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Stochastic Geometry for Modeling, Analysis, and
Design of Multi-Tier and Cognitive Cellular

Wireless Networks: A Survey
Hesham ElSawy, Ekram Hossain, and Martin Haenggi

Abstract—For more than three decades, stochastic geometry
has been used to model large-scale ad hoc wireless networks, and
it has succeeded to develop tractable models to characterize and
better understand the performance of these networks. Recently,
stochastic geometry models have been shown to provide tractable
yet accurate performance bounds for multi-tier and cognitive
cellular wireless networks. Given the need for interference
characterization in multi-tier cellular networks, stochastic ge-
ometry models provide high potential to simplify their modeling
and provide insights into their design. Hence, a new research
area dealing with the modeling and analysis of multi-tier and
cognitive cellular wireless networks is increasingly attracting the
attention of the research community. In this article, we present
a comprehensive survey on the literature related to stochastic
geometry models for single-tier as well as multi-tier and cognitive
cellular wireless networks. A taxonomy based on the target
network model, the point process used, and the performance
evaluation technique is also presented. To conclude, we discuss
the open research challenges and future research directions.

Index Terms—Multi-tier cellular networks, heterogeneous net-
works (HetNets), cognitive networks, interference modeling,
stochastic geometry.

I. INTRODUCTION

DUE to the rapid proliferation of smart phones, tablets,
and PDAs with powerful processing capability, the pop-

ulation of users using the wireless cellular infrastructure for
Internet connectivity as well as the traffic demand per user
are increasing dramatically. It is expected that by 2020 there
will be more than 50 billion connected devices, and the
cellular infrastructure should be developed accordingly [1].
The traditional homogeneous network expansion techniques
via cell splitting cannot cope with the rapid growth of user
population and their associated traffic. Moreover, macro base
station (MBS) deployment necessitates a huge capital expen-
diture (CAPEX) which would be very difficult to recover with
the decreasing service cost [2], [3]. In response to the capacity
challenges, the industry is driving the standardization bodies to
develop new solutions to accommodate the increased capacity
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demand (i.e., network capacity and the link capacity)1. For
instance, small cells including femto cells have been added to
the 3G, LTE and WiMAX standards, and many cellular service
providers have already commercially launched their small cell
services [3].

“Small cell” is an umbrella term for low-power and low-
cost radio access nodes that operate in both licensed and
unlicensed spectra and have a range of several meters to
several hundred meters. Note that a typical mobile macrocell
may have a range of up to several kilometers. The term “small
cell” covers femtocells, picocells, microcells, and metrocells.
When compared to unlicensed small cells (e.g., Wi-Fi), small
cells operating in the licensed band (i.e., licensed small cells)
provide support for legacy handsets, operator-managed quality
of service (QoS), seamless continuity with the macro networks
through better support for mobility/handoff, and improved
security.

Some of the small cells (e.g., femto cells) are deployed and
managed by the users, which means that some of the network
CAPEX and operational expenditure (OPEX) are offloaded
from the service providers to the users [3]. Small cells offer a
fine grained and customer needs-oriented network expansion,
which permits an optimized network operation. The small cells
will offload a controllable percentage of the users and their
associated traffic from the congested macro network tier, and
hence, the number of users served by each network entity
decreases, leading to a higher QoS per user. The network
constituted by the MBSs overlaid by the small cell base
stations (SBSs) is called a multi-tier cellular network (also
referred to as a heterogeneous network [HetNet]). Multi-tier
cellular network is a broad term that implies the coexistence of
different networks (e.g., traditional macro cell as well as small
cell networks) each of them constituting a network tier, and
captures the single-tier (i.e., homogenous) cellular network as
a special case. Multi-tier cellular networks are envisioned to
provide a fast, flexible, cost-efficient and fine-tuned design and
network expansion for the existing cellular architecture [2].

Due to the scarcity of the wireless spectrum along with
the ever increasing capacity (both network and link capaci-
ties) demand, universal frequency reuse is one of the main
characteristics of multi-tier cellular networks [3]–[7]. That is,
the available spectrum will be aggressively reused by all of

1Hereafter, we will use the term network capacity to refer to the total
number of active users per unit area that can be accommodated by the network,
and the link capacity to indicate the achievable data rate for a user using
Shannon’s formula.
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the coexisting network tiers. This will increase the spatial
spectrum efficiency and network capacity at the expense of
increased interference. In a multi-tier cellular network with
universal frequency reuse and K coexisting tiers, there are
two types of interferences, namely, the cross-tier (or inter-
tier) interference and the co-tier (or intra-tier) interference.
In the downlink, the cross-tier interference is the interference
experienced by a user served by a BS from tier i from BSs
belonging to tier j, ∀j �= i, j = 1, 2, 3, . . . ,K . On the other
hand, the co-tier interference is the interference experienced by
a user served by a BS in tier i from the other BSs in the same
tier i. In multi-tier cellular networks, interference is one of the
main performance limiting parameters, and hence, interference
modeling, coordination, and avoidance are of primary interest
to both the academic and industry communities. Cognitive (or
intelligent) radio technology, which enables the radio devices
to dynamically adjust the transmission parameters based on the
ambient radio environment, will be an enabling technology for
interference management and avoidance in multi-tier cellular
networks [5].

For the analysis and design of interference avoidance and
management techniques in multi-tier cellular networks, rig-
orous yet simple interference models are required. However,
interference modeling has always been a challenging problem
even in simple traditional single-tier cellular networks. For
interference characterization, assuming that the BSs of the
cellular network follow a regular grid (e.g., the traditional
hexagonal grid model) leads to either intractable results which
require massive Monte Carlo simulation [8] or inaccurate
results due to unrealistic assumptions [9]. Moreover, due to
the variation of the capacity (both network and link capacities)
demand across the service area (e.g., downtowns, residential
areas, parks, sub-urban and rural areas), the BSs will not
exactly follow a grid-based model. That is, for snapshots of a
cellular network at different locations, the positions of the BSs
with respect to (w.r.t.) each other will have random patterns.
Hence, the grid-based modeling assumption is violated and is
considered too idealized. If topological randomness is a char-
acteristic of the single-tier cellular networks, multi-tier cellular
networks with independent deployment of small cells (e.g.,
femto cells) will have even more topological randomness.

Recently, a new modeling approached has been adopted
for multi-tier cellular networks. It is based on stochastic
geometry and not only captures the topological randomness
in the network geometry but also leads to tractable analytical
results. Stochastic geometry is a very powerful mathematical
and statistical tool for the modeling, analysis, and design
of wireless networks with random topologies [10]–[16]. It
has been applied to ad hoc networks for more than three
decades [17], in particular to model and analyze systems with
random channel access (e.g., ALOHA [17]–[39] and carrier
sensing multiple access (CSMA) [40]–[51]), single- and multi-
tier cellular networks [52]–[80], and networks with cognitive
elements [76]–[86].

In this article, we will not delve into the literature related to
interference modeling in large-scale ad hoc networks because
there exist excellent resources dealing with them [11]–[16].
Instead, we will focus on the related literature on stochastic
geometry modeling and analysis of single-tier, multi-tier, and

cognitive cellular networks, which was not considered in [11]–
[16]2. Nevertheless, we will shed light on some stochastic
geometric models for interference in large-scale ad hoc wire-
less networks which are necessary to give the mathematical
preliminaries required to understand the discussion throughout
this article. We will also provide a detailed taxonomy of
the existing literature according to the point process used,
the interference modeling approach, and the target network
model. The proposed taxonomy will reveal the popularity
and applicability of the different point processes (PPs) and
modeling techniques. Finally, we will discuss the limitations of
stochastic geometry modeling, potential methods to overcome
some of these limitations, open research problems, and future
research directions.

The rest of the paper is organized as follows. The math-
ematical preliminaries for stochastic geometry modeling are
presented in Section II. In Section III, we classify the stochas-
tic geometry modeling techniques used in the literature and
provide a taxonomy of these techniques. In Section IV, the
stochastic geometry modeling for multi-tier cellular networks
is surveyed. Stochastic geometry modeling for cognitive net-
works is discussed in Section V. Section VI provides fu-
ture directions for stochastic geometry modeling of cellular
networks. Finally, we discuss the merits and limitations of
stochastic geometry modeling in Section VII before conclud-
ing the paper in Section VIII.

II. PRELIMINARIES ON THE STOCHASTIC GEOMETRY
MODELING OF WIRELESS NETWORKS

In this section, we provide some mathematical preliminaries
on the stochastic geometry modeling to help understand the
discussions presented later in this paper.

A. Signal-to-Interference-Plus-Noise Ratio (SINR) Model
In wireless communications, the signal power decays with

the distance between the transmitter and the receiver according
to the power law

Pr(y) = Pt(x)Ahxy ‖x− y‖−η (1)

where x ∈ R
d is the spatial location of a test transmitter, Pt(x)

is the transmit power indexed by the transmitter location,
y ∈ R

d is the spatial location of the receiver, hxy is a random
variable accounting for the random channel (power) gain3

between the two locations x and y, ‖.‖ is the Euclidean norm,
A is a propagation constant, and η is the path-loss exponent.
Note that (1) is called the unbounded path-loss model due to
its singularity at the origin. Although the unbounded path-loss
model is only valid for calculating the received power at the
far field, it has been extensively used in the literature due to its
simplicity. An alternative path-loss model, called the bounded
path-loss model, is more practical but complicates the analysis.
The bounded path-loss model is given by

Pr(y) =
Pt(x)Ahxy

ε+ ‖x− y‖η (2)

2The reason we focus on cognitive networks is that dynamic spectrum
access via cognition is envisioned to be a key characteristic in a multi-tier
network with self-organizing small cells [5].

3Random channel gains are used to model the uncertainties in the received
signal power that arise due to multi-path fading and shadowing.
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where ε > 0 is added to avoid the singularity at the origin.
While the choice of the model may significantly affect the
interference statistics, its impact on the SINR statistics is
smaller. More discussions on the effects of bounded and
unbounded path-loss models can be found in [30]. Throughout
this paper, for simplicity, we will use the unbounded path-loss
model given in (1). Although (1) holds for any number of
dimensions, the dimensions d = 1, 2, and 3 are of primary
interest due to their physical interpretations.

Due to the distance-dependent signal power decay, along
with the shared nature of the wireless medium, the network
geometry has a significant impact on the performance of
wireless networks. That is, the position of a test receiver w.r.t.
its serving network entity highly affects the desired signal.
On the other hand, the position of the test receiver w.r.t.
other network entities that are simultaneously using the same
channel highly affects the interference seen by the test receiver.
Therefore, the network geometry has a significant impact on
the SINR experienced by the receivers.

The SINR at a test receiver in the network can be calculated
as

SINR(y) =
Pt(x0)Ahx0y‖x0 − y‖−η

W +
∑

x∈I Pt(x)Ahxy‖x− y‖−η
(3)

where y is the location of the test receiver, x0 is the location
of the test transmitter (desired transmitter), I = {x1, x2, . . .}
is the set of the locations of the interferers (active transmitters
using the same channel as the test transmitter), and W is
the noise power. The term

∑
x∈I ... = Iagg is the aggregate

interference power at the test receiver.
According to the network model, I can be either finite or

infinite, and the locations and the intensity of the interferers
(i.e., the number of interferers per unit area) depend on
the network characteristics (e.g., network topology, number
of channels, association criterion, etc.) and medium access
control (MAC) layer protocol (e.g., ALOHA, CSMA, TDMA,
CDMA, etc.). The effect of user association and spectrum
access method (i.e., MAC protocol) on the locations and/or
intensities of the interferers are explained below.

