, we evaluate the network performance in
a single snapshot of time. We assume that ε = 0. The
non-singular model ε > 0 can be treated similarly. The
mobility models in Section 2.2 are separated into two
categories: uniform and non-uniform.

3.1 Interference in uniformly mobile networks
Because of the uniformity of the mobility, the network
in any time t can be treated as correlated realizations
of a static network. Hence the existing results of the
interference and outage statistics in static networks in
[5], [10] also apply to uniformly mobile networks.

3.2 Interference in non-uniformly mobile networks
3.2.1 Interference in finite networks without fading
We consider RWP and set D = B(o,R). Since we are only
interested in the interference distribution in a single time
slot, we can drop the dependence on t and focus on the
generic random variable

I =
∑
x∈Φ

Tx ‖x‖−α . (8)

There are no closed-form pdf expressions of the inter-
ference in most cases. However, since the received power
decays according to a power law, only considering the
interference from the nearest interferer to the receiver
provides a good approximation if the path-loss exponent
α is not too close to 2 [5]. Therefore, we have the
interference power approximately as

I ≈ I1 = R−α1 , (9)

where R1 is the distance between the origin to its
nearest interferer. For RWP mobility, the node distance
distribution in a circular region is [35]

fL(r) =
1

R2

(
−4r3

R2
+ 4r

)
. (10)

Given a realization of the total number of nodes M , we
have

P (R1 6 r |M) = 1− (1− FL(r))
M

= 1−
(

1−
(

2r2

R2
− r4

R4

))M
. (11)
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Since M is Poisson distributed with mean λπR2, the pdf
of R1 is thus given by

fR1
(r) =

dEM [P (R1 6 r |M)]

dr

= pλπ

(
4r − 4

r3

R2

)
e
−pλπ

(
2r2− r4

R2

)
. (12)

From (9) and (12), we obtain the pdf of I1:

fI1(x) = 2pλπδ

(
x−δ−1 − x−2δ−1

R2

)
e
−pλπ

(
2x−δ− x−2δ

R2

)
.

(13)
With deterministic channels, a simple lower bound on
the outage probability is derived using the nearest-
interferer approximation:

pnf
o (θ) , P

(
1

I
< θ

)
> P

(
1

I1
< θ

)
= 1− FI1(θ−1) , pnf(θ). (14)

Calculating explicitly,

pnf(θ) = 1− exp

(
−pλπ

(
2θδ − θ2δ

R2

))
. (15)

3.2.2 Interference in finite networks with multi-path
fading
When the interferers’ channels are subject to multi-path
fading, the interference power from the nearest interferer
is h1I1, where h1 is the multi-path fading coefficient.
Then

pf(θ) = EI1
[
P
(

h

h1I1
< θ | I1

)]
,

where h is the fading gain in the desired link. In the
Rayleigh fading case, the cdf of H , h/h1 is

FH(x) =
x

x+ 1
.

A lower bound of outage probability is thus given by

pf(θ) =

∫ ∞
0

xfI1(x)

(xθ + 1)2
dx. (16)

The lower bounds of the outage probabilities and the
simulation results are plotted in Fig. 3. For comparison,
the lower bounds and simulation results under the RW
model are also included. The expected number of nodes
in the region EM = 10π ≈ 31. From the figure, we
find that the nearest-interferer approximation provides a
close approximation in terms of the outage probability,
in particular in the lower threshold regime, which is
the regime of practical interest. Furthermore, multi-path
fading is harmful to the link connections in mobile
networks.

3.2.3 Interference in infinite networks
In infinite networks, the RWP model cannot be properly
defined. However, we can derive the Laplace transform
of the total interference if the node distance distribution
follows (10). The Laplace transform of the interference

is first calculated under a finite radius R, and then
we let R → ∞. Since the mobility model itself
can not be defined, such a result is not the inter-
ference characterization under the RWP model in infinite
networks, but it provides an asymptotic expression as R
gets large.

