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Abstract—We develop a new metric for quantifying end-to-
end throughput in multihop wireless networks, which we term
random access transport capacity, since the interference model
presumes uncoordinated transmissions. The metric quantifies the
average maximum rate of successful end-to-end transmissions,
multiplied by the communication distance, and normalized by
the network area. We show that a simple upper bound on this
quantity is computable in closed-form in terms of key network
parameters when the number of retransmissions is not restricted
and the hops are assumed to be equally spaced on a line between
the source and destination. We also derive the optimum number
of hops and optimal per hop success probability and show that
our result follows the well-known square root scaling law while
providing exact expressions for the preconstants, which contain
most of the design-relevant network parameters. Numerical
results demonstrate that the upper bound is accurate for the
purpose of determining the optimal hop count and success (or
outage) probability.

Index Terms—Transmission capacity, transport capacity, net-
work information theory, stochastic geometry, ad hoc networks.

I. INTRODUCTION

DETERMINING the capacity of distributed wireless net-
works (i.e., ad hoc networks) is one of the most gen-

eral and challenging open problems in information theory.
Straightforward applications of known information theoretic
tools and inequalities becomes intractable almost immediately
and have hence yielded little in the way of results. This
motivates the exploration of approaches to describing ad
hoc network throughput that, while falling short of strict
information theory upper bound standards, do provide insight
into the fundamental trends on achievable throughput.

A. Motivation and Related Work

The main line of present inquiry is to consider the transport
capacity of an ad hoc network, which quantifies the bits per
second that can be reliably communicated over some distance
in the network [1]. A significant merit of this approach is that
it describes important aspects of the capacity region of all pos-
sible rate pairs in the network – notably how the region scales
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with the number of nodes 𝑛 – and has provided high-level
insight on how different network scenarios and approaches
may affect the scaling law. Notwithstanding special cases
that suggest more optimistic scalings [2]–[4], it is generally
agreed that the scaling law in ad hoc networks is Θ(

√
𝑛)

and can be achieved with nearest-neighbor routing through
the network [5]–[9]. Despite this considerable progress, a
common limitation of this line of research is that the main
results are typically asymptotic scaling laws that do not easily
allow capacity tradeoffs to be made based on the salient
network parameters and design choices. Although many efforts
have been made to better understand the transport capacity
preconstants, e.g. [10]–[12], in general tractability has suffered
and/or several essential aspects of ad hoc networks have had
to be abstracted out.

An alternative approach pioneered by the current authors
and others has focused on computing achievable rate re-
gions and network densities for different architectures and
technologies. A key to this approach is to assume that the
interferer locations are random, in particular that they are
Poisson distributed over the plane. Although this is an ide-
alization, it accurately models the scenario where transmitters
are randomly scattered and uncoordinated, which seems to be
quite a bit more realistic than other popular alternatives, such
as assuming they are placed deterministically on a regular grid.
This approach has allowed closed-form derivation of outage
probability as well as the maximum allowable transmission
density at a specified outage probability and data rate, the
latter of which we have termed the transmission capacity
[13]–[15]. The analytical tractability of this approach (using
tools from stochastic geometry [16], [17]) has to date allowed
quantitative design tradeoffs for spread spectrum [13], [18],
[19], interference cancellation [20], [21], multiple-antenna
architectures [22]–[25], cognitive radio and capacity overlays
[26]–[28] and power control [14], [29].

A common shortcoming of the transmission capacity ap-
proach is that it considers a typical network snapshot, and
hence only simultaneous single hop transmissions. The pri-
mary goal of this paper is to address this limitation, and we
develop a related metric which we term the random access
transport capacity because it presumes packets are transported
end-to-end over some distance 𝑅, but assumes independent
locations and transmissions for the interferers. In that sense,
one contribution of the paper is to find a middle ground
between the transport and transmission capacity approaches
into the capacity of multihop wireless networks. As one might
expect, the results of this paper follow the Θ(

√
𝑛) scaling law,

but provide exact expressions for the “preconstants”, which is
where nearly all the impact of any network design resides,
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TABLE I
SUMMARY OF NOTATION AND PARAMETERS

𝜆 interference density, intensity of PPP Π
𝛼 path loss exponent (𝛼 > 2)
𝐾𝛼 A constant, 𝐾𝛼 = 2𝜋2/(𝛼 sin(2𝜋/𝛼))
𝛽 target (required) SINR per hop
𝑅 𝒮 − 𝒟 transmit distance
𝑟𝑚 transmit distance on hop 𝑚
𝜌 transmit power
𝜂 noise power
SNR 𝒮 − 𝒟 end-to-end SNR, i.e. SNR := 𝜌𝑅−𝛼/𝜂
𝑝𝑠(𝑀) probability of success over a single hop
𝑀 number of hops (number of relay nodes is 𝑀 − 1)
𝑇𝑚(𝑀) transmissions required on hop 𝑚 until success
𝑇 (𝑀) total transmissions reqd. per packet, 𝑇 (𝑀) =

∑
𝑇𝑚(𝑀)

𝐴 allowance on total transmissions per packet, 𝑇 (𝑀) ≤ 𝐴
𝑃out probability of end-to-end outage, 𝑃out = ℙ(𝑇 (𝑀) > 𝐴)
𝐶(𝐴) random access transport capacity
𝐶ub(𝐴) Upper bound on 𝐶(𝐴)

since most reasonable protocols and physical layer techniques
can achieve Θ(

√
𝑛).

Complementary to the transport capacity research, some
recent work has formulated the multihop capacity problem as
a line network without additional network interference [30],
[31]. Both of these papers agree that numerous hops are
helpful only in the “power-limited" regime, that is where the
spectral efficiency is low and overcoming noise is the primary
concern. Both also find that in the “bandwidth-limited regime"
– when the SNR is high – that additional hops decrease the
end-to-end throughput due to the use of extra time-slots. Two
notable theoretical results are 𝑖) that the end-to-end capacity
scales as 𝑂(log𝑀) for 𝑀 hops [30] and 𝑖𝑖) that by using
optimal time-sharing on each hop 𝑚 = 1, . . . ,𝑀 to achieve
the per-hop capacity 𝑐𝑚, the end-to-end capacity with no
interference increases from 𝐶no int = min𝑚(𝑐𝑚) in [30] to

𝐶no int =

(
𝑀∑

𝑚=1

1

𝑐𝑚

)−1

(1)

as derived in [31]. Intuitively, (1) tells us that each additional
hop lowers the capacity unless the hop capacities 𝑐𝑚 increase
by a sufficient amount (due to higher SNR). Hence this
equation also captures a basic tradeoff between higher per
hop capacity (more short hops) and the desire for fewer
total dimensions or transmission (fewer, and hence longer,
hops). This tradeoff has been considered from many possible
perspectives in [32], but in the present paper we are able to
quantify it exactly in terms of a transport capacity-like metric,
and with interference.