• In a cellular network, a user may select the BS providing
the highest signal power to be her serving BS. Therefore,
in a single-tier cellular network, when all the BSs have
the same transmit powers, the distance between a generic
user and her nearest interfering BS will be greater than
the distance between that user and her serving BS. In
a multi tier cellular network, different network entities
have different transmit powers. Therefore, as shown in
Fig. 1(a), given that the distance between a macro-cell
user and her serving MBS is r and the transmit power
of the serving MBS is Pm, the nearest interfering MBS
transmitting with the same power Pm will be located at a
distance rm > r. On the other hand, assuming the same
path-loss exponent η for macro and small cell tiers, the
nearest interfering SBS with transmit power Ps will be

located at a distance rs > r
(

Ps

Pm

) 1
η

. Similarly, Fig. 1(b)
shows the relation between the desired link distance for
a small cell user (i.e., the distance between the small cell
user and her serving SBS) and the nearest interference
sources.

(a)

(b)

Fig. 1. The relation between the desired link distance and the nearest
interference sources: (a) macro-cell user, (b) small-cell user.

• A cognitive spectrum access method affects both the
locations of the interference sources as well as their
intensity. In a cognitive cellular network, each network
element performs spectrum sensing and accesses a chan-
nel if and only if the received power on that channel is
less than a given threshold (γ). If deterministic channel
gains are assumed, the spectrum sensing threshold (γ)

translates to a minimum exclusion distance re =
(

PtA
γ

) 1
η

between the network elements using the same channel.
Fig. 2(a) shows the locations of the cognitive network
elements and Fig. 2(b) shows the potential locations of
the simultaneously transmitting network elements on the
same channel. From Fig. 2(b), we can see that there is
a minimum distance between any two network elements
using the same channel which controls both the minimum
distance between a receiver and her interference sources
as well as the intensity of the interference sources.

At a generic time instant, the SINR experienced by each
receiver depends on its location, the positions of the inter-
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(a)

(b)

Fig. 2. (a) The locations of the cognitive network elements, (b) the potential
locations of the simultaneously transmitting network elements on the same
channel (the shaded network elements cannot simultaneously transmit on the
same channel due to the cognitive nature of the spectrum access).

ference sources as well as the instantaneous channel gains.
Hence, given the effect of network geometry on interference,
the SINR is a random variable that strongly depends on the
network geometry and significantly varies from one receiver
to another and from one time instant to another.

Stochastic geometry is a mathematical tool that provides
spatial averages, i.e., averages taken over large number of
nodes at different locations or4 over many network realiza-
tions, for the quantities of interest (e.g., interference, SINR,
outage probability, and achieved data rate) [11]. In other
words, the stochastic geometry averages over all network
topologies seen from a generic node weighted by their proba-
bility of occurrence [10], [83]. In this paper, after presenting
the necessary preliminaries, we will elaborate how stochastic
geometry captures the topological randomness while account-
ing for the system characteristics in cellular networks.

4If the point process is ergodic, the spatial averages (across points) equal
the ensemble averages (across realizations) [10, Ch. 2].

B. Point Processes

In stochastic geometry analysis, the network is abstracted
to a convenient point process (PP) which captures the network
properties. That is, according to the network type, as well as
the MAC layer behavior, a matching PP is selected to model
the positions of the network entities. At first, we define the
most popular PPs used in wireless communications systems,
then we show the analogy between the PPs and the networks
they model.

Definition 1 (Poisson point process (PPP)): A PP Π =
{xi; i = 1, 2, 3, . . .} ⊂ R

d is a PPP if and only if the
number of points inside any compact set B ⊂ R

d is a Poisson
random variable, and the numbers of points in disjoint sets are
independent.

Definition 2 (Binomial point process (BPP)): The BPP mod-
els the random patterns produced by a fixed number of
points (N ) in a set B ⊂ R

d with a finite Lebesgue measure
L(B) < ∞, where L(.) denotes the Lebesgue measure5. Let
Π = {xi; i = 1, 2, 3, . . .} and Π ⊂ B, then Π is a BPP if the
number of points inside a compact set b ⊆ B is a binomial
random variable, and the numbers of points in disjoint sets are
related via a multinomial distribution.

Definition 3 (Hard core point process (HCPP)): An HCPP is
a repulsive point process where no two points of the process
coexist with a separating distance less than a predefined hard
core parameter rh. A PP Π = {xi; i = 1, 2, 3, . . .} ⊂ R

d is
an HCPP if and only if ‖xi − xj‖ ≥ rh, ∀xi, xj ∈ Π, i �= j,
where rh ≥ 0 is a predefined hard core parameter.

Definition 4 (Poisson cluster process (PCP)): The PCP mod-
els the random patterns produced by random clusters. The
Poisson cluster process is constructed from a parent PPP
Π = {xi; i = 1, 2, 3, . . .} by replacing each point xi ∈ Π
with a cluster of points Mi, ∀xi ∈ Π, where the points in
Mi are independently and identically distributed in the spatial
domain.

More formal definitions of these PPs can be found in [10],
[13], [14]. Fig. 3 shows a realization for a PPP and its
corresponding HCPP and PCP. Note that every realization of
a finite PPP is a BPP with the number of realized points [10,
Thm. 2.9]. The PPP is used to model or abstract a network
composed of a possibly infinite number of nodes randomly
and independently coexisting in a finite or infinite service area
[17], [18], [21], [25]–[28], [31] (e.g., nodes in a large-scale
wireless network or users in a cellular network). If the total
number of nodes is known and the service area is finite (e.g.,
a certain number of sensors dropped from a plane for battle
field surveillance), then the BPP will be used to abstract the
network [37], [38]. The PCP is used to model a network if
the nodes are clustered according to certain social behavior or
by the MAC protocol [39], [83] (e.g., users gathered around
Wi-Fi hot spots). If there is a minimum distance separating
the nodes due to some physical constrains (e.g., geographical
constrains), due to network planning, or due to the MAC layer

5This is the standard way of assigning a measure to subsets of an n-
dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard
measure of length, area, or volume.
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behavior, then a repulsive point process such as the Matérn
HCPP will be used for modeling their spatial locations [40]–
[51], [87], [88] (e.g., contention domain in a CSMA protocol).

The Matérn HCPP conditions on having a minimum dis-
tance rh between any two points of the process, and is obtained
by applying dependent thinning to a PPP. That is, starting
from a PPP, the HCPP is obtained by assigning a random
mark uniformly distributed in [0, 1] to each point in the PPP,
then deleting all points that coexist within a distance less than
the hard core parameter rh from another point with a lower
mark. Hence, only the points that have the lowest mark within
their rh neighborhood distance are retained. As a result, no
two points with a separation less that rh will coexist in the
constructed HCPP.6

Among these point processes, due to its independence
property, the PPP is the most popular, most tractable, and
most important. Models based on the PPP have been used
for large-scale ad hoc networks for more than three decades
[17], [18], [28], and the performance of PPP-based networks is
well characterized and well understood. For instance, the exact
probability density function (pdf) of the aggregate interference
as well as the exact outage probability were obtained in [28]
for a planar PPP network with deterministic channel gains
and a path-loss exponent η = 4. Results for Rayleigh fading
channels can be found in [19]. The exact distribution for the
aggregate interference in a Rayleigh fading channel and a path-
loss exponent η = 4 was derived in [29]. A model that captures
general fading and propagation effects was developed in [31].
The maximization of transmission capacity7 was performed in
[21], [26]. The exact upper and lower bounds on the outage
probability can be found in [26]. The effect of fading channels
and power control via channel inversion on the transmission
capacity was studied in [20]. The effect of interference can-
cellation on the transmission capacity was studied in [22].
The transmission capacity-optimal decentralized power control
policy for a PPP network was derived in [23], and the delay-
optimal decentralized power control for PPP networks was
derived in [33], [34]. The interference correlation due to
mobility was characterized in [35]. Most of these results have
been summarized in the two monographs [13], [14].

The importance of the PPP lies in that, besides being
tractable and easy to handle, it does not only fit to model
large-scale ad hoc networks with randomized multiple access
techniques (e.g., ALOHA), it also provides tight bounds for
the performance parameters in planned infrastructure-based
networks and coordinated spectrum access networks. More-
over, as shown in the definitions above, the PPP provides
the base line model (i.e., parent PP) for the different point
processes used in the literature for wireless communications
systems. For instance, in a coordinated access ad hoc network,
the complete set of nodes attempting to access the spectrum
can be modeled using a PPP. On the other hand, the subset of
nodes selected by the MAC protocol to access the spectrum

6More precisely, this model is called a Matérn hard-core process of type
II [10, Def. 3.8].

7The transmission capacity is a parameter that captures both the spatial
frequency reuse efficiency and the outage probability. It is defined as the
number of successful transmissions per unit area under an outage probability
constraint [21].
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Fig. 3. (a) PPP in a 20m × 20m region with intensity 0.1 points/m2 , (b)
HCPP in a 20m × 20m region for the parent PPP in (a) and hard core
parameter rh = 2m, each point of the HCPP lies at the center of a non-
overlapping circles with radius rh/2 represented by the dashed circles, (c)
PCP in a 20m × 20m region for the parent PPP in (a) and clusters with a
Poisson distributed number of points with mean 2 uniformly distributed in a
unit circle neighborhood (i.e., Matérn cluster process), the parent PPP points
are plotted in crosses“+” while the added cluster points are plotted in dots.

will be modeled via the Matérn HCPP derived from the parent
PPP modeling the complete set of nodes. Similarly, for an
infrastructure-based network, a PPP can be used to model
the set of candidate locations acquired by the site acquisition
team for deployment of BSs, while a Matérn HCPP can be
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used to model the subset of the locations selected by the
network planning team for actual deployment of BSs. After
abstracting the network by a convenient point process, several
performance metrics can be characterized.

C. Performance Metrics

Interference is one of the main network parameters to
characterize using the stochastic geometry analysis. For a
generic node in the network, the aggregate interference Iagg =∑
x∈I

Pt(x)Ahxy ‖x− y‖−η is a stochastic process that depends

on the locations of the interferers captured by the point process
I = {xi} and the random channel gains hxy. Note that I
is defined by the network properties and the MAC layer as
shown in Fig. 1 and Fig. 2. The aggregate interference is a
stochastic process which varies according to the test location
and time. As mentioned before, stochastic geometry analysis
gives the statistics of the interference (averaged w.r.t. the spa-
tial domain) behavior experienced by the nodes existing in the
network. Hence, interference can be completely characterized
by its pdf (or equivalently, its cumulative distribution function
(cdf)). Generally, there is no known expression for the pdf
of the aggregate interference in large-scale networks. Hence,
the aggregate interference is usually characterized by using
the Laplace transform (LT) of the pdf (or equivalently its
characteristic function [CF] or moment generation function
[MGF])8. The Laplace transform of the aggregate interference
is given by

LIagg (s) = E[e−sIagg ]. (4)

At a generic time instant, since the aggregate interference
is a strictly positive random variable, its Laplace transform
always exists. Stochastic geometry provides a systematic way
to obtain the LT, CF, or MGF for the aggregate interference
associated with the PP of interest. In this article, we will not
go into the details of how to derive the LT, CF, or MGF for
the aggregate interference associated with the PP of interest as
they are well explained in the literature [11], [13], [14], [25],
[27]. However, it is important to note that although the exact
LT, CF, or MGF are available for the PPP, BPP, and the PCP,
only approximate expressions of LT, CF, or MGF are available
for the Matérn HCPP. With the LT, CF, or MGF, we are
able to generate the moments (if they exist) of the aggregate
interference as E[Inagg] = (−1)n L(n)

Iagg
(s)

∣∣∣
s=0

, where L(n)
Iagg

(s)

is the nth derivative of LIagg (s). In the general case, it is
not possible to derive the exact performance metrics (e.g.,
outage probability, transmission capacity, average achievable
rate) from the LT, CF, or the MGF.

In the next section, we will show different techniques used
in the literature to utilize the LT, CF, or the MGF and go
beyond the moments of the aggregate interference to evaluate
the network performance.