Proposition 1. For R → ∞, the Laplace transform of the
total interference converges to

LI(s) = exp
(
−2πλpsδE[hδ]Γ (1− δ)

)
. (17)

Proof: We start with finite networks with radius R.
From (10), the intensity measure of the point process is

Λ(B(o, r)) , E(Φ(B(o, r))) = 2λπr2 − λπr4

R2
. (18)

The radial node intensity function is thus given by

λ(r) = 4λπr − 4λπr3

R2
. (19)

Using the probability generating functional (pgfl) to
calculate the Laplace transform, we obtain

LIR(s) = exp

(
−Eh

[∫ R

0

(
1− exp

(
−shr−α

))
λ(r)dr

])
, exp(−Eh[A(h)]) . (20)

Conditioning on the channel gain h,

A(h) = exp

(
−
∫ R

0

(
1− e−shr−α

)
d

(
2πλr2 − λπr4

R2

))
= exp

(
−
(

1− e−shR−α
)
λπR2

)
· exp

(
2πλαsh

∫ R

0

r−α+1e−shr
−α

dr

)

· exp

(
−αshλπ

R2

∫ R

0

r−α+3e−shr
−α

dr

)
.

Letting R→∞ and using the L’Hopital’s rule, we obtain
that

lim
R→∞

1− e−shR−α

R−2
=
αshR−α−1e−shR

−α

−2R−3

(a)
= 0,

where (a) holds for α > 2, and

lim
R→∞

αshλπ

R2

∫ R

0

r−α+3e−shr
−α

dr

= αshλπ lim
R→∞

R−α+2ejωR
−α

2
= 0,

Therefore, we have

lim
R→∞

A(h) = exp

(
2πλαsh

∫ R

0

r−α+1e−shr
−α

dr

)
.

Plugged back into (20), Proposition 1 is then proved.
Comparing (17) with [10, (18)], we notice that in an

asymptotically large area, the interference generated by
RWP nodes is equivalent to the interference generated by
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Fig. 3: Simulation results versus the corresponding lower
bounds of the outage probability for different fading and
mobility models.

nodes of uniformly mobility with doubled node intensity.
Without fading, the outage probability (α = 4) is given
by

pnf
o (θ) = P(I > θ−1) = erf

(
pπ

3
2

√
θλ
)
, (21)

where erf(x) = 2
∫ x

0
e−t

2

dt/
√
π is the error function4.

Fig. 4 shows the outage probabilities for RWP
nodes with different radii R by simulations versus
the asymptotic bound. The bound, which is exact for
R → ∞, is calculated using (21). The simulation curves
approach the bound as R increases. Hence, (21) can
be viewed as the upper bound and the asymptotic
expression of the outage probability for large R.

Since E[hδ] = Γ(1 + δ) for Rayleigh fading, the outage
probability in Rayleigh fading environment is

pf
o(θ) = 1− LI(θ) = 1− exp

(
−2pπ2λδθδ

sin(πδ)

)
. (22)

The same extra factor 2 is obtained as we compare (22)
to the homogeneous case [27, (6)], which confirms that
RWP mobility increases interference.

3.3 Tightness of the outage lower bound
In this part, we evaluate the tightness of the outage lower
bound we have obtained in finite networks. We have the
following proposition.

Proposition 2. When θ → 0, the lower bound of the outage
probability has the following relationship

p(θ) . po(θ), (23)

where “.” means “smaller than” with asymptotic equality.

Proof: It is obvious that p(θ)/po(θ) < 1. What we
need to prove is p(θ) ∼ po(θ), when θ → 0. First

4. In the expression, we have λ for RWP and λ/2 for uniform
mobility models.
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Fig. 4: The outage probabilities under the RWP mobility
with different radii R. Channel has no multi-path fading.
The bound (solid curve) is calculated analytically using
(21). Other curves with finite R are simulation results.

we consider the case without multi-path fading. With
similar steps in [10], the ccdf of interference distribution
in the infinite case is given as

FI(x) =
1

π

∞∑
k=1

Γ(αk)

k!

(
2λpπΓ(1− δ)

xδ

)k
sin(kπ(1− α)).

(24)
The term 2λ in (24) instead of λ in [10, (23)] is the
difference between RWP and uniform mobility cases.
Then

lim
θ→0

pnf(θ)

pnf
o (θ)

= lim
θ→0

1− exp
(
−pλπ

(
2θδ − θ2δ

R2

))
1
π

∑∞
k=1

Γ(αk)
k! (2λpπΓ(1− δ)θδ)k

(a)
= lim

θ→0

pλπ2
(
2δθδ−1 − 2δ

R2

)
e−pλπ(2θδ− θ2δ

R2 )∑∞
k=1

Γ(αk)
k! δkθδk−1 (2λpπΓ(1− δ))k

(b)
= 1,

where (a) holds because of the L’Hopital’s rule; (b) holds
because of the dominance of the term for k = 1 in the
Taylor series expansion.