Finally, we note that a recent paper [33] has considered
multihop capacity in a Poisson field of interference. The key
distinction in this work is that we focus on achievable end-to-
end throughput and optimal transmission strategies and hop
count rather than the stability of queues. We also consider
noise whereas they do not, which is important since we
show that it is in the power-limited regime where multihop
is beneficial.

B. Contributions and Organization

In this paper we develop a new, quite general model for
end-to-end throughput in a multihop wireless network. We
term the resulting metric random access transport capacity
since the analysis requires all transmissions to be independent,
which precludes cooperative transmission scheduling among
the nodes, since this would generally couple transmissions
and the active transmitter locations would no longer be in-
dependent. Note, however, that the model does not preclude
cooperative or multipacket reception, although we do not
consider such approaches in this paper. The general model
includes arbitrary paths of 𝑀 hops and an end-to-end de-
lay/energy constraint quantified as the total allowable number
of transmissions per packet, 𝐴. A closed-form upper bound
on random access transport capacity is obtained by making
the 𝑀 hops equidistant and by letting 𝐴 → ∞. This upper
bound is tight for moderate values of 𝐴.

From the upper bound, the optimal number of hops 𝑀∗

can be computed as a function of the network parameters –
in fact this was a prerequisite to finding the upper bound.
For example, we can show that 𝑀∗ ∝ 𝑅𝛽

1
𝛼

√
𝜆, where 𝑅

is the end-to-end distance, 𝛽 is the per-hop SINR required
for successful communication at the transmitted rate, 𝛼 is the
path loss exponent, and 𝜆 is the spatial density of transmit-
ters. Additionally, the optimal per-hop success probability (or
equivalently, outage probability) and optimal average number
of retransmissions per hop can be directly found. This exposes
an optimal tradeoff between highly reliable transmissions –
achieved with short hops (large 𝑀 ) and hence a low per-hop
outage – and unreliable transmissions, which make up for the
retransmissions by requiring fewer hops. The upper bound
is shown to be accurate for the purposes of predicting the
optimal number of hops 𝑀∗ and the optimal per-hop success
(or outage) probability.

An advantage of the novel framework developed in this
paper is that the end-to-end throughput (here, the random
access transport capacity) uses a small, finite, and computable
number of hops, and results are given as a function of
the 𝒮 − 𝒟 separation 𝑅. We prove that the random access
transport capacity follows the square-root scaling law, while
providing easily computable preconstants. We expect that this
approach can be extended to better understand and compare
many specific candidate technologies and design approaches
in multihop wireless networks.

The rest of this paper is organized as follows. First in
Section II, we define the overarching network model and
metrics used in this paper. We then develop and derive the
upper bound in Section III, which is the main result of the
paper. Implications and observations based on the upper bound
derivation are discussed in Section IV. Numerical results are
given in Section V, in which the upper bound is evaluated
against a numerical exact solution (for finite 𝐴) and the above
insights from the results are discussed.

II. NETWORK MODEL AND METRICS

We consider a large wireless ad hoc network where a typical
source node 𝒮 drawn from a homogenous 2-D Poisson point
process (PPP) of intensity 𝜆 wishes to transmit to a destination
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node 𝒟 that is a distance 𝑅 away in a random direction
and is not part of the PPP. All transmitters (desired and
interfering) have fixed transmit power 𝜌, which in order to
simplify notation is more precisely the average radiated power
at a distance of 1 meter from the transmitter1. The noise power
is 𝜂 and the channel strength is determined by path loss and
fading, so the received power at a distance 𝑅 is 𝜌𝜒𝑅−𝛼, where
𝛼 > 2 is the path loss exponent and 𝜒 results from iid Rayleigh
fading, which means 𝜒 ∼ exp(1). The SNR is defined in this
paper as SNR := 𝜌𝑅−𝛼/𝜂 regardless of the number of hops
taken, so dividing the route into hops improves the per-hop
SNR, as it should.

A. Single Hop, Single Transmission

The simplest case is to consider a single transmission over
the entire 𝒮 −𝒟 distance 𝑅. In this case, the received SINR,
where the reference receiver is defined to be at the origin, is

SINR =
𝜌𝜒0𝑅

−𝛼∑
𝑖∈Π 𝜌𝜒𝑖∣𝑋𝑖∣−𝛼 + 𝜂

. (2)

The interfering node locations in (2) are drawn from a sta-
tionary Poisson point process (PPP) on the plane of intensity
𝜆, denoted Π = {𝑋𝑖}, where each 𝑋𝑖 ∈ ℝ

2 is the location
of an interfering transmitter. In the single-hop model, all
interferers are sources, themselves. This is a realistic model
assuming the transmitting nodes in the network are randomly
and independently located and do not cooperate.

Under this model, the probability of success for sending a
packet from source to destination can be found to be

𝑝𝑠(𝑀 = 1) = ℙ(SINR > 𝛽) = exp

{
− 𝛽𝜂

𝜌𝑅−𝛼
− 𝜆𝛽

2
𝛼𝐾𝛼𝑅

2

}
,

(3)
where 𝐾𝛼 = 2𝜋2/(𝛼 sin(2𝜋/𝛼)). Obtaining this expression
is crucial to the results in this paper but nontrivial: for the
derivation the reader is referred to [35]. Note that a similar
exact result exists for Nakagami fading [22] as well as a tight
bound on success probability with path loss only (no fading)
[13], but we will use the expression for Rayleigh fading in (3)
throughout this paper.