III. TECHNIQUES TO ANALYZE NETWORK PERFORMANCE

In the literature, there are five main techniques to utilize
the LT, CF, or the MGF and go beyond the moments of

8Hereafter, we will say “the Laplace transform of the random variable” to
denote the Laplace transform of its pdf.

interference and model the network performance metrics. In
the following, we will discuss the techniques which were used
in the literature to overcome the obstacle imposed by the non-
existence of any useful closed-form expression for the pdf of
the interference.

A. Technique #1: Resort to the Rayleigh Fading Assumption

Because of its analytical tractability, the Rayleigh fading
assumption is the most popular assumption in the literature to
overcome the obstacle imposed by the non-existence of any
closed-form expression for the pdf of the aggregate interfer-
ence [25], [27]. Although the interference statistics cannot be
obtained, by assuming Rayleigh fading on the desired link (i.e.,
the link between the test receiver and its serving transmitter),
the exact distribution for the SINR can be obtained. That is, if
the desired link is impaired by Rayleigh fading, the expression
for the cdf of the SINR can be obtained from the Laplace
transform evaluated at some value.

Without loss of generality, let r = ‖x0 − y‖ be the constant
distance between the transmitter and the test receiver, h0 ∼
exp(μ) be the channel power gain of the desired link, then
we have

FSINR(θ) = P {SINR ≤ θ}
= P

{
PtAh0r

−η

W + Iagg
≤ θ

}

= P

{
h0 ≤ (W + Iagg)θr

η

PtA

}

=

∫
u

Fh0

(
(W + u)θrη

PtA

)
fIagg (u)du

(i)
= 1− EIagg

[
exp

(
− (W + Iagg)μθr

η

PtA

)]

= 1− exp

(
−Wμθrη

PtA

)
EIagg

[
exp

(
−Iaggμθr

η

PtA

)]

= 1− exp

(
−Wμθrη

PtA

)
LIagg (s)

∣∣
s= μθrη

PtA

= 1− exp (−Wcθ) LIagg (s)
∣∣
s=cθ

(5)

where Fh0(.) is the cdf of h0, fIagg (.) is the pdf of the
aggregate interference, the expectation in (i) is w.r.t. both the
point process and the channel gains between the interference
sources and the test receiver, and c = μrη

PtA
is a constant.

Relaxing the constant distance r is straightforward [54]. As
mentioned before, the LT for the aggregate interference can
be found in a systematic manner [13]–[16]. For interference-
limited networks (i.e., Iagg � W ), the effect of noise can be
ignored and the cdf reduces to FSINR(θ) = 1− LIagg (s)

∣∣
s=cθ

,
in which the Laplace transform of the aggregate interference
is evaluated at some constant c multiplied by the parameter θ
of the cdf of SINR. With the exact cdf of the SINR, different
performance metrics such as the outage probability, transmis-
sion capacity, and the achievable data rate (i.e., obtained using
Shannon’s formula) can be quantified. This technique is used
in [9], [25]–[27], [32]–[35], [37], [39], [54]–[60], [62]–[66],
[68], [77], [78], [80], [81], [83], [85], [86], [89], [90].

The main drawback of this technique is that it is only
valid with the Rayleigh fading assumption for the desired link,
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which may not always be the case. We can relax the Rayleigh
fading assumption at the expense of the tractability of the
model. As a result, we may be able to get only approximate
solutions or tight bound on the SINR distribution.

B. Technique #2: Resort to Dominant Interferers by Region
Bounds or Nearest n Interferers

Technique #2 is also a very popular technique because
of its simplicity and accuracy. This is based on the idea of
obtaining a lower bound on the outage probability by only
considering the subset of dominant interferers. In the literature,
it has been shown that, under a high path-loss exponent
(e.g., η = 4), both the approaches (i.e., approaches based on
the vulnerability region and nearest n interferers) give tight
lower bounds on the outage probability. However, when the
path-loss exponent decreases and approaches 2 (in the planar
case), the contribution of distant interferers to the outage
events increases and becomes overwhelming, and hence, both
approaches lose their accuracy and therefore should not be
used.

Assuming deterministic channel gains, the region bound is
determined by the vulnerability circle around the test receiver.
The vulnerability circle is the region where the signal power of
any active transmitter measured at the test receiver is greater
than the desired signal power at the test receiver multiplied by
a certain threshold θ [12]. In other words, for a given SINR
threshold θ, the vulnerability circle contains all transmitters
where the transmission of any of them can alone corrupt
the signal received at the test receiver. The notion of the
vulnerability circle can be extended to random channel gains
as in [77].

In the vulnerability region analysis, it is not required to
derive the Laplace transform of the aggregate interference.
Instead, only the spatial statistics of the PP are studied
over the vulnerability region corresponding to the desired
signal strength and the SINR threshold. That is, the outage
probability (i.e., the cdf of the SINR) can be lower bounded
by the probability that the vulnerability region is non-empty.

The approach based on the nearest n interferers leads to the
same results (i.e., lower bounds), however, since the distribu-
tion of the distances for the n nearest interference sources
needs to be determined, the analysis here is significantly
more involved than the vulnerability region analysis. The
distribution of distances for the PPP and BPP was derived
in [36] and [38] respectively.

Since the moments of the aggregate interference can be
generated from the LT, CF, or the MGF, an upper bound
for the outage probability can be obtained using the Markov
inequality, Chebyshev’s inequality, or the Chernoff bound. The
Markov inequality is the easiest to compute, however, it is the
most loose inequality. On the other hand, the Chernoff bound
is quite tight for the tail probability, but its computation is
more involved and requires the knowledge of the MGF to
be optimized. Generally, the lower bounds provided by the
region bounds or the n nearest interferers are tighter than
these upper bounds [26]. The lower bound obtained based
on the vulnerability region analysis was used in [17], [18],
[21]–[26], [39], [43]–[45], [67], [69]. The bound based on the

nearest n interferers was used in [19], [20], [35], [38], [81].
The Markov upper bound was used in [22], [25], [26], [39].
The Chebyshev’s upper bound was used in [20]–[22], [26],
[43], [69] and the Chernoff upper bound was used in [26].

C. Technique #3: Resort to the Approximation of the pdf of
the Aggregate Interference

In technique #3, the pdf of the aggregate interference power
is approximated by one of the known pdfs. The parameters
of the approximate pdf are obtained via the LT, CF, or
MGF. For instance, if the pdf of the aggregate interference
is approximated by a normal distribution, then the mean and
the standard deviation will be obtained from LT, CF, or the
MGF of the aggregate interference. The main drawback of this
method is that there is no known criterion to choose which
pdf to use and the approximation error can be only quantified
by simulations.

In the literature, different papers used different pdfs ac-
cording to the problem in hand and the results were verified
via simulations. For a PPP, it was discussed in [25], [27]
that under the bounded path-loss or a guard zone around the
receiver, the moments of aggregate interference exist and the
distribution of it approaches the Gaussian distribution. In [37],
[43], [46], the aggregate interference was approximated via a
Gaussian distribution. However, in [82] it was shown that the
pdf of aggregate interference from a PPP with an exclusion
region around the test receiver is skewed and hence deviates
from normality. The authors in [82] showed that the shifted
log-normal distribution gives a better approximation than the
Gaussian approximation for the pdf of the secondary users’
aggregate interference in a cognitive network. In [84], the
pdf of aggregate interference power was approximated by a
truncated stable distribution, and in [76] by log-normal and
shifted log-normal distributions. In [13, Sec. 5.5], the gamma,
inverse Gaussian, and the inverse gamma distributions were
used to model interference powers under general PPs. In [71],
the pdf of the amplitude of the aggregate interference was
approximated with a circularly symmetric complex Gaussian
distribution.

D. Technique #4: Resort to the Plancherel-Parseval Theorem

The Plancherel-Parseval theorem [91] states that if f1(t)
and f2(t) are square integrable complex functions, then∫

R

f1(t)f
∗
2 (t)dt =

∫
R

F1(ω)F∗
2 (ω)dω (6)

where F1(ω) is the Fourier transform (FT) of f1(t), F2(ω)
is the FT of f2(t), and f∗(t) denotes the conjugate of f (t).
The Fourier transform of a pdf is equivalent to the CF of
that pdf, which is a special case of the Laplace transform
and is obtained as F(ω) = L(s)|s=iω, where i =

√−1.
The Plancherel-Parseval theorem precludes the need of in-
verting the Laplace transform (i.e., obtaining the pdf of the
interference) obtained from the stochastic geometry analysis
to obtain the performance metrics. Moreover, with the aid
of the Plancherel-Parseval theorem, results for general fading
environment can be obtained by stochastic geometry analysis.
However, the main drawback here is that the integrals are
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quite involved due to the complex nature of the characteristic
functions. Hence, the stochastic geometry analysis loses its
main merit which is the analytical tractability that leads to
simple closed-form equations, and in turn, helps understanding
the behavior of the tested system in response to variations
in the design variables. Nevertheless, the Plancherel-Parseval
theorem provides a mathematically elegant technique to extend
all of the existing stochastic geometry results for general
fading environments. It was used in [15], [16], [32], [42].

E. Technique #5: Inversion

In this technique, the LT, CF, or MGF is inverted to obtain
the pdf of the interference [28]–[31], [40], [41], [70], [71]. Due
to the complex nature of the expressions for the LT, CF, or
MGF, generally we cannot find the pdf in closed form. This
technique is only useful for very special cases of the PPP
where the expressions for LT, CF, or MGF are invertible or
match the LT, CF, or MGF of a known distribution [28], [29],
[31], [70], [71]; otherwise, inversion is done numerically [30],
[40], [41]. For instance, the Laplace transform of the aggregate
interference, measured at a receiver located at an arbitrary
origin in R

d, associated with an infinite PPP that starts from
that arbitrary origin (i.e., there is no interference protection
region around the receiver defined by the MAC layer) with un-
bounded path-loss function (e.g., eq. (1)) matches the Laplace
transform of an alpha-stable distribution9 [11]–[14]. Although
this result looks promising, it is not very useful because the
unbounded path-loss results in a significant deviation from
reality due to the singularity at the origin [30]. Hence, the
interference does not have finite moments. Moreover, dealing
with alpha-stable distributions is tricky since they do not
provide a closed-form expression for the pdf. The only two
exceptions where the pdf of interference has a closed-form
expression can be found in [28] for deterministic channels, and
in [29] for Rayleigh fading channels. Both the closed-form
pdfs were obtained under the assumptions of an unbounded
path-loss model, an infinite PPP, and path-loss exponent η = 4.

F. Summary and Taxonomy

Fig. 4 and Table I provide a taxonomy for the literature
according to the target network model, the point process
used, and the technique to utilize the LT, CF, or the MGF
for performance evaluation. Note that if the same reference
appears in different categories of the taxonomy, this means
that this reference uses all of these techniques. The taxonomy
clearly shows the popularity of each point process and each
performance modeling technique. From Fig. 4 and Table I
we can see that the PPP is the most popular point process
used in the literature because of its simplicity. Furthermore,
the PPP provides accurate performance bounds and it is the
parent point process for the HCPP and the PCP. The HCPP has
also been extensively used to model wireless communication
systems due to the hard core condition (i.e., the minimum
distance rh) which captures the contention-based spectrum
access [40]–[51]. Furthermore, in [92], the authors showed

9Alpha-stable distributions generalize Gaussian distributions and have heav-
ier tails [10, Sec. 5.1], [12].

that, compared to the PPP, the HCPP better captures the spatial
distribution of the base stations in a real network deployment.

To summarize, in stochastic geometry modeling we use
point processes (PPs) to model the locations of the network
entities. Then, the LT, CF, or the MGF of the aggregate
interference is obtained. In this article, we have not shown
how to obtain the LT, CF, or the MGF of the aggregate
interference associated with the PP of interest because it is
generally straightforward and is available in [11], [13]–[16].
Finally, according to the accuracy, tractability, and practica-
bility tradeoffs, one of the five techniques in the literature as
discussed above is chosen to derive the performance metrics
of interest from the LT, CF, or the MGF of the aggregate
interference. Some examples that show when to use each of
the five performance evaluation techniques are provided below.