From (16) and (22), we have for the Rayleigh fading
case that

lim
θ→0

pf(θ)

pf
o(θ)

(a)
= lim

θ→0

∫∞
0

y
θ(y+1)2 fI1(y/θ)dy

2pπ2λδ2

sin(πδ) exp
(
− 2pπ2λδθδ

sin(πδ)

) = 1,

where (a) holds because of the L’Hopital’s rule.

4 TEMPORAL CORRELATION OF INTER-
FERENCE AND OUTAGE
The interference statistics of mobile networks in a
single time slot has been studied in the previous
section, with concrete results for the interference and
outage statistics. However, only investigating the inter-
ference in a single time slot is insufficient to design
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Fig. 5: The temporal correlation coefficient ρτ versus the
mean speed v̄ with different path loss exponent α for the
CIM model.

the retransmission and routing schemes in wireless
networks, since the interference is temporally and
spatially correlated. Such correlation, which is caused
by the locations of mobile nodes, affects retransmission
and routing strategies greatly. For example in an ARQ
(Automatic Repeat reQuest) retransmission mechanism,
a packet is retransmitted after a timeout or after a
negative acknowledgment (NACK) received. Intuitively
when a link is in outage and correlation is high, blind
retransmissions lead to a higher failure rate than for
independent interference. Quantifying the correlation is
hence necessary. In this section, we consider uniform
mobility models only and focus on infinite networks. We
assume that ε > 0 in (5), since for ε = 0, some integrals
(such as the mean interference) are infinite.

4.1 Temporal correlation of the interference

In this part, we analyze the temporal correlation of
the interference. The spatio-temporal correlation can be
treated similarly. Because of the spatial stationarity of
the point process, it is sufficient to consider the inter-
ference at the origin. The total interference in (7), I(t),
is identically distributed for any t ∈ N0. We denote
the temporal correlation coefficient of the interference
between time s and t as ρτ , ρI(t)I(s), where τ = |t− s|.
We have the following proposition about ρτ .

Proposition 3. The temporal correlation coefficient of the
interferences I(s) and I(t), where s 6= t, is given by

ρτ =
p
∫
R2 g(x)Ewτ [g(x+ v̄wτ )]dx

E[h2]
∫
R2 g2(x)dx

, (25)

where v̄wτ ,(v̄wτ,1, v̄wτ,2) is the location difference of a node
between time s and t.

Proof: Since I(s) and I(t) are identically distributed,

we have

ρτ ,
Cov(I(t), I(s))

Var[I(t)]
=

E[I(t)I(s)]− E[I(t)]
2

E[I(t)2]− E[I(t)]
2 . (26)

The first and second moments of the interference follow
from Campbell’s theorem [8]:

µI , E[I(t)] = pλ

∫
R2

g(x)dx, (27)

and

ζ2
I , E[I(t)

2
]

= pλE
[
h2
] ∫

R2

g2(x)dx+ p2λ2

(∫
R2

g(x)dx

)2

.

(28)

The mean product of I(t) and I(s), where t 6= s, is given
by

E[I(t)I(s)]

= E

 ∑
x∈Φ(t)

Tx(t)hx(t)g(x)
∑

y∈Φ(s)

Ty(s)hy(s)g(y)


= E

 ∑
x∈Φ(s)

Tx(t)hx(t)g(x+ v̄wτ )
∑

y∈Φ(s)

Ty(s)hy(s)g(y)


= E

 ∑
x∈Φ(s)

Tx(t)Tx(s)hx(t)hx(s)g(x+ v̄wτ )g(x)

+

E

 x 6=y∑
x,y∈Φ(s)

Tx(t)Ty(s)hx(t)hy(s)g(x+ v̄wτ )g(y)

 ,
(29)

where v̄wτ is the location difference of a node between
time s and t. Using Campbell’s theorem and the
independence property of the multi-path fading gain hx,
we further write (29) as

E[I(t)I(s)]

= p2 (Eh)
2
λ

∫
R2

Ewτ [g(x+ wτ )g(x)] dx

+p2 (Eh)
2
λ2

∫
R2

∫
R2

Ewτ [g(x+ wτ )g(y)] dxdy

(a)
= p2λ

∫
R2

g(x)Ewτ [g(x+ wτ )] dx

+p2λ2

(∫
R2

g(x)dx

)2

, (30)

where (a) follows from the following relationship:

pλ

∫
R2

g(x)dx = E[I(0)] = E[I(t)]

= E

 ∑
x∈Φ(0)

Tx(t)hx(t)g(x+ v̄wt)


= pλ

∫
R2

Ewt [g(x+ v̄wt)]dx
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Therefore, Proposition 3 is proved.