This single hop model has been fairly well-studied in
recent years. For such a model, we define the random access
transport capacity, in this case for single hop, to be

𝐶sh = 𝑝𝑠𝜆 log(1 + 𝛽)𝑅. (4)

In words, 𝐶sh gives the density of successful transmissions at
rate log(1+𝛽) that can span a 𝒮−𝒟 distance of 𝑅: therefore𝐶
has units of bps/Hz/m. As 𝑅 increases, 𝑝𝑠 → 0 exponentially
fast per (3). If 𝑝𝑠 is fixed to be 1−𝜖 for some maximum outage
probability 𝜖, the 𝑅 term is dropped in (4), and (3) is inverted
to find 𝜆, then (4) gives the so-called transmission capacity.
The goal in this paper is to move beyond the single-hop,
single-transmission model to a network that allows multiple
hops and multiple transmissions per hop, while retaining some
of the tractability of the transmission capacity model.

1The authors have proven in [14] and [29] that pairwise power control does
not have a significant effect on outage probability or transmission capacity.
Path loss models that avoid the singularity for 𝑅 → 0 are discussed in [34].

B. Multiple Hops, Multiple Transmissions per Hop

Now, allow the 𝒮 − 𝒟 distance 𝑅 to be subdivided into
𝑀 hops having not necessarily equal distances 𝑟𝑚, where
𝑅 =

∑𝑀
𝑚=1 𝑟𝑚. On each hop, retransmissions are allowed

and acknowledgments are used. Therefore, the number of
transmissions on each hop 𝑚 is denoted by the geometric ran-
dom variables (𝑇1(𝑀), . . . , 𝑇𝑀 (𝑀)), where each 𝑇𝑚(𝑀) ∈
{1, 2, . . .}, and the total number of transmissions required to
move a packet from 𝒮 to 𝒟 is

𝑇 (𝑀) =

𝑀∑
𝑚=1

𝑇𝑚(𝑀). (5)

The notion of outage comes in naturally by constraining the
total number of transmissions per packet, which is functionally
a constraint on the total amount of delay and energy per
packet, for example due to a timeout. If the allowance on the
total number of transmissions per packet is 𝐴 then 𝑇 (𝑀) ≤ 𝐴
is required for successful transmission, so an outage event
occurs when 𝑇 (𝑀) > 𝐴. Therefore, the total number of
actual transmissions per packet is min(𝑇 (𝑀), 𝐴), or more
compactly, 𝑇 (𝑀)∧𝐴. We assume that each 𝒮 −𝒟 pair only
transmits a single packet at a time along the entire multihop
path: in other words there is no intra-route spatial reuse2. The
interference density is still 𝜆 as in the single-hop case, but each
packet is sent 𝑇 (𝑀)∧𝐴 times, causing the effective rate per
𝒮 − 𝒟 pair to be log(1 + 𝛽)/(𝑇 (𝑀) ∧ 𝐴) to account for the
retransmissions. In other words, if the transmitted bit rate at 𝒮
is log(1+𝛽), because 𝒮 has to wait 𝑇 (𝑀)∧𝐴 packets before
transmitting again, the effective 𝒮 − 𝒟 data rate is lowered
by this factor. This also presumes that 𝒮 is instantaneously
notified when the packet is received successfully at 𝒟 so it
can send the next packet.

Definition 1: Random access transport capacity. The ran-
dom access transport capacity 𝐶 for a multihop wireless
network is the maximum average source to destination rate
that can be sustained reliably over a distance 𝑅 with at most
𝐴 transmission attempts per packet, normalized by the area of
the network. Formally, it can be characterized by maximizing
over the number of hops as:

𝐶(𝐴) = max
𝑀∈{1,...,𝐴}

ℙ(𝑇 (𝑀) ≤ 𝐴) ⋅ 𝜆 ⋅ log(1 + 𝛽)

𝔼[𝑇 (𝑀) ∧𝐴]
𝑅

= 𝜆 log(1 + 𝛽)𝑅 max
𝑀∈{1,...,𝐴}

ℙ(𝑇 (𝑀) ≤ 𝐴)

𝔼[𝑇 (𝑀) ∧𝐴]
. (6)

This quantity therefore determines the end-to-end rate that
can be supported when the source nodes have density 𝜆.
The challenge is in computing the probability of success
ℙ(𝑇 (𝑀) ≤ 𝐴) and in computing the expectation of a mini-
mum, i.e., 𝔼[𝑇 (𝑀)∧𝐴]. In the general model thus espoused,

2This is an important simplification, as it avoids dependent simultaneous
transmissions along a path, as well as difficulties in accounting for non-
Poisson interference. From a network-wide perspective the lack of spatial
reuse for a given path does not affect the transport capacity because other
𝒮 − 𝒟 pairs can utilize the space instead. Strictly speaking, the relays must
be deterministically placed on the line between 𝒮 and 𝒟 rather than drawn
from Π in order to maintain a PPP for the interference. Since exactly one
node transmits per route at a time, the interferers in each time slot form a PPP
in this case. We also note that the spatio-temporal correlations in a Poisson
field of interference have recently been studied in [36]: here, the effect would
be to increase the independence as 𝑀 increases.
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𝑇 is the sum of 𝑀 independent but not identical random vari-
ables (𝑇1(𝑀), . . . , 𝑇𝑀 (𝑀)), where 𝑇𝑚(𝑀) ∼ Geo(𝑝𝑠(𝑀)),
for 𝑝𝑠(𝑀) to be defined in (8). For each transmission per
hop to have independent success probability requires sufficient
diversity in the interference and signal strength per trans-
mission attempt, which could possibly be achieved through
diversity techniques such as frequency hopping. Even with
these simplifications, the general model does not appear to
be tractable. In the next section, we develop an upper bound
on the random access transport capacity that is computable in
closed-form.

III. UPPER BOUND: GUARANTEED END-TO-END

DELIVERY, NO DELAY-ENERGY CONSTRAINT

A. Establishing an upper bound

To develop an upper bound on the random access transport
capacity, we make two important simplifications. First, we
assume the hop lengths are all equidistant, that is 𝑟𝑚 = 𝑅/𝑀 ,
for 𝑚 = 1, . . . ,𝑀 . This is best-case because 𝑝𝑠 in (3) is
𝑜(𝑒−𝑟2𝑚), so the increase in 𝑝𝑠 on short hops is outweighed
by the decrease in 𝑝𝑠 on longer hops. In other words, any
perturbation from equal-length hops increases the end-to-end
outage probability, all else being equal.