• For a network with general fading in the interference
links and Rayleigh fading in the desired link, technique
#1 is the right technique to use. As shown in Fig. 4
and Table I, technique #1 has been extensively used in
the literature because it is simple and gives the exact
distribution for the SINR.

• If general fading is observed on the desired link, then
a lower bound via technique #2 can be obtained. It is
worth mentioning that the lower bound in technique #2 is
generally tighter than the upper bounds [26]. Note that the
accuracy of the lower bound increases for higher values
of the path-loss exponent due to the faster signal decay
which makes the effect of far interferers negligible.

• On the other hand, for lower values of the path-loss
exponent, it is better to use technique #3 and have an
approximate analysis. It has been shown that for the
approximation of the pdf of interference, the shifted log-
normal distribution is better than both the Gaussian and
log-normal distributions [76], [82]. However, there is no
known method to validate the approximation except by
simulations.

• With general fading in the direct (i.e., desired) link, if
an exact analysis is required, then technique #4 has to
be used, but the analysis will be highly involved. From
Fig. 4 and Table I it can be observed that technique #4
has not been frequently used in the literature due to its
analytical complexity.

• Finally, technique #5 is only limited to some special
cases as far as only the analytical evaluation is concerned.

In the next section, we will not go into the mathematical
details used in the references which deal with stochastic
geometry modeling of wireless networks. However, for each
reference we will clearly show how to reduce the problem at
hand into one of the known PPs and which technique out of
the popular five techniques is used for performance evaluation.

IV. STOCHASTIC GEOMETRY MODELING APPROACHES
FOR MULTI-TIER CELLULAR NETWORKS

Multi-tier cellular networks consist of macro BSs (MBSs)
overlaid by different tiers of small cells (i.e., micro
BSs (MiBSs), pico BSs (PiBSs), and femto access points
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Fig. 4. Taxonomy of the related work on stochastic geometry-based modeling of wireless networks.

(FAPs))10. Small cells are deployed in the high traffic spots
of the cellular networks to satisfy the high traffic demand.
Some of the small cells such as the femto cells are installed
and operated by the users. Femto cells are small access points
mainly installed indoors to enhance indoor coverage. Femto
cells may be installed by the operator to enhance poorly
covered spots or by users to enhance their indoor coverage.
With small cells, more randomness and more interference are
introduced to the cellular network. In the following, we first
show the baseline models used to derive the outage probability
and mean transmission rate of multi-tier cellular networks,
then we will show how these simplified models are adapted
to capture, model, and analyze more sophisticated network
models.

A. PPP and HCPP Models

In the context of cellular networks, the hexagonal grid
model is widely accepted and has been extensively used in
the literature to model, analyze, and design traditional single-
tier cellular networks. In the hexagonal grid model, it is
assumed that the locations of the BSs follow a deterministic
grid, each BS covers a hexagonal cell, and all cells have the
same coverage area. Due to the complexity and analytical
intractability of modeling inter-cell interference in the grid
model, researchers have always used simplifications which
make the accuracy of their models disputable [9], [54]. More-
over, due to the variation in capacity (both network and link
capacities) demand across the service area, the locations of the

10In this article, our main focus is on heterogeneous networks composed
of a cellular network overlaid by small cells. This is different from that in
[71] which models the coexistence between narrow band networks and ultra
wide band networks.

BSs significantly deviate from the idealized grid-based model
[54].

Looking at the cellular networks at different locations (i.e.,
downtown, residential areas, parks, rural areas, etc.), we notice
that the positions of the BSs exhibit random patterns. Hence,
stochastic geometry can be used to model the locations of the
BSs. Ideally, the locations of the BSs should be modeled via
a repulsive PP to reflect the basic planning procedure used in
cellular network deployment. That is, although the distances
among the BSs are random, in a real (i.e., deployed) cellular
network, we cannot find two BSs owned by same service
provider arbitrarily close to each other. Therefore, a repulsive
PP such as the Matérn HCPP with a hard core parameter that
reflects the minimum acceptable distance between two BSs
can be used to model the cellular network topology [92]. Fig.
5 shows the modeling of a cellular network via the hexagonal
grid, the PPP, and the HCPP.

As shown in Fig. 5, with the PPP modeling, there could
be some BSs arbitrarily close to each other. On the other
hand, the grid-based model is too idealized. Instead, the HCPP
provides a more realistic modeling at the expense of analytical
tractability. Dealing with repulsive PPs is relatively more
complicated and the Matérn HCPP suffers from some flaws
(i.e., the nonexistence of the probability generating functional
and the flaw of underestimating the intensity of the points
that can coexist for a given hard core parameter) that are
still being addressed by the research community [49], [51],
[87], [88]. Therefore, the PPP is much more appealing due
to its simplicity and tractability [11], [13], [14]. However, it
seems impractical to assume that the locations of the BSs
are completely uncorrelated. In [54], the authors compared
the performance of a PPP and a square grid model to the
performance of an actually deployed cellular network. Surpris-
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TABLE I
TAXONOMY OF THE LITERATURE BASED ON THE NETWORK TYPE, POINT PROCESS USED, AND THE TECHNIQUE USED TO OBTAIN THE PERFORMANCE

METRICS

Performance Evaluation Techniques
Network Used

Type PP
Technique #1 Technique #2 Technique #3 Technique #4 Technique #5

PPP [25]–[27], [32]–[35] [17]–[26], [35] [71] [32] [28]–[31], [71]

Ad hoc BPP [37] [38] [37] - -

& IEEE 802.11 HCPP [46] [43]–[45] [43] [42] [40], [41]

PCP [39] [39] - - -

PPP
[9], [54]–[60], [62]–[66]

[67], [69] [76] - [70]
Single-tier & [68], [77], [78]

Multi-tier Cellular BPP - - - - -

HCPP [77], [78] - - - -

PCP - - - - -

PPP [77], [78], [80], [81], [83] [81] [76], [82], [84] - -

Cognitive BPP - - - - -

HCPP [77], [78], [83], [85], [86] - - - -

PCP [83] - - - -

ingly, the PPP was observed to provide lower bounds on the
coverage probability and the mean transmission rate obtained
by measurements that are as tight as the upper bound provided
by the idealized grid-based model. Further validations of
modeling cellular networks via PPP can be found in [92],
[93].

Although the idea of modeling the cellular network using
the PPP goes back to the late 90’s [52], [53], the work in [54]
brought much attention to this modeling approach due to the
useful formulas derived for the performance metrics (such as
the outage probability and the mean transmission rate), and
comparison with the grid-based model and the actual system
that revealed the accuracy of the PPP model. The relatively
tight bounds provided by the PPP opened a new research
direction to model, analyze, and understand cellular networks.
With the vast amount of results on the PPP available in the
literature along with its simplicity and tractability, it can be
used to characterize and understand the behavior of cellular
networks in terms of the various design parameters as will be
shown later in the article.

B. Baseline Stochastic Geometry Models

The baseline models are simplified models that are used to
understand and establish the analytical paradigm to be used
in more practical and complicated cases. In this section, we
will review the baseline stochastic geometry models for multi-
tier cellular networks. In the baseline model, for the special
case of a single tier cellular network, the locations of the BSs
are modeled via a PPP. Assuming that all BSs transmit with
the same transmit power and each user associates with one
of the BSs based on the received signal strength (RSS), the
coverage regions of the BSs forms a Voronoi tessellation11

[94]. That is, a line bisecting the distance between each two

11The Voronoi tessellation captures the hexagonal grid as a special case.

neighboring BSs will separate their coverage regions. The
planar graph constructed by perpendicular lines bisecting the
distances between the points of a PP is called a Voronoi
tessellation. Fig. 5 shows the Voronoi tessellations for different
point processes12.

In [54], both the BSs and the users were modeled via
independent homogeneous PPPs, and it was assumed that
all BSs use the same frequency (channel). The users were
assumed to associate based on the long term average RSS
(i.e., to the nearest BS). The authors used the Rayleigh fading
assumption (i.e., technique #1) to find the exact downlink
coverage probability (i.e., P{SINR ≥ θ} where θ is the
threshold for correct signal reception) and the average trans-
mission rate for a test user added at the origin. Note that,
according to Slivnyak’s theorem, the statistics seen from a
PPP is independent from the test location [10], [13], [14].
Hence, no generality is lost in studying the statistics seen by
the user added at the origin.

In [54], the average transmission rate is derived in the same
manner as the coverage probability as follows:

E[ln (1 + SINR)]
(i)
=

∫ ∞

0

P {ln (1 + SINR) > t} dt

=

∫ ∞

0

P
{
SINR >

(
et − 1

)}
dt

(ii)
=

∫ ∞

0

e−Wc(et−1)LIagg

(
c
(
et − 1

))
dt

(7)

where (i) follows because ln (1 + SINR) is a strictly positive
random variable, and (ii) follows from (5). Given that the
Laplace transform of the aggregate interference associated
with a PPP is available and easily computable, the mean
transmission rate can be easily obtained by evaluating (7).

12Fig. 5 is plotted with Matlab via the command voronoi.
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Fig. 5. (a) Cellular network modeled via the grid-based model, (b) Cellular
network modeled via the PPP, (c) Cellular network modeled via the HCPP.

The main findings of [54] are: (a) the PPP provides a relatively
tight bound for the performance of actual networks, (b) simple
expressions can be derived for the coverage probability and
mean transmission rate, (c) in interference-limited networks
(i.e., the noise is negligible w.r.t. the interference and hence

is ignored), the signal-to-interference-ratio (SIR) statistics are
independent of the intensity of BSs [54, eq. (25)].

It is quite insightful to see that in interference-limited
networks (i.e., when noise is ignored), both the performance
metrics (i.e., coverage probability and average rate) are inde-
pendent of the intensity of the BSs. That is, increasing the
intensity (number) of the BSs neither degrades nor improves
the coverage probability within the cell and the average rate
achieved by the users. This behavior can be explained as
follows: as the intensity of the BSs increases, the average dis-
tance between the users and their serving BSs decreases which
increases the desired signal power. On the other hand, the
aggregate interference (i.e., inter-cell interference) increases
with the same rate as the desired signal. Hence, the SIR
remains constant. Therefore, the coverage probability and
average rate can only be increased through interference man-
agement techniques such as frequency reuse, multiple-input-
multiple-output (MIMO) antennas, or inter-cell cooperation.
Although these results are only valid for the PPP network
model, they are insightful because they reflect the worst-case
network performance. More specifically, deploying more BSs,
in the worst case, will never degrade the SIR statistics.

In [72], the lemma presented in [95] was used as an
alternative way to evaluate the downlink mean transmission
rate in cellular networks. In [95], an easy method that relies
on the MGFs was proposed to evaluate averages in the form

of ln
(
1 +

∑N
i=1 ai∑M

j=1 bj+1

)
, where ai and bj are random variables

with arbitrary distributions. Note that ai corresponds to the
desired signal power (i.e., numerator of the SINR), while each
of the bjs corresponds to the power of an interference signal.
[72] applied the MGF method developed in [95] to obtain
the exact average transmission rate for the cellular network
modeled via the PPP for Nakagami-m fading in the desired
link (i.e., the Rayleigh fading assumption used in technique
#1 is relaxed). However, this method is only valid for the
transmission rate and is not applicable to evaluate the SINR
distribution (i.e., the outage probability). The work in [54] for
cellular networks was extended to a single cellular network
consisting of K-tiers in [55], and to M -cellular networks each
consisting of K-tiers in [56].