Corollary 4. In d-dimensional networks, the correlation
coefficient is given by

ρτ =
p
∫
Rd g(x)Ewτ [g(x+ v̄wτ )] dx

E[h2]
∫
Rd g

2(x)dx
. (31)

Proof: Follows directly from the proof of Proposition
3.

The spatio-temporal correlation coefficient of the inter-
ference at two given locations is provided in [29, (11)].
For mobile networks, the random position difference of
the nodes in different time slots needs to be averaged
out. The difference between the static and mobile
networks is that in a static network, the path loss g(x)
does not change in one realization, while g(x(t)) is time
variant in a mobile network. The correlation coefficient
is independent of the intensity λ, since the interference
scales linearly with λ. We now have the following
corollary about ρτ .

Corollary 5. The temporal correlation coefficient ρτ is
bounded by

ρτ 6
p

E[h2]
. (32)

Denote the pdf of wτ as fwτ (x, y). If fwτ (0, 0) is bounded,
we have

ρτ ∼ C1v̄
−2, v̄ →∞, (33)

where

C1 =
pfwτ (0, 0)

(∫
R2 g(x)dx

)2
E[h2]

∫
R2 g2(x)dx

.

If ∀(x, y) 6= (0, 0), fwτ (0, 0) > fwτ (x, y), ρτ is bounded by

ρτ . C1v̄
−2, v̄ →∞, (34)

where “.” means “smaller than” with asymptotic equality.

Proof: Exploring Ewτ [g(x+ v̄wτ )] in (25) for the two-
dimensional case, we observe that

Ewτ [g(x+ v̄wτ )]

=

∫ ∞
−∞

∫ ∞
−∞

fwτ (z1, z2)

ε+
(

(x1 + v̄z1)
2

+ (x2 + v̄z2)
2
)α

2
dz1dz2

(35)

and, in turn, ρτ decreases monotonically with v̄. Hence

ρτ 6 lim
v̄→0

p
∫
R2 g(x)Ewτ [g(x+ v̄wτ )]dx

E[h2]
∫
R2 g2(x)dx

=
p

E[h2]
.

Rewriting (35) as

Ewτ [g(x+ v̄wτ )]

=
1

v̄2

∫ ∞
−∞

∫ ∞
−∞

fwτ ( t1v̄ ,
t2
v̄ )

ε+
(

(x1 + t1)
2

+ (x2 + t2)
2
)α

2
dt1dt2,

(36)
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Fig. 6: The temporal correlation coefficient ρτ versus ε
for the CIM model.

We obtain

lim
v̄→∞

ρτ v̄
2 =

pfwτ (0, 0)
(∫

R2 g(x)dx
)2

E[h2]
∫
R2 g2(x)dx

, C1 <∞.

If ∀(x, y) 6= (0, 0), fwτ (0, 0) > fwτ (x, y), Ewτ [g(x+ v̄wτ )]
in (36) is upper bounded by

Ewτ [g(x+ v̄wτ )] 6
fwτ (0, 0)

∫
R2 g(x)dx

v̄2
.

(32) is consistent with [29, Corollary 2] for static
networks when v̄ → 0. fwτ (0, 0) < ∞ indicates that the
probability where a node returns to its original position
after time interval τ is zero. Corollary 5 is valid for the
uniform mobility models considered in Section 2.2.

Interestingly, the decay of ρτ (v̄) is always
asymptotically proportional to v̄−2. Fig. 5 shows
ρτ versus the mean speed v̄ with different α under
the CIM model. In one-dimensional networks, ρτ is
asymptotically proportional to v̄−1 as we have shown
in [40]. Moreover, it can be extended to a d-dimensional
model, where ρτ is asymptotically proportional to v̄−d.
The dimension d equals to the degrees of freedom.