This assumption allows much improved tractability because
now the probability of success is the same for all hops, so
the number of transmissions 𝑇𝑚(𝑀) required on a given hop
for success becomes iid geometric with parameter 𝑝𝑠(𝑀)
to be defined in (8). The second important simplification is
that we relax the delay-energy constraint. Formally, we let
𝐴 → ∞ in ℙ(𝑇 (𝑀) ≤ 𝐴)/𝔼[𝑇 (𝑀)∧𝐴]. This simplifies both
the numerator and denominator: the probability of end-to-end
success ℙ(𝑇 (𝑀) ≤ 𝐴) tends to 1, and 𝔼[𝑇 (𝑀)∧𝐴] simplifies
to 𝔼[𝑇 (𝑀)]. These considerations yield the following Lemma
and Corollary.

Lemma 1: For all 𝐴 ∈ ℤ+ and all 𝑀 ∈ {1, . . . , 𝐴}:
ℙ(𝑇 (𝑀) ≤ 𝐴)

𝔼[𝑇 (𝑀) ∧ 𝐴]
≤ 1

𝔼[𝑇 (𝑀)]
. (7)

Proof: See Appendix.
Although the numerator ℙ(𝑇 (𝑀) ≤ 𝐴) → 1 and the

denominator 𝔼[𝑇 (𝑀) ∧ 𝐴] → 𝔼[𝑇 (𝑀)] both increase, the
numerator does so slightly more quickly, resulting in an
upper bound. Under the upper bound assumption of equally
spaced hops (𝑟𝑚 = 𝑅/𝑀 ), the per-hop probability of success
becomes:

𝑝𝑠(𝑀) := exp

{
− 𝛽

SNR
𝑀−𝛼 − 𝜆𝑅2𝛽

2
𝛼𝐾𝛼𝑀

−2

}
, (8)

and the probability mass function of the number of trans-
mission attempts 𝑇𝑚(𝑀) on each hop 𝑚 is geometric with
probability of success 𝑝𝑠(𝑀):

𝑃 (𝑇𝑚(𝑀) = 𝑡) = (1 − 𝑝𝑠(𝑀))𝑡−1𝑝𝑠(𝑀). (9)

The average number of attempts per hop is therefore
𝔼[𝑇𝑚(𝑀)] = 1/𝑝𝑠(𝑀). Because the 𝑀 hops are iid it follows
that the expected number of total transmissions required to
move a packet from source to destination is 𝔼[𝑇 (𝑀)] =
𝑀𝔼[𝑇𝑚(𝑀)] = 𝑀/𝑝𝑠(𝑀). Combining these observations
yields the following upper bound on the capacity.

Corollary 1: An upper bound on the capacity (6) is

𝐶ub(𝐴) = 𝜆 log(1 + 𝛽)𝑅 max
𝑀∈{1,...,𝐴}

𝑝𝑠(𝑀)

𝑀
. (10)

Note that although we relax the 𝐴 constraint in Lemma 1
inside the optimization in (6) to establish the upper bound,
we retain a finite 𝐴 in the range of 𝑀 ∈ {1, . . . , 𝐴}.

B. Optimal number of hops

The next step is to determine asymptotic optimal number of
hops 𝑀∗ that maximizes 𝐶ub(𝐴) as 𝐴 → ∞. This is given by
the following theorem and corollaries, which give a positive
real value for 𝑀∗ although the actual quantity would neces-
sarily be an integer. We leave it as a continuous quantity in this
paper for tractability and generality. Once 𝑀∗ is computed,
the optimal average number of transmissions required per hop
can be readily determined as 𝔼[𝑇𝑚(𝑀∗)] = 𝑝−1

𝑠 (𝑀∗).
Theorem 1: Optimal number of hops, 𝑀∗. The number of

hops 𝑀∗ that optimizes the asymptotic transport capacity
density upper bound lim𝐴→∞ 𝐶ub(𝐴), i.e.,

𝑀∗ := arg max
𝑀=1,2,...

𝑝𝑠(𝑀)

𝑀
(11)

is the solution to the equation

𝑀𝛼 − 2𝜆𝛽2/𝛼𝐾𝛼𝑅
2𝑀𝛼−2 − 𝛽𝜂𝑅𝛼

𝜌
𝛼 = 0. (12)

This results in closed-form expressions3 for 𝑀 only when
𝛼 ∈ {3, 4, 6, 8}, in which case 𝑀∗ is the largest positive root
of (12).

Proof: The objective is

𝑝𝑠(𝑀)

𝑀
=

1

𝑀
exp(−𝑘1𝑀

−𝛼 − 𝑘2𝑀
−2) (13)

where 𝑘1 = 𝛽𝜂
𝜌𝑅−𝛼 = 𝛽

SNR and 𝑘2 = 𝜆𝛽2/𝛼𝐾𝛼𝑅
2. Taking the

derivative and setting equal to zero eventually gives

exp(𝑘1𝑀
−𝛼 + 𝑘2𝑀

−2)
(
1− 𝑘1𝛼𝑀

−𝛼 − 2𝑘2𝑀
−2
)
= 0

(14)
which gives that

1− 𝑘1𝛼𝑀
−𝛼 − 2𝑘2𝑀

−2 = 0 (15)

or in polynomial form

𝑀𝛼 − 2𝑘2𝑀
𝛼−2 − 𝑘1𝛼 = 0. (16)

By the Abel-Ruffini theorem, a formula solution to a poly-
nomial equation only exists for when the degree of the
polynomial is 4 or less. The path loss exponent 𝛼 is of physical
interest4 only when 1.5 ⪅ 𝛼 ⪅ 6. In this range, 𝑀 can be
found in closed-form only for 𝛼 ∈ {2, 3, 4, 6}, although it can
also be found in principle for 𝛼 ∈ {1, 8}. The solutions for
𝛼 = 6 and 𝛼 = 8 would follow similarly to the 𝛼 = 3 and
𝛼 = 4 solutions.

3By closed-form, we mean direct computation is possible using only basic
arithmetic operations, simple trigonometric functions, and radicals.

4That is, there exist empirical studies that have found 𝛼 to be in this range

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2010 at 22:26:02 UTC from IEEE Xplore.  Restrictions apply. 