In multi-tier cellular networks, the coverage of each network
entity depends on its type (i.e., an MBS, MiBS, PiBS or
a FAP) and the network geometry (i.e., its location w.r.t.
other network entities). That is, assuming that each user
will associate with (i.e., is covered by) the network entity
that provides the highest signal power, the coverage of each
network entity will depend on its transmit power as well as the
relative positions of the neighboring network entities and their
transmission powers. For instance, if two MBSs have the same
transmission power, a line bisecting the distance between them
will separate their coverage areas. However, for an MBS with
100 times higher transmit power than a FAP, a line dividing
the distance between them with a ratio of (100)

1
η : 1 will

separate their coverage areas, and so on. If the BSs in all
the tiers are modeled via independent homogenous PPPs, due
to the high variation of the transmission power of the BSs
belonging to different tiers, the multi-tier cellular network
coverage will constitute a weighted Voronoi tessellation. The
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(a)

(b)

Fig. 6. (a) The HetNet model, (b) The network modeled as a weighted
Voronoi tessellation (the square shapes represent the MBSs and the dots
represent the SBSs).

weighted Voronoi tessellation is the planar graph constructed
by bisecting the distances between the points of a PPP ac-
cording to the ratio between their weights, where the weights
are obtained based on the transmission powers of the BSs and
the propagation condition (e.g., path-loss exponent).

Fig. 6 shows an example for the coverage of a two-tier
cellular network and the corresponding weighted Voronoi
tessellation. In [55], the authors modeled a multi-tier cellular
network where all network tiers were assumed to follow
independent homogenous PPPs and all tiers used the same
frequency channel. The authors computed the tier association
probability and the average tier load using the Rayleigh
fading assumption (technique #1) to evaluate the coverage
probability and the mean transmission rate assuming that the
users connect to the BSs offering the highest long term average
SINR. Note that, due to the assumption of independent PPPs,
the aggregate interference received from each network tier
is independent of the aggregate interferences received from
other network tiers. It is worth mentioning that the SINR-
based association is more complicated than the RSS-based
association because it depends on both the desired RSS as
well as the interference signal strength. The authors overcame
this problem and proved that if the target SINR threshold is

greater than 1 (i.e., 0 dB), only one network entity can satisfy
the SINR requirement [55, Lemma 1]. Hence, the probability
that a user is covered is just the sum of the probabilities that
the SINR from each network tier is satisfied. In [55], it was
shown that the PPP assumption is accurate to within 1-2 dB of
the measured coverage probability in an actual LTE network
overlaid by heterogeneous tiers modeled as PPPs.

The assumption that only one BS can satisfy the target
SINR (i.e., SINR threshold is greater than 0 dB) as well as the
assumption that each BS allocates its total power to the test
user, which were used in [55], were relaxed in [66]. In [66], the
author assumed a more realistic case where the total transmit
power of the BS is shared among the served users and that
the user connects to the network entity providing the highest
instantaneous SINR, although the instantaneous SINR can be
satisfied by more than one tier. Under the modified network
model, the author in [66] derived the joint complementary
cdf (ccdf) of the SINR measured at an arbitrary user from
the set of candidate network entities (i.e., the nearest BS from
each network tier) in a general K-tier HetNet. The author also
used the Rayleigh fading assumption (i.e., technique #1) to
obtain an exact closed-form expression for the joint ccdf (i.e.,
association and coverage probability).

Different from the downlink analysis in [54], [55], [66],
[72], the uplink analysis is significantly more involved due to
the per user power control. In [57], the authors assumed that
the BSs and the users follow independent PPPs and used the
Rayleigh fading assumption (i.e., technique #1) to evaluate
the uplink coverage probability when the users are employing
fractional channel inversion power control.

Although the basic network models are very simplified (i.e.,
not very practical), they provide a simple yet accurate and
robust baseline analytical paradigm for modeling and analysis
of multi-tier cellular networks. As we will see later, many
research papers are building on these simple models to provide
more practical and more rigorous models for multi-tier cellular
networks.

C. Stochastic Geometry Models for Frequency Reuse in Cel-
lular Networks

Incorporating frequency reuse in a stochastic geometry
model is challenging because it introduces correlation among
the BSs using the same frequencies. Hence, the tractability of
the PPP will be partially lost (i.e., neighboring BSs should be
using different frequency sub-bands).

In [54], the authors overcame this problem and kept the
properties of PPP by modeling the worst-case frequency reuse
in cellular networks. That is, they assumed that each BS
would randomly and uniformly pick one of the available
frequency sub-bands to use. Since independent thinning of
a PPP leads to another PPP [10], the network model after
frequency reuse is also a PPP. Hence, applying frequency
reuse is equivalent to applying independent thinning to the
complete set of interfering BSs. If the network has BSs with
intensity λ and each BS randomly and uniformly picks one of
the Δ available sub-bands, the BSs using the same sub-band
constitute a PPP with intensity λ

Δ . Therefore, the intensity of
the interfering BSs will be 1

Δλ.
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Although, as discussed in the previous section, it was con-
cluded in [54] that the intensity of the BSs affects neither the
coverage probability nor the average rate (since both the user
association and interference change with the BS intensity),
exploiting frequency reuse will affect both the performance
metrics. This is because frequency reuse will decrease the
interference without changing users’ association to the cor-
responding serving BSs. That is, while a typical user will be
served from one of the complete set of BSs with intensity
λ, she will experience interference only from BSs using the
same frequency sub-band with intensity 1

Δλ. Hence, there is
no contradiction between the results obtained for the frequency
reuse and the result that both the coverage probability and
the average rate are independent of the intensity of the BSs.
Frequency reuse will increase the coverage probability at the
expense of decreasing the average achievable rate because only
1
Δ of the spectrum is available per BS.

Applying traditional frequency reuse decreases the aggre-
gate interference and enhances the coverage probability at the
expense of reduced area spectral efficiency due to the reduced
frequency usage per unit area. Fractional frequency reuse
(FFR) is a potential solution to enhance the SINR statistics of
the poorly covered users (i.e., edge users) while maintaining
high frequency reuse [96]. In FFR, the cells are spatially
partitioned (i.e., into inner cell region and edge cell region,
and/or sectors by directional antennas), and different frequency
sub-bands are assigned to different spatial regions of a cell to
enhance the cell edge coverage while maintaining the high
frequency reuse.

There are two main types of FFR, namely, strict FFR and
soft FFR. In strict FFR, the frequency band is divided into
Δ + 1 sub-bands. One large sub-band is assigned for all
cells to be used in their inner cell region and Δ relatively
smaller sub-bands are alternated between the cell edges of
neighboring cells such that no two adjacent cell edges use the
same frequency sub-band. Hence, an edge user will experience
interference from only the subset of BSs using the same edge
sub-band which are relatively far BSs. On the other hand, the
soft FFR divides the spectrum into Δ sub-bands and all sub-
bands are used in all cells with power control. That is, in each
cell, Δ−1 sub-bands are used in the inner cell region and one
sub-band is used in the cell edge region such that neighboring
cells do not use the same edge sub-band. The BSs transmit
in the inner sub-bands with power P1 and in the edge sub-
band with power P2 such that P2 > P1. Hence, an edge user
will have a higher desired signal power and a relatively lower
interference power.

In the context of stochastic geometry, it is very tricky to
include the FFR schemes into the network model for two
reasons. The first reason is that the Voronoi cells have random
shapes, which makes it difficult to find a criterion to define
the spatial cell partitioning (i.e., inner and edge regions) and
expressions for the areas of cell partitions13. The second
reason is that FFR brings spatial correlations among the BSs
using the same sub-band in the cell edge which violates the
PPP assumption.

In [62], [63], the authors overcame the above problems and

13FFR allocations for Voronoi tessellations were discussed in [97].

extended the model in [54] and [55] to include FFR in single
and multi-tier cellular networks. The authors overcame the
first problem by partitioning the users as the cell edge users
and the inner cell users by an SINR threshold rather than
by their spatial locations. That is, if the SINR of a user is
above a certain threshold Tffr, she is considered as an inner
user. Otherwise, she is considered to be an edge user. For the
second problem, as in [54], the authors avoided the spatial
correlations introduced by the FFR by considering the worst-
case FFR. That is, each BS randomly and uniformly chooses
one of the sub-bands for the edge users. Hence, the BSs using
the same sub-band as an edge sub-band is a PPP with intensity
1
Δλ. With these assumptions, the FFR can be captured in the
system model by simple modifications in the expression for
SINR as discussed below.

In the strict FFR case, the inner users will have the same
interference statistics as in the no FFR case. On the other hand,
the edge users will have interference from a thinned PPP with
intensity 1

Δλ. For the soft FFR, both edge and inner users will
experience the same interference. However, the edge users will
have a signal with higher power (due to higher P2). Both [62],
[63] used the Rayleigh fading assumption (i.e., technique #1)
to quantify the FFR performance gain over the no reuse and
traditional frequency reuse in terms of the outage probability
and mean transmission rate. The authors also analyzed the
tradeoffs between the two FFR schemes. Note that both [62],
[63] only accounted for a simplistic FFR with only two regions
(i.e., inner and edge), and the cell sectorization was not taken
into account.

D. Spectrum Allocation in Two-tier Cellular Networks

In the context of multi-tier cellular networks, spectrum shar-
ing (i.e., universal frequency reuse) increases the area spectral
efficiency at the expense of higher cross-tier interference.
On the other hand, spectrum partitioning eliminates cross-tier
interference at the expense of lower area spectral efficiency.
The analysis of the tradeoff between spectrum sharing and
partitioning is of primary interest to the researchers to obtain
optimal operation of multi-tier cellular networks.

Optimal spectrum sharing in a two-tier cellular network in
the downlink was investigated in [67], [68], while spectrum
sharing in the uplink was investigated in [70]. In [67], the
available spectrum is partitioned into two groups, one group
of channels is assigned to the macro tier and the other group
of channels is assigned to the femto tier to eliminate cross-tier
interference. In [67], the authors derived the optimal spectrum
partitioning that maximizes the area spectral efficiency subject
to a network-wide minimum rate requirement. The MBSs were
modeled via a hexagonal grid-based model, while the FAPs
were modeled using a homogenous PPP model. The authors
used the region bounds (i.e., technique #2) to find a tight
lower bound on the SINR and hence the transmission rate. The
authors also proposed a randomized spectrum access control
called frequency ALOHA (F-ALOHA) for the FAPs. In F-
ALOHA, each FAP accesses each of the available frequencies
independently with probability p. The F-ALOHA spectrum
access presents a tradeoff between the spatial frequency reuse
and the aggregate interference in the femto-tier network. The
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authors in [67] showed that, due to the increased interference,
the optimal p is a non-increasing function of the FAP intensity.

Since spectrum partitioning reduces the area spectral effi-
ciency, it may not be the optimal spectrum allocation scheme
even if the share of the coexisting networks is optimized.
In [68], the authors studied the spectrum sharing/partitioning
tradeoffs and aimed at deriving the optimal spectrum al-
location scheme that maximizes the transmission capacity
subject to an outage probability constraint in a two-tier cellular
network (i.e., MBSs overlaid by FAPs). Unlike [67], the
authors investigated both joint and disjoint spectrum sharing
for two-tier cellular networks. That is, assuming that there
are C available channels to be shared among both network
tiers, the authors investigated whether it is optimal to have
both network tiers jointly share the entire channels or to
disjointly divide the available channels among the two tiers.
The authors used PPP modeling for both the network tiers and
the Rayleigh fading assumption (i.e., technique #1) to derive
the outage probability and mean transmission rate to optimize
the spectrum allocation scheme. It was shown that joint
allocation is optimal for sparse network deployments while
disjoint allocation is optimal in dense network deployments.