Fig. 6 shows ρτ versus ε. When ε is small, ρτ increases
with α. For α not too close to 2, interferers close to
the origin dominate the interference. Such dominance is
more prominent with larger α and hence causes higher
temporal correlation of the interference. However, ρτ
decreases with α when ε is large. More nodes contribute
to the interference in this case. The larger the path
loss exponent, the more correlated the interference is.
Moreover, the correlation coefficient ρτ → 0 as ε → 0.
As stated in the previous section, the interference is
dominated by the nearest transmitter in singular path-
loss model. The interferers in B(0, %), where 0 < % � 1,
dominate the interference. As the nodes move, we view
independent sets of interferers from B(0, %) in different
time instants. The correlation coefficient hence goes to
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zero in the singular path-loss model. It needs to be
pointed out that we only use the first and second
moments of interference statistics when we capture the
correlation in terms of the correlation coefficient. In
singular path-loss model, even the first moment of the
interference I is infinity. A more powerful metric for
dependence, such as mutual information, may reveal
that there is indeed still a dependence as ε→ 0.

The integral
∫
R2 g(x)Ewτ [g(x+ v̄wτ )]dx in (25) depends

on the mobility models. In the next several subsections,
we discuss different mobility models individually.

4.1.1 Constrained i.i.d. mobility (CIM)

Under the CIM model, the first term in (29) can be
rewritten as

E

 ∑
x∈Φ(s)

Tx(t)Tx(s)hx(t)hx(s)g(x+ v̄wτ )g(x)


(a)
= p2E

[∑
x∈Ψ

g(x+ v̄wt)g(x+ v̄ws)

]
(b)
= p2λ

∫
R2

Ews [g(x+ v̄ws)]
2dx,

where (a) follows from the independence of Tx(t) and
Tx(s); (b) follows from the fact that wt, ws are i.i.d. and
uniformly at random in B(x,RCIM). Thus, ρτ,CIM is
given by

ρτ,CIM =
p
∫
R2 Ews [g(x+ v̄ws)]

2dx

E[h2]
∫
R g

2(x)dx
. (37)

Using the limit in (34) as an upper bound, we have
the following corollary about ρτ,CIM.

Corollary 6. The temporal correlation coefficient under the
CIM model ρτ,CIM is upper bounded by

ρτ,CIM .
p

E[h2]
·min

{
1,

δπεδ

(1− δ)R2
CIM sin(πδ)v̄2

}
, (38)

where RCIM = 45π/128.

Proof: Since we have

fwτ (0, 0) =
1

πR2
CIM

,∫
R2

g(x)dx =
2π2

αε1−2/α sin(2π/α)
,

and ∫
R2

g2(x)dx =
2(α− 2)π2

α2ε2−2/α sin(2π/α)
,

(38) follows from Corollary 5 after several steps of
calculation.

Fig. 7 shows the numerical evaluation of ρτ,CIM from
(37) (solid curves) together with the upper bound from
(38) (dashed curves). The numerical evaluation converge
to the bound fast as v̄ increases and thus provides a tight
upper bound for all α > 2.
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ǫ = 10−2
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Fig. 7: Numerical evaluation (from (37)) of the temporal
correlation coefficient ρτ versus average node speed v̄
with the corresponding upper bound (from (38)). The
mobility model is CIM.

From (37) and (38), we find that the temporal
correlation remains stationary over time under the CIM
model, since ρτ,CIM is independent of τ . This observation
matches with the property of the CIM model. For the
Nakagami-m fading model, we have E[h2] = m+1

m . In
particular, E[h2] = 2 for Rayleigh fading (m = 1), and
E[h2] = 1 for no fading (m → ∞). ρτ,CIM increases
with m, as well as with the MAC scheme parameter p.
Conversely, both fading and random MAC scheduling
schemes reduce the temporal correlation of interference.

4.1.2 Random walk (RW)
Under the RW model, we focus on the temporal
correlation of the interference between two successive
time slots, i.e., ρ1. By a similar derivation as for the CIM
model, we have the following corollary about ρ1,RW.