ANDREWS et al.: RANDOM ACCESS TRANSPORT CAPACITY 2105

Because the main physical range of interest for path loss
exponents in wireless networks is 2 < 𝛼 < 5, we only
provide corollaries for the solution when 𝛼 = 3 and 𝛼 = 4.
A solution in terms of 𝐾𝛼 can be found for 𝛼 = 2, but
for 𝛼 → 2,𝐾𝛼 → ∞ so this result does not exist. When
𝛼 ≤ 2 the interference at any point in the network is infinite
almost surely because power does not decay fast enough with
distance, where as when 𝛼 > 2 the sum interference is finite
almost surely. Intuitively, if the number of interferers in a 2-D
plane grows as 𝑑2, then the received power of each must fall
faster than 𝑑2 to have finite interference, i.e. 𝛼 > 2. Therefore,
the optimal number of hops for 𝛼 = 2 is technically infinite. In
the sequel we write 𝑀∗ = 𝑀∗(𝛼) to emphasize the sensitivity
of the optimal number of hops on the path loss exponent.

Corollary 2: Solving (12) with 𝛼 = 3 yields two possible
solutions, depending on the polarity of the equation’s discrim-
inant 𝐷 =

9𝑘2
1

4 − 8𝑘3
2

27 . If 𝐷 ≥ 0,

𝑀∗(3) = 𝛽
1
3𝑅

[
3

√
3𝜂

2𝜌
+ 𝑓 + 3

√
3𝜂

2𝜌
− 𝑓

]
, (17)

where

𝑓 =

√(
3𝜂

2𝜌

)2

− 8𝐾3
3

27
𝜆3, (18)

and 𝐾3 = 4
√
3

9 𝜋2 ≈ 7.6. When 𝐷 < 0

𝑀∗(3) = 2

√
2𝜆𝐾3

3
𝛽

1
3𝑅 cos

(
1

3
arc cos

[
3
√
3𝜂

4
√
2𝜌(𝜆𝐾3)

3
2

])
(19)

Proof: See Appendix.

Although the expressions (17) and (19) at first appear to be
quite different, in fact they have a quite similar dependence
in terms of the main parameters of interest. Finally, we have
the following corollary for 𝛼 = 4.

Corollary 3: Solving (12) with 𝛼 = 4 yields a single
maximum positive, real solution for 𝑀∗ which is

𝑀∗(4) = 𝛽
1
4𝑅

√√√⎷𝜆
𝜋2

2
+

√
𝜆2

𝜋4

4
+

4𝜂

𝜌
(20)

since 𝐾4 = 𝜋2/2.

Proof: See Appendix.

C. The upper bound, 𝐶ub

The hop-optimized random access transport capacity can
now be given in closed-form for any choice of system param-
eters since

𝐶ub =
𝜆 log(1 + 𝛽)𝑅

𝔼[𝑇𝑚(𝑀∗)] ⋅𝑀∗ = 𝜆 log(1 + 𝛽)𝑅
𝑝𝑠(𝑀

∗)
𝑀∗ , (21)

and we now have found exact expressions for 𝑝𝑠(𝑀
∗) and

𝑀∗. Although a few assumptions are made to get to closed

form – fixed equidistant relays, randomly located interferers,
independent retransmissions, all transmissions at the same rate
– this allows a simple closed-form end-to-end expression for
multihop network throughput with both noise and interference.

For example, consider 𝛼 = 4. One can simply plug in
𝑀∗(4) from (20) into (8) to get 𝑝𝑠(4), and then a fairly
simple closed-form expression 𝐶ub follows immediately from
plugging that result and 𝑀∗(4) into (21). At high SNR
𝑀∗ → 𝛽

1
4𝑅𝜋

√
𝜆, which yields an even more compact

expression:

lim
SNR→∞

𝐶ub∗
∣∣∣
𝛼=4

=

√
𝜆 log(1 + 𝛽)

𝜋𝛽
1
4

exp

(
−1

2

)
. (22)

A similar procedure can be performed for 𝛼 = 3 although the
results are not quite as compact.

IV. UPPER BOUND IMPLICATIONS

A. Initial Insights from Theorem 1

It can be immediately observed that all the derived solu-
tions for 𝑀∗ are precisely proportional to 𝑅𝛽

1
𝛼 . This makes

sense: the optimal number of hops should scale linearly with
the source-destination distance since this keeps the per-hop
distance and hence the per-hop SNR and SINR constant
for a certain 𝜌, 𝜂, 𝜆. Similarly, since the received SINR is
proportional to the received (desired) power 𝑃𝑟 over a distance
𝑑, we can see that

𝑃𝑟 = 𝜌𝑑−𝛼 = 𝜌

(
𝑀

𝑅

)𝛼

. (23)

Since 𝑃𝑟 must scale linearly with 𝛽 with the interference (𝜆)
held constant,

𝜌

(
𝑀

𝑅

)𝛼

= constant ⋅ 𝛽 ⇒ 𝑀 ∝ 𝛽
1
𝛼 . (24)

Less obviously, there is a trend in the expressions that
𝑀 ∝ √

𝜆, which also makes intuitive sense. As the density
increases, the interferers’ relative distance (statistically) de-
creases as

√
𝜆, requiring a shorter communication distance by

the same amount in order to maintain the same SINR. Hence,
𝑅/𝑀 ∝ 𝜆−2 or 𝑀 ∝ √

𝜆. This trend is more difficult to see
in the 𝛼 = 3 case for 𝐷 < 0 (19) but since

cos

(
1

3
arc cos𝑥

)
≈

√
3

2
+

(
1−

√
3

2

)
𝑥, (25)

one of the two terms has
√
𝜆, the other having a 𝜆−1 term.

As 𝜆 increases, the 𝜆−1 would decrease leaving 𝑀 ∝ √
𝜆.

In summary, from Theorem 1 and its corollaries, one can
immediately determine the optimum number of hops for any
plausible integer path loss exponent in terms of the salient
network parameters. Non-integer values could be accurately
estimated by standard interpolation techniques.
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B. Optimal success probability

Armed with the optimal number of hops 𝑀∗, it is straight-
forward to determine the optimum success probability per hop,
𝑝𝑠(𝑀

∗). Interestingly, it can be expressed in two ways, where
the first expression depends on the 𝜆 but not SNR (neither
noise nor interference power affect this expression), and for
the second expression, vice versa.