For the uplink case, the authors of [70] derived the network
capacity region of a two-tier cellular network consisting of
MBSs modeled via the hexagonal grid, FAPs modeled via
PPP, and users modeled via an independent PPP. The network
capacity region is defined as all combinations of the intensities
of users of the two networks that satisfy an outage constraint.
The system model considered in [70] accounts for sectored
antennas, spread spectrum transmission, and power control
via channel inversion. Due to the small transmission radius
of the FAPs, the interference seen from all users served by
the same FAP was approximated by an isotropic point source
of interference with the worst-case sum transmission powers
of the FAP users. The aggregate interference seen from all
FAP users is approximated by the aggregate interference seen
from a PPP modeling the location of the FAPs, hence the
aggregate interference from the femto tier can be calculated
via the inversion method (technique #5). The authors showed
that spectrum sharing with sectored antennas along with
time hopping spread spectrum boosts the network capacity
of the system by a factor of seven relative to the spectrum
partitioning with omni-directional antennas. However, since
the analysis in the paper is based on the worst-case scenario,
only very pessimistic bounds on the performance metrics can
be obtained.

Spectrum sharing between a cellular network uplink and a
mobile ad hoc network was investigated in [69]. The authors
compared the tradeoff between overlay and underlay spectrum
sharing for the uplink channels of the cellular network. It was
assumed that the transmitters in both networks use frequency-
hopping spread spectrum to transmit their signals and that the
cellular network controls the spectrum sharing method. The
BSs of the cellular network, the ad hoc transmitters, and the
cellular network users follow independent PPPs. The authors
used the bounding technique (technique #2) to find upper
and lower bounds on the outage probability as well as the
transmission capacity with and without successive interference
cancellation. The authors also determined the capacity regions

for the networks. In contrast to the two-tier cellular network
analyzed in [70], in the case of spectrum sharing between a
cellular network uplink and a mobile ad hoc network, it was
shown that spectrum partitioning outperforms the spectrum
sharing allocation. One explanation for this result is that
different tiers in a multi-tier cellular network complement each
other. That is, each user associates with the best network entity
(i.e., the best in terms of SINR or RSS) from the different
coexisting tiers, hence, individual interference sources are
usually weaker than the intended transmission source (see Fig.
1). On the other hand, in the cellular network overlaid by
a mobile ad hoc network, the two networks are completely
disjoint and there are no bounds on the locations of the
interference sources. Hence, spectrum partitioning is optimal
in the latter case.

E. Biasing and Load Balancing in Multi-tier Cellular Net-
works

In multi-tier cellular networks, choosing the appropriate
network tier to associate with is a non-trivial problem [98], and
a simple RSS- or an SINR-based network selection scheme
may not be optimal. As shown earlier (see Fig. 6), the coverage
of each network element highly depends on its type and the
network geometry. Therefore, there are significant differences
in the size of the coverage areas of the different network
elements, which may result in high diversity in the loads
served by the different network elements. The high diversity
of cell loads in a K-tier cellular network was analyzed in [58].
The authors showed that due to the high diversity of the loads
served by the coexisting network elements, some network
elements might be idle and hence would not contribute to the
aggregate interference. Therefore, the authors in [58] upgraded
the SINR model in [55] (i.e., used PPPs with technique #1) to
account for the activity factor of the coexisting heterogeneous
BSs. It was shown that adding lightly-loaded femto and pico
cells to the network increases the overall coverage probability.
However, due to the random deployment of the small cells
along with the high transmission power gap with the MBSs,
there might be some overloaded network elements (i.e., net-
work elements with high transmit powers) and a large number
of un-utilized small cells. That is, since a user associates with
one of the coexisting network tiers based on the RSS, the
load per network tier is hard to control since it depends on
several factors such as the relative transmission power and the
intensity of the BSs belonging to each network tier. Hence,
according to the network configuration, we may end up with
some congested tiers and under-utilized tiers.

In [59], [60], the authors investigated the above issue and
introduced a parameter called the biasing factor to control
the network load of each network tier. The biasing factor
is used to bias the users to associate with a given network
tier even if it does not provide the strongest signal power (or
equivalently the strongest SINR). The biasing can be viewed
as a virtual increase in the relative transmit power of the
given network tier. Biasing is also widely known as range
expansion in the 3GPP standards and proposals [99], [100].
Note that biasing will affect the interference geometry by
changing the minimum separation distance between a user and
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its interfering sources. That is, as shown in Fig. 1, given that
the distance between a small cell user and its serving SBS is r,
the minimum separation between that user and an interfering

MBS will be rm > r
(

Pm

PsT

) 1
η

, where T ≥ 1 is the bias factor.
In [59], [60], the authors used the Rayleigh fading assump-

tion (i.e., technique #1) to calculate the outage probability, the
average transmission rate, and the minimum achievable rate
for the users. It was shown that while no biasing is optimal
for outage and average transmission rate, biasing increases the
minimum achievable rate for the users. These results can be
explained as follows.

With biasing, according to the given network configuration,
we can redistribute the users across the network tiers as
uniformly as possible, hence, the load per highly loaded
network entity decreases, and the minimum rate of each user
increases. Since in [59], [60] only one channel is assumed and
biasing forces users to associate with network entities that do
not provide the highest SINR, it is intuitive (specially with
the single channel assumption) that the outage probability will
increase and the mean transmission rate will decrease due to
the degraded SINR performance per user.

For a two-tier HetNet, in [61], the authors examined dif-
ferent techniques that can be used to offload users from one
network tier to another and their effect on the activity factor
(i.e., the probability of being idle) of the coexisting network
elements in order to efficiently control the load in each tier. It
was shown that the user association probability to a specific
network tier is more sensitive to the intensity of the BSs in that
tier than the transmission power or biasing towards that tier.
For instance, it was shown that a 10 dB power gap between
the MBSs and the FAPs can be compensated for by a 5 dB
increase in the intensity of the FAPs over the intensity of
MBSs to have equal user loads associated to each network
tier.

F. Optimal Deployment, Network Expansion, and Power Sav-
ing in Multi-tier Cellular Networks

Stochastic geometry modeling can be exploited to find the
optimal network expansion policy (i.e., the optimal intensity
and types of BSs to be deployed) in case of increased traffic
demand, and the optimal intensity and types of BSs that could
be switched off for power saving in case of reduced traffic
periods.

In [64], the authors derived the minimum BS density
subject to a minimum QoS constraint in a single-tier cellular
network as well as in a two-tier cellular network composed
of MBSs overlaid by MiBSs. The MBSs, MiBs, and the users
were modeled via independent PPPs, and the Rayleigh fading
assumption (technique #1) was used to derive the outage
probability and the mean transmission rate. The authors in
[64] used the relation between the number of users, the cell
sizes, and the transmission rate to optimize the intensities of
MBSs and MiBSs. That is, assuming universal frequency reuse
and that the available spectrum is equally divided among the
users served by each network entity, the transmission rate of
each user is a function of the total number of users served
by his serving network entity, which in turn is a function of

its transmission power, the intensities of the other network
entities and their locations (as shown in Fig. 6).

For a single-tier cellular network, the optimal intensity
of BSs can be found by solving the following optimization
problem:

minimize λ

subject to P
{

B
N ln(1 + SINR) < u

}
< v

(8)

where B is the total available bandwidth, N ∼ Poisson (λuV )
is the total number of users served by a given BS, λu is the
intensity of the users, and V is the area of the coverage region
(Voronoi cell) of the tagged BS. For interference-limited
networks, using (5), the constraint in (8) can be rewritten as[
1− LIagg

(
e

Nu
B − 1

)]
< v which can be obtained by the

standard stochastic geometry analysis. It can be observed that
the mean achievable rate of each user is an increasing function
of λ, because as λ increases, the mean area of a Voronoi cell
(= 1

λ ) [94] decreases (the plane is divided into more BSs)
and the number of users served by each BS decreases. Note
that increasing the intensity of the BSs does not affect the
SIR statistics as shown earlier [54]14. Hence, (8) optimizes
the tradeoff between the share that each user takes from the
spectrum, and the intensity of deployed BSs. The authors
extended this concept to a two-tier HetNet and obtained the
optimal network expansion policy if the QoS of the users is
not satisfied.

G. Stochastic Geometry Models for Access Policy in Small
Cells

There are two main spectrum access policies for small cells
(e.g., femto cells) in a multi-tier cellular network, namely,
the open-access and closed-access policies. On one extreme,
the open-access small cells accept to serve any cellular user.
On the other extreme, the closed-access small cells only
accept its own users called the closed subscriber group. Open-
access small cells enhance the overall network coverage and
mean transmission rate but do not guarantee the QoS for a
specific group of users (e.g. femtocell owners). On the other
hand, closed-access small cells can guarantee the QoS for
the closed subscriber group at the expense of degrading the
performance of non-subscribers. Note that closed access small
cells may also experience significant interference from the
non-subscribers [101].

In stochastic geometry modeling, from the perspective of
an unsubscribed user, a closed-access policy may be looked
at as the dual of the frequency reuse. That is, in frequency
reuse [54], the user can associate with the complete set of BSs
while experiencing interference from only a subset of the PPP
(i.e., a PPP thinned with the frequency reuse). On the other
hand, in a multi-tier cellular network with open and closed-
access small cells, the non-subscribers to closed-access femto
cells can associate with only a subset of the BSs (i.e., MBSs
and open-access small cells) while experiencing interference
from the complete set of BSs. Therefore, closed-access small
cells generally degrade the performance of multi-tier cellular

14Note that the mean transmission rate of the BSs is still independent of
the intensity of the BSs as shown in [54].
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networks [55]. Hybrid channel access is considered as a
potential solution to control the tradeoff between the overall
network performance and the QoS guarantee for the closed
subscriber group.

In hybrid-access small cells, the available spectrum is
partitioned into two groups. One group is assigned to the
closed subscriber group to guarantee their QoS, while the
other group is assigned to the non-subscribers to enhance
their coverage and reduce the interference experienced from
them. In [65], the authors optimized the hybrid-access policy
in a two-tier HetNet. That is, the authors found the optimal
number of accessible channels for non-subscribers subject to
a tolerable degradation for the small cells’ closed groups of
subscribers. The authors used independent PPPs to model
the MBSs, the FAPs, the macro users, the non-subscribed
users, and the closed group subscribers, and used the Rayleigh
fading assumption (i.e., technique #1) to find the coverage
probability and mean transmission rate. It was shown that if
the optimal number of channels are left open for unsubscribed
users, significant improvements for non-subscribed users can
be achieved with a negligible performance degradation for
the closed group of subscribed users. However, the model in
[65] does not capture the offloading effect (i.e., the amount
of decreased interference) by accepting non-subscribers to be
served by the FAPs which might improve the performance of
the closed subscribers.

H. Stochastic Geometry Models for Multiple Input Multiple
Output (MIMO) Systems

Multiple-input-multiple-output (MIMO) systems will be key
enablers for high-speed communications in LTE and LTE-
Advanced networks. Incorporating MIMO into the model
will increase the complexity of analysis. For instance, the
simplistic Rayleigh distribution assumption for the channel
power gains in a single-antenna system is not practical in
the MIMO case because the interference power as well as
the desired signal power distributions will depend on the
MIMO configuration used. Moreover, different network tiers
may use different MIMO configurations which will increase
the complexity of the tier association problem. That is, the
association probability is not just a function of the ratio of
transmission power for the different network tiers. Instead,
the association will depend on both the MIMO configuration
as well as the transmit power. Furthermore, the condition that
only one network entity can satisfy the SINR threshold for a
given user (for SINR thresholds greater than 0 dB [55], [66])
will not hold.

In [73], the authors used stochastic geometry techniques
developed in [24] to characterize the interference, and hence,
the downlink coverage and rate in a given cell for a MIMO-
based single-tier as well as multi-tier cellular network. That
is, instead of deriving the system-wide spatial averages for the
performance measures as in [54], [55], the authors derived
the spatial averages for the coverage probability as well as
the link capacity over a given cell with a known radius
and interference protection region. The main idea in [73] for
interference characterization is based on the result in [24],
where it was shown that, for some MIMO configurations, the

distribution of the channel (power) gain in the desired link can
be represented in the following form:

P {h0 > x} =
∑
n

∑
k

an,ke
−nxxk (9)

and hence, the SIR distribution can be obtained from the
Laplace transform as in the equation at the top of the following
page, where (i) follows from (9) and (ii) follows from the
identity tnf(t)

LT−→ (−1)k
dkLf(t)(s)

dsk
. Hence, the SIR statistics

can be obtained directly from the Laplace transform as in the
case of Rayleigh fading single antenna channel (i.e., technique
#1).