Corollary 7. The temporal correlation coefficient under the
RW model ρ1,RW is upper bounded by

ρ1,RW .
p

E[h2]
·min

{
1,

4δπεδ

9(1− δ) sin(πδ)v̄2

}
. (39)

Proof: Since we have

fw1
(0, 0) =

1

πR2
RW

,

the calculation is straightforward following the proof of
Corollary 6.

Fig. 8 displays the numerical evaluation of ρ1,RW from
(25) and its upper bound from (39). The upper bound
converges fast to the numerical curves.

4.1.3 Discrete-time Brownian motion (BM)
Under the BM model, we have

wτ =

τ∑
i=1

w(i)
(d)
=
√
τw0,
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Fig. 8: Numerical evaluation (from (25)) of the temporal
correlation coefficient ρ1 versus average node speed v̄
with the corresponding upper bound (from (39)). The
mobility model is RW.

where
(d)
= denotes equality in distribution and w0 is a two

dimensional Gaussian random variable, i.e., N
(
0, σ2I

)
,

where I is a 2-by-2 identity matrix. Hence, (25) can be
rewritten as

ρτ,BM =
p
∫
R2 g (x)Ew0

[g(x+
√
τ v̄w0)] dx

E[h2]
∫
R g

2(x)dx
. (40)

Fig. 9 plots ρ1 versus the mean speed of nodes v̄ under
three mobility models. As we observe from the figure,
ρ1,CIM and ρ1,BM are approximately equal. ρ1,RW decays
slightly faster with the increase of v̄. The difference
between them is less than 0.02. Therefore the mean speed
v̄ rather than the specific nature of the mobility models
dominates the temporal correlation of the interference.
For τ > 1, we have the following corollary about ρτ,BM.

Corollary 8. When the time difference τ →∞, the temporal
correlation coefficient under the BM model is

ρτ,BM ∼ C2τ
−1, (41)

where

C2 =
C1

v̄2
=

π2ε2/α

2(α− 2) sin(2π/α)v̄2
,

and ρτ,BM is upper bounded by

ρτ,BM .
p

E[h2]
·min

{
1,

π2ε2/α

2(α− 2) sin(2π/α)τ v̄2

}
. (42)

Proof: Based on Corollary 5, (41) and (42) follow from
(40) after a few elementary steps.

Similarly, we can show that ρτ,BM is asymptotically
proportional to τ−d/2 in d-dimensional networks.

4.2 Outage correlation

In the design of retransmission schemes in wireless
networks, it is often assumed that outage events are

independent across time for the sake of mathematical
simplicity. However, due to the temporal correlation of
interference, link outage events are temporally correlated
as well. Intuitively speaking, a link in outage at a given
time indicates a higher outage probability in the next
several time slots because of the correlation of network
geometry. Such correlation affects retransmission and
routing schemes greatly and thus need to be quantified.
The correlation of link outage in static networks is
examined in [29]. In this section, we discuss the temporal
correlation of outage in mobile networks. Let At denotes
the event that the link is in outage at time t, i.e., At ,{

SIR(t) = h(t)
I(t) < θ

}
, where the distance of the desired

link is normalized to one as indicated in Section 2.1. The
joint probability of events As and At is given in (43),
where (a) follows from the independence of h(s) and
h(t); (b) follows from the identical distribution of I(t)
and I(s); (c) follows from the averaging of Tx and hx;
(d) holds from the pgfl of the PPP.

The direct evaluation of (43) seems hopeless, since
the joint distribution of the two correlated random
variables I(t) and I(s) is hard to obtain. However,
an approximation can be obtained by exploring the
functional relationship between I(s) and I(t). Regression
analysis is a statistical technique for investigating and
modeling relationships between two correlated variables
[41], [42]. In that way, I(t) is expressed as a linear
combination of I(s), a component orthogonal to I(s),
a constant component, and a random error component.
We introduce a random variable Ĩ(t) such that Ĩ(t)
and I(s) are identically distributed and independent,
i.e., E

[
I(s)Ĩ(t)

]
= 0. The covariance of Ĩ(t) and

I(t) is Cov
(
Ĩ(t), I(s)

)
= K

(
ζI − µ2

I

)
, where K is an

unknown parameter. Since I(s) and I(t) are correlated,
the multiple linear regression model that describes this
relationship is given by

I(t) = β0 + β1I(s) + β2Ĩ(t) + ξ, (44)

where β0, β1, and β2 are regression coefficients to be
determined, and the residual ξ is a random error.