Lemma 2: The optimal success probability per hop 𝑝𝑠(𝑀
∗)

as a function of 𝑀∗ is

𝑝𝑠(𝑀
∗) = exp

{(
2

𝛼
− 1

)
𝜆𝛽

2
𝛼𝐾𝛼𝑅

2

(𝑀∗)2
− 1

𝛼

}
(26)

= exp

{(𝛼
2
− 1
) 𝛽

SNR(𝑀∗)𝛼
− 1

2

}
(27)

Proof: Since the optimal number of hops 𝑀∗ should
satisfy (16), we can write the following two expressions

𝑘1𝑀
−𝛼 =

1− 2𝑘2𝑀
−2

𝛼
, (28)

𝑘2𝑀
−2 =

1− 𝑘1𝑀
−𝛼

2
(29)

Plugging (28) into (8) gives (26), while plugging (29) into (8)
gives (27).

The two expressions for 𝑝𝑠(𝑀
∗) can be seen as the 𝑝𝑠

which optimally balances between interference (26) and noise
(27). Note additionally that the optimal number of average
retransmissions per hop is given by 𝑇𝑚(𝑀∗) = 1/𝑝𝑠(𝑀

∗),
which is the same for each hop.

C. Relation to general transport capacity: shared scaling law

The primary merit of the approach introduced in this paper
is the ability to compute end-to-end throughput results in
closed-form, even for non-asymptotically large networks. In
this section, we verify that our 𝐶ub results also obey the well-
known Θ(

√
𝑛) scaling law for transport capacity [1], [8], or

in the lexicon of this paper, Θ(
√
𝜆). This fact is formalized

in the following theorem.
Theorem 2: The random access transport capacity upper

bound is Θ(
√
𝜆) and can be stated formally as

lim
𝜆→∞

𝐶ub

√
𝜆

=
𝑒−

1
2 log(1 + 𝛽)√
2𝐾𝛼𝛽

1
𝛼

. (30)

Proof: First, it can be shown that 𝑀∗ = 𝑐0
√
𝜆 for some

constant 𝑐0. Rearranging (16) gives

1− 2𝜆𝛽
2
𝛼𝐾𝛼𝑅

2𝑀−2 =
𝛽𝛼

SNR𝑀𝛼
. (31)

For this equation to hold as 𝜆 → ∞, clearly 𝑀 → ∞, which
means that the quantity on the left of (31) must approach 0.
Therefore, 𝑀 =

√
𝜆 ⋅ √2𝐾𝛼𝛽

1
𝛼𝑅, i.e., 𝑐0 =

√
2𝐾𝛼𝛽

1
𝛼𝑅.

Second, from (27) it can be observed that 𝑝𝑠 → exp(− 1
2 )

as 𝜆 → ∞, whereas (26) can be used to verify the value for
𝑐0. Using (21) and the scaling results just derived gives

lim
𝜆→∞

𝐶ub = lim
𝜆→∞

𝜆𝑝𝑠(𝑀
∗) log(1 + 𝛽)𝑅

𝑀∗ (32)

=
𝜆 exp(− 1

2 ) log(1 + 𝛽)𝑅√
𝜆𝑐0

(33)

=

√
𝜆𝑒−

1
2 log(1 + 𝛽)√
2𝐾𝛼𝛽

1
𝛼

(34)

This theorem suggests that the random access transport
capacity even subject to the assumptions we have adopted in
this paper is order optimal: it follows the square-root scaling
law for source-destination transmissions in large wireless net-
works. That is, unscheduled, channel-blind transmissions can
achieve – given well-positioned relays – a transport capacity
that scales the same as optimally scheduled nearest neighbor
routing. This complements a similar conclusion for slotted
ALOHA in regular networks [12].

V. NUMERICAL RESULTS AND INSIGHTS

We set 𝑅 = 1, 𝛽 = 3, and as a default 𝛼 = 3, while
the other parameters are varied. Note that the units of 𝑅 and
𝜆 are arbitrary, but in a circle with 𝒮 and 𝒟 on opposite
sides separated by a distance 𝑅, there would be on average
𝜆𝜋(𝑅/2)2 interferers. Because only together do the values of
𝜆 and 𝑅 provide a description of the interference environment,
𝜆 ≫ 1 may be reasonable to model a dense network or a long
𝒮 − 𝒟 path when 𝑅 = 1.

Fig. 1 demonstrates that the random access transport ca-
pacity upper bound is tight for a small and large number
of allowed attempts 𝐴, but fairly loose in between. This is
perhaps to be expected since the techniques used to get the
bound presume 𝐴 → ∞. Figs 2 and 3 show the upper bound
from (10) vs. the actual random access transport capacity,
computed numerically from (6), for 𝐴 = 6 and 𝐴 = 12,
respectively, vs. the number of hops used, 𝑀 . As would be
expected by Fig. 1, the former is loose while the latter is fairly
tight. What is interesting is that in both cases the maximizing
𝑀 is very similar. In other words, even when the capacity
upper bound is loose, the value of 𝑀∗ that it predicts appears
to be quite accurate. This is confirmed in Fig. 4: the 𝑀∗ from
the upper bound and the actual 𝑀∗ are always within one
hop of each other and asymptotically the same. Interestingly,
the actual 𝑀∗ is not necessarily monotonic in 𝐴, as Fig. 4
demonstrates.

Now focusing on the upper bound, first consider the result
of Theorem 1, which gave the optimum number of hops 𝑀∗.
In Fig. 5 we observe two trends. First, low end-to-end SNRs
require more hops, and second, smaller path loss exponents
also require more hops (unless 𝜆 → 0 and SNR > 𝛽).
The first trend is fairly easy to understand, since more hops
must be taken in order to bring up the per hop SNR and
allow the target SINR to be met. The second trend appears at
first to be counter-intuitive because larger path loss exponents
cause faster attenuation of the desired signal, which would
seem to imply that more hops would be needed to maintain
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Fig. 1. The actual random access transport capacity 𝐶(𝐴) from (6) and its
upper bound 𝐶ub(𝐴) from (10) versus the allowed number of transmission
attempts 𝐴.
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Fig. 2. The “capacity” and its upper bound versus the number of hops 𝑀
for each 𝑀 = 1, . . . , 𝐴 when 𝐴 = 6. Note the maximizing 𝑀∗ for both
curves are close to one another.

the signal strength. Strangely enough, at high interference
density (and SNR) this is explained by the fact that higher
path loss exponents provide better isolation from the aggregate
interference, and so longer hops can be taken at the same target
SINR despite the increased attenuation of the desired signal.
At low interference density the mathematics can be grasped by
letting 𝜆 → 0 in (17) and (20) to give 𝑀∗(𝛼) = 𝛼

√
𝛼𝛽𝜂/𝜌 for

both 𝛼 = 3 and 𝛼 = 4. In summary, the fact that more hops are
required for smaller 𝛼 is due to interference limitations being
more important than SNR limitations in an ad hoc network.