An important distribution satisfying (9) is the Erlang dis-
tribution. It was argued in [74] that, if a MIMO channel
is impaired by Rayleigh fading, both the power from the
desired link and powers from the interference links follow
the Erlang distribution. More specifically, the channel power
gain in the desired link will follow the gamma distribution
Gamma(ρk, 1) and that in the interference links will follow
the gamma distribution Gamma(δj , 1), where ρk and δj are
positive integers that depend on the applied MIMO technique
applied and the number of antennas. If the channel power
gain has a gamma distribution h0 ∼ Gamma (α, β)15, where
α and β are the shape and rate parameters, respectively, then
for integer values of α, the distribution of h0 matches the
Erlang distribution and can be represented in the form of (9)
as follows:

P {h0 > x} =
Γ(α, αβ)

Γ(α)
= e−αβ

∑α−1

k=1

(αβ)k

k!
(10)

where Γ(., .) is the upper incomplete gamma function. The
authors in [74] used the union bound along with the technique
used in [24], [73] to obtain an upper bound on network-wide
(i.e, not for a given cell as in [73]) coverage probability in a
K-tier cellular network16.

Since the interference characterization technique used in
[24], [73], [74] is limited to channel power gains that can be
represented in the form of (9), in [75], the authors proposed
the gamma distribution (i.e., technique #3) to approximate
the interference in a MIMO multi-tier cellular network with
system model similar to the one assumed in [73]. The authors
in [75] used the moments obtained via the Laplace transform
of the aggregate interference to approximate its pdf using the
gamma distribution. The accuracy of the gamma approxima-
tion in [75] was validated by simulations.

V. STOCHASTIC GEOMETRY MODELS FOR COGNITIVE
NETWORKS

It is a well established fact that rigid spectrum allocation
significantly degrades the spectrum utilization17. Therefore,
cognitive radio techniques, where a licensed spectrum band is
opportunistically utilized by cognitive users (called secondary
users), has been a hot topic of research. In the context of

15A gamma distributed channel power gain corresponds to the Nakagami-m
fading.

16The upper bound is due to the union bound.
17Rigid spectrum allocation divides the entire available spectrum into sub-

bands which are permanently allocated to some network entities for their
exclusive usage.
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multi-tier cellular networks, the objective of cognitive radio is
different from the conventional cognitive radio networks (i.e.,
cognitive networks with licensed and unlicensed users). That
is, in conventional cognitive networks, the licensed band is
opportunistically utilized by unlicensed networks subject to a
tolerable performance degradation for the primary network.
In contrast, in multi-tier cellular networks, there is no notion
of priority because both cognitive network tiers and non-
cognitive network tiers are licensed to use the spectrum. In
multi tier cellular networks, cognitive radio-based distributed
spectrum access techniques can be developed to improve
the spectrum utilization, reduce interference, and enable the
small cells to have self organizing network (SON) capabilities.
Cognitive spectrum access in cellular networks will reduce
the CAPEX and the OPEX for the network operators [3]–
[5]. Therefore, all the design tradeoffs between the cognitive
and non-cognitive network tiers can be optimized so that the
overall performance of the cellular network can be optimized
[77], [80].

Although the objective of cognition in conventional cogni-
tive networks differs from that in cognitive cellular networks,
stochastic geometry models that characterize interference in
the conventional cognitive networks can be adapted for the cel-
lular networks. Therefore, in this section, we will first review
some stochastic models for conventional cognitive networks
since they contain the basic foundations to be extended for
multi-tier cellular networks. Then, we will review the few
works that exist in the literature for multi-tier cognitive cellular
networks.

A. Stochastic Geometry Models for Conventional Cognitive
Networks

A simple primary network comprised of one primary link
and a secondary network modeled as a PPP was consid-
ered in [81], [82], [84]. In [82], the aggregate interference
from the secondary network on the primary receiver with an
exclusion region was characterized. The authors assumed a
PPP distribution for the secondary users and characterized
the interference by approximating its pdf and ccdf using the
Edgeworth expansion, the log-normal distribution, and the
shifted log-normal distribution (i.e., technique #3). It was
shown that the shifted log-normal approximation outperforms
the other approximation (i.e., Edgeworth expansion and the
log-normal distribution) schemes.

In [84], the aggregate interference from the secondary users
(modeled as PPP) to a primary receiver was modeled. It was
assumed that the primary link operates in the full-duplex

mode, hence, by listening to the uplink, the location of the
primary receiver can be estimated. [84] obtained the character-
istic function of the interference and generated the cumulants
to approximate the pdf of the aggregate interference caused by
the secondary network (technique #3) by a truncated alpha-
stable distribution. The model in [84] accounts for shadowing,
small-scale fading, and power control. However, in a half-
duplex network, the primary receiver is idle, and its location
cannot be estimated.

Unlike [84], in [81], the secondary users control their
spectrum access w.r.t. the primary transmitter rather than
the primary receiver. Therefore, the set of active secondary
users constitutes a PPP outside the exclusion region (which is
random due to fading) of the primary transmitter. [81] aimed
at deriving the maximum intensity of secondary users that
satisfy the outage constraint for the primary link. The authors
used the Rayleigh fading assumption (technique #1) to find
the exact results for the outage probability of the primary
link as well as the mean transmission rate of the secondary
users. To relax the Rayleigh fading assumption and account for
shadowing effects, [81] also proposed an approximation based
on the lower bound obtained by considering only the strongest
secondary interferer (i.e., technique #2). [81] also analyzed
the effect of power control, imperfect sensing, and cooperative
sensing on the secondary and primary links. However, only
one primary user was assumed.

The effect of multiple primary users was analyzed in [83].
In [83], a cognitive network composed of multiple primary
users scattered as a PPP and multiple secondary users scattered
according to an independent PPP in the spatial domain was
modeled. The main focus in [83] was to characterize the ag-
gregate interference in the cognitive network where secondary
users are only allowed to transmit outside the exclusion region
of the primary users. It was shown that the active secondary
users form a Poisson hole process, which is a special case
of the doubly stochastic Poisson process or the Cox process
[10, Sec. 3.3]. That is, the active secondary users form a
PPP existing outside the exclusion regions of the primary
users. Since the Poisson hole process is hard to character-
ize, [83] obtained bounds on the aggregate interference by
approximating the Poisson hole process with a PPP existing
outside the exclusion region of the test primary user. [83] also
proposed an approximation based on the PCP for the active
cognitive devices and showed that it is quite accurate. The
main performance metric in [83] is the outage probability,
and the Rayleigh fading assumption (technique #1) was used
to evaluate it. However, in [83], a secondary user does not
consider transmissions from other secondary users, which may
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lead to a significant performance degradation for the secondary
users.

The two references [85], [86] accounted for the secondary
transmission in a network with multiple-primary and multiple-
secondary users. [85], [86] proposed a cognitive carrier-sense
multiple access (C-CSMA) protocol for a cognitive radio
network composed of primary users and secondary users
modeled via a PPP. The C-CSMA protocol coordinates both
the primary and secondary spectrum access by sequential
contention resolution processes. That is, each time interval
is divided into three time slots. The primary users contend
for spectrum access in the first time slot and transmit in
the second and third time slots, while the secondary users
listen to the spectrum in the first time slot to monitor primary
users, contend for spectrum access in the second slot if no
primary user is active, and transmit in the third time slot.
With the C-CSMA protocol, the locations of primary and
secondary users accessing the spectrum are correlated and
hence are modeled via the HCPP. [85], [86] aimed at calculat-
ing the spectrum access probabilities, the outage probabilities
as well as the transmission capacities. The Rayleigh fading
assumption (technique #1) was used to derive approximate
expressions for the outage probabilities as well as the trans-
mission capacities18. The effect of request-to-send and clear-
to-send (RTS-CTS) handshaking was analyzed in [85] while
the multicast and broadcast variations of the network model
were analyzed in [86].

B. Stochastic Geometry Models for Multi-tier Cognitive Cel-
lular Networks

In the context of multi-tier cellular network, as shown
in [68] and discussed in Section IV-D of this article, the
optimal spectrum allocation (i.e., joint or disjoint and the
optimal partitioning) depends on the intensity of BSs which
may vary across the service area. Furthermore, it is infeasible
(in terms of complexity and delay) to have a centralized
controller for resource allocation to maximize the frequency
utilization and mitigate interference between the coexisting
network elements. Therefore, cognition via spectrum sensing
is foreseen as a potential distributed solution for spectrum
access. That is, cognition provides a potential solution for
dynamic spectrum allocation which will adapt to the network
geometry and maximize the spatial frequency reuse.

A two-tier cellular network with cognitive FAPs was ana-
lyzed in [76]. The network model considered is composed of
a single MBS, a single primary user, and multiple cognitive
FAPs. It was assumed that the macro user generate a busy
tone to reserve the channel so that the cognitive FAPs can
estimate the link quality towards the macro receiver. A FAP
defer its transmission if it receives the the busy tone generated
by the macro user with a power greater than a certain
threshold. Hence, an interference protection region can be
guaranteed around the macro user. The authors in [76] used
the cumulants (obtained via the characteristic function of the
aggregate interference) to approximate the pdf (technique #3)
of the aggregate interference using log-normal and shifted

18Note that the approximation here is due to the non-existence of the
Laplace transform of the HCPP as mentioned in Section II.

log-normal distributions. The authors obtained the outage
probability and the average transmission capacity and used
simulations to show the accuracy of their model.

In [77], a two-tier cellular network composed of multiple
MBSs, multiple cognitive FAPs, multiple users in a multiple
channels environment was modeled. The MBSs, FAPs, and
users were modeled via independent PPPs. The cognitive
FAPs use a CSMA protocol which is similar to the C-CSMA
protocol proposed in [85], [86] to avoid interference with
primary users as well as secondary users. Therefore, the
active cognitive FAPs form an HCPP. The Rayleigh fading
assumption (technique #1) was used to derive the outage
probability and quantify the gain in outage probability due
to the cognition of the FAPs. It was shown that cognition in a
two-tier cellular network can decrease the outage probability
by as much as 60% (for example, from 75% to 15%).

In [78], [79], it was shown that although cognition boosts
the outage performance in a multi-tier cellular network, cog-
nition w.r.t. all network tiers may not be optimal. That is,
in a dense deployment scenario of small cells (e.g., FAPs),
the spectrum opportunities will be very rare. Therefore, the
performance gain in the SINR outage probability (due to the
improvement in SINR) is wasted by the outage probability due
to the opportunistic channel access. Hence, [78] proposed a
semi-cognitive scheme for the FAPs, where the semi-cognitive
FAPs only avoid interfering with the MBSs due to the high
transmit power gap and they aggressively use the channels
used in the femto network tier. It was shown that although the
aggregate interference in the semi-cognitive scheme is higher
than the aggregate interference in the full-cognitive scheme,
the overall outage performance of the semi-cognitive scheme
is better due to the increased spectrum opportunities.

In [80], the authors investigated the effect of different chan-
nel allocation schemes in the macro network tier on the op-
portunistic spectrum access probability for the cognitive small
cell tier in a two-tier cellular network. It was shown that if
each MBS independently of other MBSs allocates its channels
based on the channel quality index of the users, the cognitive
small cells will suffer from a deteriorated spectrum access
performance. In contrast, if the MBSs follow a conservative
channel allocation scheme to minimize the number of unique
channels used by the macro network tier, the spectrum access
performance of the cognitive SBSs will significantly improve,
albeit at the expense of increased inter-tier interference in the
macro tier. The authors in [80] also quantified the performance
gain in terms of outage probability (via technique #1) achieved
by the macro users when cognition is implemented in the
SBSs. It was concluded that a conservative channel allocation
scheme in the macro-tier along with cognition in the small
cell tier achieve the required tradeoff between performances
in the macro-tier and the small cell tier.