If I(t) in (43) is replaced by the expression in
(44), the joint distribution of I(t) and I(s) is avoided.
The method of minimum mean square error (MMSE)
estimation is used to estimate the unknown parameters
{βi, i = 0, 1, 2} in (44). Geometrically, the linear model
(44) describes a two-dimensional estimation space of two
orthogonal regressors I(s) and Ĩ(t) and provides a linear
representation Î(t) that is closest to I(t). The error term ξ
in the model has the property of zero mean, i.e., E[ξ] = 0,
and is mutually independent with I(t) and Ĩ(t), i.e.,
E[I(s)ξ] = E[Ĩ(t)ξ] = 0. We denote the covariance matrix
of I(s) and Ĩ(t) as S =

(
ζI − µ2

I

)
I. From [41], we have

the coefficients that minimize the mean square error as[
β1

β2

]
= S−1

[
Cov(I(t), I(s))

Cov(I(t), Ĩ(t))

]
=

[
ρτ
K

]
, (45)
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P(As, At) = P(h(s) < θI(s), h(t) < θI(t))
(a)
= EI(s),I(t) [(1− exp (−θI(s)))(1− exp (−θI(t)))] ,

(b)
= 1− 2E[exp(−θI(t))] +

E

exp

−θ ∑
x∈Φ(s)

(Tx(s)hx(s)g(x) + Tx(t)hx(t)g(x+ v̄wτ ))


(c)
= 1− 2LI(θ) +

E

 ∏
x∈Φ(s)

(
p

1 + θg (x)
+ 1− p

)(
p

1 + θg (x+ v̄wτ )
+ 1− p

)
(d)
= 1− 2LI(θ) + Ewτ

[
exp

(
−λ
∫
R2

1−
(

p

1 + θg (x)
+ 1− p

)
·(

p

1 + θg (x+ v̄wτ )
+ 1− p

)
dx

)]
. (43)

———————————————————————————————————————————————————–

and
β0 = µI(1− ρτ −K) , (46)

respectively, where ρτ is the correlation coefficient we
have obtained in Section 4.1.

Taking the expectation of (44) on both sides, we obtain
that K ∈ [0, 1−ρτ ]. Here, the mobility models themselves
are not crucial. ρτ is sufficient to approximate the joint
outage probability P(As, At) in (43), which is given by

P(As, At)

= E[(1− exp (−θI(s)))

·(1− exp(−θ(β0 + ρτI(s) +KĨ(t) + ξ)))]

= 1− E[exp(−θI(s))]

−E[exp(−θρτI(s))− exp(−θ(1 + ρτ )I(s))]

·E
[
exp(−θ(β0 +KĨ(t)))

]
E[exp(−θξ)]

(a)

6 1− LI(θ)−(LI(ρτθ)− LI((1 + ρτ )θ)) ·
LI(θK) · exp(−θ(1− ρτ −K)µI) , (47)

where (a) follows from the fact that E[exp(−θξ)] > 1 by
Jensen’s inequality. The upper bound of P(As, At) in (47)
is a function of K. With different K, (47) provides a set of
upper bounds of the joint outage probability P (As, At).
Next, we find the tightest upper bound by searching the
K∗ such that the upper bound of (47) is minimized. We
then have the following proposition about P(As, At).

Proposition 9. The joint outage probability P(As, At) is
upper bounded by

P (As, At) 6 1− LI(θ)− LI((1− ρτ )θ)

· (LI(ρτθ)− LI((1 + ρτ )θ)) . (48)

Proof: Under the non-singular path-loss model,
the Laplace transform of the interference LI(s) for 2-
dimensional Poisson networks is re-calculated as
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Fig. 9: The interference correlation coefficient ρ1 versus
the mean speed v̄ under three mobility models.

LI(s)

= EΦ,hx,Tx

[
exp

(
−s
∑
x∈Φ

Txhxg(x)

)]

= EΦ

[∏
x∈Φ

Ehx,Tx [exp (−sTxhxg(x))]

]

= exp

(
−πpλEh

(∫ ∞
0

(
1− exp

(
− sh

ε+ x1/δ

))
dx

))
= exp

(
−pλδπ2 csc(πδ)

s

(s+ ε)1−δ

)
, (49)

and
µI =

δπ2pλ

ε1−δ sin(πδ)
. (50)

Finding the K∗ that minimizes the upper bound of (47)
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is equivalent to finding the K∗ such that

K∗ = arg sup
K∈[0,1−ρτ ]

{
f(K) ,

K

ε1−2/α
− 2K

(θK + ε)
1−2/α

}
.