In Fig. 6 we plot the random access transport capacity upper
bound where we do not optimize for 𝑀 , but rather see how
it varies with the number of hops. The optimum throughput
occurs at the integer value of 𝑀 closest to 𝑀∗, as expected.
The random access transport capacity is considerably higher
overall with larger 𝜆 (i.e., source density) and SNR, as would
be expected, and achieving that higher end-to-end throughput
requires significantly more hops in order to maintain a high
enough SINR on each hop. On the contrary, if a small number
of hops was used in this case, despite the high SNR, the end-
to-end throughput would be much lower than in the lightly
loaded (small 𝜆) case. Optimizing the number of hops – or at
least getting close to 𝑀∗ – is very important.

Turning our attention to Theorem 2, we observe in Fig. 7
that the scaling law of Θ(

√
𝜆) holds for large 𝜆. The scaling

law kicks in faster at high SNR and the throughput increases
with 𝛼 but 𝛼 does not affect the convergence speed. The
scaling law kicks in faster at high SNR because at low SNR
a higher contention density is required before the network
becomes interference limited, which is the cause of the square
root law. Put optimistically, this means at low SNR (or low
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Fig. 3. The random access transport capacity and its upper bound versus
the number of hops 𝑀 for each 𝑀 = 1, . . . , 𝐴 when 𝐴 = 12. Note the
maximizing 𝑀∗ = 5 for both curves in this case.
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Fig. 4. The optimal number of hops 𝑀∗(𝐴) that maximizes capacity 𝐶(𝐴)
and the upper bound 𝐶ub(𝐴) versus the allowed number of transmission
attempts 𝐴.

interference density) that the throughput actually increases
quite a bit more quickly with 𝜆 than the scaling law would
suggest. Until the network is saturated with interference, more
users can be added without having their throughput decrease.

VI. CONCLUSION

This paper introduced a metric called the random access
transport capacity, which is similar in spirit to the well-
known transport capacity metric but made more tractable (and
admittedly, less general) with three admittedly strong assump-
tions: (i) uncoordinated transmissions, allowing a Poisson
interference model, (ii) equally spaced relays on a line between
the source and destination, which allows identical statistics
for each hop, and (iii) an iid interference and signal sample
for each retransmission, which allows a geometric distribution
to model the number of transmissions required per hop. The
primary benefit of these assumptions is that they allow a
closed-form and reasonably tight upper bound to be derived
for the end-to-end throughput in terms of the key network
parameters, which is notoriously difficult to accomplish in
a general model. Alternatively, the approach in this paper
can be viewed as a nontrivial extension of the more recent
transmission capacity line of work – all of which is single-
hop, single transmission, and not end-to-end – to a multihop,
end-to-end setting where retransmissions are allowed.

APPENDIX

PROOF OF LEMMA 1

Fix a positive integer 𝐴 and 𝑝 ∈ [0, 1]. Define 𝑇 (𝑀) =
𝑇𝑀 ∼ Pascal(𝑀,𝑝) as the number of trials required for 𝑀
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successes, and 𝑆𝐴 ∼ Bin(𝐴, 𝑝) as the number of successes in
𝐴 trials. To prove the lemma it suffices to show 𝑓(𝑀) ≥ 0
for all 𝑀 = 0, . . . , 𝐴, where

𝑓(𝑀) := 𝑝𝔼[𝑇𝑀 ∧ 𝐴]−𝑀ℙ(𝑇𝑀 ≤ 𝐴). (35)

The inequality is trivially true for 𝑀 > 𝐴 and 𝑀 = 0, and
is straightforward to show for 𝑀 = 1 and 𝑀 = 𝐴. We first
prove some key relationships for binomial random variables,
for 𝑀 = 0, . . . , 𝐴− 1.

𝑝

𝐴∑
𝑛=𝑀

ℙ(𝑆𝑛 = 𝑀) = ℙ(𝑆𝐴+1 ≥ 𝑀 + 1) (36)

ℙ(𝑆𝐴 ≤ 𝑀 − 1) = (1− 𝑝)ℙ(𝑆𝐴−1 ≤ 𝑀 − 1) +

𝑝ℙ(𝑆𝐴−1 ≤ 𝑀 − 2) (37)

and

(1−𝑝)(𝑀+1)ℙ(𝑆𝐴 = 𝑀+1) = 𝑝(𝐴−𝑀)ℙ(𝑆𝐴 = 𝑀) (38)
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Fig. 7. Normalized random access transport capacity 𝐶ub/
√
𝜆 vs. contention

density 𝜆 when using 𝑀∗(𝜆) hops. The
√
𝜆 scaling law kicks in more quickly

at high SNR.

To see (36), use the fact that 𝑝ℙ(𝑆𝑛 = 𝑀) = ℙ(𝑇𝑀+1 =
𝑛+ 1) and {𝑇𝑀 ≤ 𝐴} = {𝑆𝐴 ≥ 𝑀} to show:

𝑝

𝐴∑
𝑛=𝑀

ℙ(𝑆𝑛 = 𝑀) =

𝐴∑
𝑛=𝑀

ℙ(𝑇𝑀+1 = 𝑛+ 1)

= ℙ(𝑇𝑀+1 ≤ 𝐴+ 1)

= ℙ(𝑆𝐴+1 ≥ 𝑀 + 1). (39)

To see (37) simply observe the equality of the events, where
𝑋𝐴 indicates success on hop 𝐴:

{𝑆𝐴 ≤ 𝑀 − 1} =

{(𝑆𝐴−1 ≤ 𝑀−1)∩(𝑋𝐴 = 0)∪(𝑆𝐴−1 ≤ 𝑀−2)∩(𝑋𝐴 = 1)}.
(40)

To see (38) use the “mixed product” identity: (𝑀+1)
(

𝐴
𝑀+1

)
=

(𝐴 − 𝑀)
(
𝐴
𝑀

)
. That is, with 𝐷 as the difference of the two

sides in (38):