VI. FUTURE RESEARCH DIRECTIONS

In this section, we discuss possible extensions for stochastic
geometry modeling in cellular networks. There are three main
research directions for stochastic geometry modeling of multi-
tier cellular networks. The first is to capture more practical
system parameters in the system model. From the discussions
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provided in Section IV, we see that the system models used in
the literature are simplistic and do not account for actual sys-
tem characteristics. For instance, most of the system models
consider PPP distributed BSs, one channel, single antenna, and
downlink transmission. Therefore, advanced system models
that account for MIMO, multiple channels, different channel
allocation strategies, power control, coordinated multi-point
transmission, mobility, cognition, and uplink transmission are
required. The second direction is to go beyond the coverage
probability and the performance metrics based only on the
Shannon’s formula. For instance, if the queuing dynamics can
be incorporated in the analysis, useful performance metrics
such as the transmission delay can be obtained. The third
direction is to adopt point processes that capture the char-
acteristics of cellular networks with more accuracy and thus
provide better modeling approaches. A detailed discussion on
these potential research directions is provided below.

Although spatial randomness in the topology is an intrin-
sic characteristic of both large-scale ad hoc networks and
cellular networks, sophisticated distributed MAC protocols
in ad hoc networks as well as sophisticated planning and
interference management protocols in cellular networks bring
some structure to the network topology. That is, the in-
dependence assumption for the positions of simultaneously
active transmitters is not realistic. Hence, the repulsive point
processes such as the Matérn HCPP provide more realistic and
accurate modeling for wireless networks.

In [92] the authors examined four point processes to find
which of them better models the spatial distribution of an
actual cellular network, namely, the PPP, the HCPP, the Strauss
process (SP), and the perturbed triangular lattice. The Strauss
process belongs to the general class of Gibbs processes, which
first appeared in statistical physics [10, Sec. 3.6]. It captures
the pairwise interactions between nearby BSs by making it
less likely that two BSs are located close to each other,
i.e., Strauss processes are soft-core processes. The authors
in [92] showed that, compared to the PPP, the three non-
Poisson models can model the spatial locations of the deployed
BSs more accurately. The Gibbs processes were also used in
[102]. The authors compared the spatial characteristics of two
actual cellular deployments in a coastal city and sprawling
landlocked city to the spatial characteristics of the PPP, the
hexagonal grid as well as to the Gibbs models, and it was
shown that the Gibbs model, in particular the so-called Geyer
saturation process, better captures (i.e., better than both the
PPP and the hexagonal grid models) the spatial characteristics
of the actual cellular deployments. However, the main problem
with Gibbs processes is that they are not analytically tractable
[10, Sec. 3.6].

The tractability issue of the Gibbs processes makes the
HCPP of special interest. The HCPP is relatively more
tractable than the Gibbs process and has been frequently used
for modeling ad hoc networks and the existing results may
facilitate its application in the context of cellular networks.
However, there are some challenges that should be addressed
for efficient and accurate modeling via the HCPP. The first
challenge is to obtain a simple closed-form expression that
accurately captures the intensity of the nodes that can co-
exist for a given hard core parameter. The known closed-

form expression (for the MHCPP type II), which has been
extensively used in the literature, underestimates the intensity
(i.e., number) of the points that can coexist for a given value
of the hard core parameter. Furthermore, the gap between the
true intensity and the calculated intensity of the MHCPP type
II (i.e., the amount of underestimation) increases with the hard
core distance and the intensity of the parent PPP. The effect
of the intensity underestimation flaw of the MHCPP type II
on the modeling of CSMA networks was discussed in [45],
[51], where the intensity underestimation flaw was mitigated
for relatively low intensities of the parent PPP. The second
challenge is to obtain an expression for the distribution of the
distance between a generic location and the nearest point in the
HCPP. The distribution of this distance is crucial if the HCPP
is used to model a cellular network because this distance refers
to the distance between a user and her serving network entity.
An approximate expression for this distance was derived in
[41]. Another challenge is to obtain an expression for the
probability generating functional in order to obtain the LT
of the interference associated with a HCPP. This problem was
reported in [40], [49], and approximate expressions for the LTs
were derived. One interesting future direction is to address the
challenges of the HCPP and extend the existing results in the
literature for more accurate modeling of cellular and cognitive
wireless networks.

In [89], [90], an asymptotic approach for the outage charac-
terization of wireless networks with general node distribution
and general fading was presented. This includes the PPP,
HCPP, clustered PPs, and grid models as special cases, and
permits arbitrary MAC schemes. However, the results are
restricted to the high-SIR case. In [103], the method of
factorial moment expansion [104] was used to characterize and
approximate the interference in networks with general spatial
distribution of nodes. The proposed model has a high potential
for more accurate modeling of wireless networks and presents
a clear tradeoff between the accuracy and complexity of the
expressions obtained. The initiatives proposed in [89], [90],
[102], [103] open the road for discovering new stochastic ge-
ometry tools for more accurate, flexible, and general modeling
of wireless networks.

Another interesting future direction is to incorporate the
queueing dynamics into the stochastic geometry models. Most
of the work in the literature assume saturation conditions
for the traffic. That is, the buffers of all network elements
are always full, which might not be true and will provide
a pessimistic view of the aggregate interference as well
as some other performance metrics (e.g., spectrum access
probability in cognitive and CSMA networks). Moreover, no
insights regarding the packet delays can be obtained since the
queuing dynamics are ignored. The commonly used saturation
conditions were relaxed in [44], [105], [106] for ad hoc
networks. However, to the best of our knowledge, there has
not been any work that incorporate the queueing dynamics
into the stochastic geometry models for cellular networks.
[44] proposed a three-dimensional PPP to model the traffic
flow for the coexisting network nodes in a CSMA network.
The locations of the network nodes were modeled via a two-
dimensional PPP while the traffic arrivals were modeled via a
one-dimensional PPP. However, [44] only modeled the outage
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probability and no insights on the packet delay performance
was given. In [105], the stability and delay performances were
analyzed for nodes with infinite queues in a PPP ad hoc net-
work with one and two classes of nodes. In [106], the authors
calculated bounds on the end-to-end delay, the optimum hop
lengths, and the number of hops in a TDMA/ALOHA multi-
hop network in the presence of a PPP field of interferers.

In the context of multi-tier cellular networks only few re-
sults are available on cognitive small cells, MIMO, optimized
load balancing, mobility, and uplink network modeling. As
discussed earlier, cognition provides a potential solution for
dynamic spectrum allocation in multi-tier cellular networks.
In [74], it was assumed that the interference seen by each
antenna is independent, however, this assumption may not
hold because, as shown in [35], [107], [108], the aggregate
interference is correlated in time and across small spatial
intervals. We would like to emphasize that in [24], [73], [74]
the authors did not use any of the popular five techniques
presented in Section III for the performance evaluation of the
downlink coverage with MIMO transmissions. This indicates
that there are opportunities for innovating techniques which
facilitate the stochastic geometry modeling and get around
the well-known obstacles. A mobility model that relies on
stochastic geometry tools was proposed in [109] where the
authors used the random waypoint mobility model to derive
the cell crossing rate in cellular networks.

VII. DISCUSSIONS

Stochastic geometry is the only mathematical technique
available that provides a rigorous analytical approach to the
modeling, analysis, and design of HetNets and cognitive multi-
tier cellular networks. While it is extremely powerful when
applied to networks modeled as PPPs with Rayleigh fading,
leading to short and general closed-form expressions, gener-
alizing the network models diminishes its tractability. That
said, we have seen that simple baseline stochastic geometry
modeling helps understanding the effects of the fundamental
design parameters on the system behavior. For instance, in
[54], [55], for a network tier modeled via a PPP, it was
shown that the SIR statistics do not depend on the intensity
of the BSs constituting that tier. References [54], [62], [63]
quantified the minimum performance gain (in terms of outage
probability and average achievable rate) for different frequency
reuse schemes. In [59], the effect of biasing on the achievable
data rate as well as the outage probability was quantified.
Spectrum sharing/partitioning was optimized in [67]–[69]. An
approach towards the optimal BS deployment was proposed in
[64]. The performance gain in terms of outage probability has
been quantified in [77]–[80] when cognition is implemented
in small cells.

The above examples show the potential of the simple base-
line models and how they can be easily modified and adapted
to more practical cases. Moreover, simple approximations
(i.e., technique #2, technique #3) prove to be powerful yet
accurate for more flexible and general modeling of wireless
networks. Note that we do not have to run computationally
intensive simulations to check the accuracy of the approx-
imation techniques. Instead, the accuracy for approximation
techniques can be numerically verified by comparing to the

results obtained using Plancherel-Parseval Theorem (technique
#4).

Spatial averaging is argued to be another limitation for
the stochastic geometry modeling. Considering only spatial
averages may hide the effect of the design parameters on
the uncertainties due to the spatial randomness [41], [110].
That is, the performance metrics are random variables that
may vary from one location to another in the spatial domain
based on the position of the tagged node w.r.t. the interference
sources. Spatial averages may hide important details that
impact the network performance and limit the insights that
can be obtained from the spatial averaging.

For instance, with the spatial average of the outage prob-
ability, we cannot design the network such that at least 95%
of the users experience an outage probability less than 1%. In
[41], the authors proposed a new method based on computing
the conditional performance metrics (i.e., conditioning on the
number of nodes having high influence on the performance
metric of interest) to analyze the effect of the design param-
eters on the distribution of the performance metrics.

It was shown in [41] that the sensing threshold in a CSMA
network might have a significant impact on the percentiles of
users experiencing negligible data rates while showing a good
spatial average due to the users that have high data rates. In
[110], the authors characterized the spatial distribution (instead
of the spatial average) of the link outage in a PPP ad hoc
network. The distribution of link outage was characterized
by its moments and the Markov inequality was utilized to
derive an upper bound on the spatial distribution of the link
outage. The authors also used the Markov inequality to derive
an upper bound on the transmission capacity, which was
defined as the maximum allowable intensity of simultaneous
transmissions such that a certain percentile of nodes have a
success probability (the complement of outage probability)
more than a predefined threshold. From the results of [41],
[110] we can conclude that insights beyond spatial averages
are crucial to the network performance and that stochastic
geometry techniques are powerful enough to provide these
insights.

VIII. CONCLUSION

Stochastic geometry modeling for multi-tier cellular and
cognitive networks provides tractable and accurate expressions
for the performance metrics in terms of the design param-
eters. A comprehensive review of the literature related to
the stochastic geometry modeling of multi-tier and cognitive
cellular networks has been presented. A taxonomy that reveals
the popularity and applicability of different point processes
and different performance evaluation techniques have also
been presented. It has been shown that the baseline models
developed for multi-tier cellular networks are simple, flexible
and can capture many practical network properties such as
frequency reuse, FFR, and cognition. The models for multi-
tier cellular networks in the literature provide useful insights
to the network design and have been adapted to optimize the
deployment of BSs, frequency sharing/partitioning for multi-
tier cellular networks, frequency reuse, transmission rate,
outage probability and cognition. Looking into the literature,
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we can see that technique #1 and technique #2 are the
most popular performance evaluation techniques due to their
simplicity and tractability. If a simple analysis is required for
a network in which the channel power gain in the desired
links is not exponentially distributed and also the path-loss
exponent is low, then technique #3 is preferred. However,
only approximate results can be obtained. On the other hand,
technique #4 provides the potential to obtain the exact results
via stochastic geometry modeling, however, at the expense
of reduced tractability. Finally, the usage of technique #5 is
limited to very special cases.
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