(51)
It is easy to see that f(K) is monotonically increasing
over K ∈ [0, 1− ρτ ]. Hence,

K∗ = β2 = 1− ρτ . (52)

Proposition 9 is then proved.

Corollary 10. The conditional outage probability P(At | As)
is upper bounded by

P(At | As) 6 1− LI((1− ρτ )θ)(LI(ρτθ)− LI((1 + ρτ )θ))

1− LI(θ)
.

(53)

Proof: Since

P(At | As) =
P(As, At)

P(At)
,

the proof is straightforward from Proposition 9.

Corollary 11. The conditional outage probability P
(
At | Ās

)
is upper bounded by

P(At | Ās) =
P(Ās, At)

P(Ās)
6 1−LI((1 + ρτ )θ)LI((1− ρτ )θ)

LI(θ)
.

(54)

Proof: Similar to the proof of Proposition 9,

P(Ās, At) = P(h(s) > θI(s), h(t) < θI(t))

= EI(s),I(t)[exp(−θI(s))(1− exp(−θI(t)))]

6 LI(θ)− LI((1 + ρτ )θ)LI((1− ρτ )θ).

The corollary is then proved.
For comparison purposes, P(At | As) in static

networks in [29] is re-calculated under the non-singular
path-loss model as

P(At | As) = 1− LI(θ) +
(B − 1)L2

I(θ)

1− LI(θ)
, (55)

and
P
(
At | Ās

)
= 1−BLI(θ), (56)

where

B = exp

(
λp2

∫
R2

(
θg(x)

1 + θg(x)

)2

dx

)

= exp

(
2π2(α− 2)θ2λp2

α2(ε+ θ)2−2/α sin(2π/α)

)
.

Fig. 10 and 11 display the simulation evaluations of
the conditional outage probability versus the threshold
θ and the MAC scheme parameter p, respectively,
together with the tight upper bounds from (53) and
(54). The CIM model is used in the simulation. The
unconditional outage probability P(At) is always less
than P(At | As). The outage evaluation in a single time
slot ignores the information about previous link states
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Fig. 10: Conditional outage probability P(At | As)
together with unconditional outage probability P(At)
versus the threshold θ. The circles are the upper bound
of P(At | As) from (53); the solid-line curve is the exact
expression via simulations; the crosses are the upper
bound of P
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from (54).
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Fig. 11: Conditional outage probability P(At | As)
together with unconditional outage probability P(At)
versus the MAC scheme parameter p.

and thus provides an over-optimistic evaluation of the
network performance. Conversely, P(At) > P

(
At | Ās

)
as

expected. When the threshold increases, the difference
between P(At | As), P

(
At | Ās

)
, and P(At) shrinks, since

the link is more likely to be in outage and thus the
conditioning does not make a difference.

5 CONCLUSIONS

In this paper, we have treated macroscopic mobility
from a large-scale fading perspective. Fluctuations of
the path loss induced by mobility constitute another
type of fading in wireless channels besides multi-path
effects. To make the difference clear, we may speak
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of fading induced by microscopic mobility (multi-path
fading) and fading induced by macroscopic mobility.
Using this insight, we have characterized the interference
distributions in mobile networks. The nearest-interferer
approximation provides a tight lower bound on the
outage probability. The RWP model leads to increased
interference.

Furthermore, we have quantified the temporal
correlation of the interference and outage in mobile
networks in terms of the correlation coefficient ρ and
the conditional outage probability, respectively. We have
shown that in d-dimensional networks, ρ decreases
asymptotically inversely proportionally with the d-th
power of the average node speed. Multi-path fading
and random MAC schemes also reduce the interference
correlation. The interference correlation coefficient is a
key ingredient when we explore the outage correlation in
wireless networks by quantifying the conditional outage
probability, where a linear regression model is used
for bounding. Given that the link is in outage in the
present time instant, we have shown that it has a larger
probability of being in outage in the next several time
instants. The retransmission strategy needs to be smart
(correlation-aware) when the link is in outage, since
blind retransmission leads to an even higher failure rate.
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