𝐷 ≡ (1− 𝑝)(𝑀 + 1)ℙ(𝑆𝐴 = 𝑀 + 1)−
𝑝(𝐴−𝑀)ℙ(𝑆𝐴 = 𝑀)

= (1− 𝑝)(𝑀 + 1)

(
𝐴

𝑀 + 1

)
𝑝𝑀+1(1− 𝑝)𝐴−𝑀−1 −

𝑝(𝐴−𝑀)

(
𝐴

𝑀

)
𝑝𝑀 (1− 𝑝)𝐴−𝑀

= 𝑝𝑀+1(1 − 𝑝)𝐴−𝑀
(
(𝑀 + 1)

(
𝐴

𝑀 + 1

)
−

(𝐴−𝑀)

(
𝐴

𝑀

))
= 0 (41)

Using (36) we have the following development for 𝑓(𝑀):

𝑓(𝑀) ≡ 𝑝𝔼[𝑇𝑀 ∧ 𝐴]−𝑀ℙ(𝑇𝑀 ≤ 𝐴)

= 𝑝

(
𝐴∑

𝑛=𝑀

𝑛ℙ(𝑇𝑀 = 𝑛) +𝐴ℙ(𝑇𝑀 > 𝐴)

)
−

𝑀ℙ(𝑇𝑀 ≤ 𝐴)

= 𝑝2
𝐴∑

𝑛=𝑀

𝑛ℙ(𝑆𝑛−1 = 𝑀 − 1) +
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𝑝𝐴(1− ℙ(𝑇𝑀 ≤ 𝐴)) −𝑀ℙ(𝑇𝑀 ≤ 𝐴)

= 𝑝𝐴+𝑀𝑝

𝐴∑
𝑛=𝑀

ℙ(𝑆𝑛 = 𝑀)−

(𝑝𝐴+𝑀)ℙ(𝑇𝑀 ≤ 𝐴)

= 𝑝𝐴+𝑀ℙ(𝑆𝐴+1 ≥ 𝑀 + 1)−
(𝑝𝐴+𝑀)ℙ(𝑆𝐴 ≥ 𝑀)

= (𝑝𝐴+𝑀)ℙ(𝑆𝐴 ≤ 𝑀 − 1)−
𝑀ℙ(𝑆𝐴+1 ≤ 𝑀) (42)

We will prove 𝑓(𝑀) ≥ 0 by showing that Δ(𝑀) ≡ 𝑓(𝑀 +
1) − 𝑓(𝑀) ≥ 0 for all 𝑀 = 0, . . . , 𝐴 − 1. Combined with
𝑓(0) = 0, this immediately yields that 𝑓(𝑀) ≥ 0 for all
𝑀 = 0, . . . , 𝐴, establishing the upper bound. Consider the
difference Δ(𝑀) ≡ 𝑓(𝑀 +1)− 𝑓(𝑀) and apply (37) twice:

Δ(𝑀) = [(𝑝𝐴+𝑀 + 1)ℙ(𝑆𝐴 ≤ 𝑀)−
(𝑀 + 1)ℙ(𝑆𝐴+1 ≤ 𝑀 + 1)]−
[(𝑝𝐴+𝑀)ℙ(𝑆𝐴 ≤ 𝑀 − 1)−
𝑀ℙ(𝑆𝐴+1 ≤ 𝑀)]

=
[
(𝑝𝐴+𝑀 + 1)ℙ(𝑆𝐴 ≤ 𝑀)−
(𝑀 + 1)

(
(1− 𝑝)ℙ(𝑆𝐴 ≤ 𝑀 + 1) +

𝑝ℙ(𝑆𝐴 ≤ 𝑀)
)]−[

(𝑝𝐴+𝑀)ℙ(𝑆𝐴 ≤ 𝑀 − 1)−
𝑀
(
(1− 𝑝)ℙ(𝑆𝐴 ≤ 𝑀) + 𝑝ℙ(𝑆𝐴 ≤ 𝑀 − 1)

)]
= ((1− 𝑝)(2𝑀 + 1) + 𝑝𝐴)ℙ(𝑆𝐴 ≤ 𝑀)−

((1− 𝑝)𝑀 + 𝑝𝐴)ℙ(𝑆𝐴 ≤ 𝑀 − 1)−
((1− 𝑝)(𝑀 + 1))ℙ(𝑆𝐴 ≤ 𝑀 + 1) (43)

Now use the easy facts that:

ℙ(𝑆𝐴 ≤ 𝑀 − 1) = ℙ(𝑆𝐴 ≤ 𝑀)− ℙ(𝑆𝐴 = 𝑀)

ℙ(𝑆𝐴 ≤ 𝑀 + 1) = ℙ(𝑆𝐴 ≤ 𝑀) + ℙ(𝑆𝐴 = 𝑀 + 1).(44)

Substitution of (44) gives:

Δ(𝑀) = ((1− 𝑝)(2𝑀 + 1) + 𝑝𝐴)ℙ(𝑆𝐴 ≤ 𝑀)−
((1− 𝑝)𝑀 + 𝑝𝐴)

[ℙ(𝑆𝐴 ≤ 𝑀)− ℙ(𝑆𝐴 = 𝑀)]−
((1− 𝑝)(𝑀 + 1))

[ℙ(𝑆𝐴 ≤ 𝑀) + ℙ(𝑆𝐴 = 𝑀 + 1)]

= ((1− 𝑝)𝑀 + 𝑝𝐴)ℙ(𝑆𝐴 = 𝑀)−
(1− 𝑝)(𝑀 + 1)ℙ(𝑆𝐴 = 𝑀 + 1) (45)

Apply (38) to the previous equation

Δ(𝑀) = ((1 − 𝑝)𝑀 + 𝑝𝐴)ℙ(𝑆𝐴 = 𝑀)−
(1− 𝑝)(𝑀 + 1)ℙ(𝑆𝐴 = 𝑀 + 1)

= ((1 − 𝑝)𝑀 + 𝑝𝐴)ℙ(𝑆𝐴 = 𝑀)−
(1− 𝑝)(𝑀 + 1)

𝑝(𝐴−𝑀)

(1− 𝑝)(𝑀 + 1)
ℙ(𝑆𝐴 = 𝑀)

= ℙ(𝑆𝐴 = 𝑀)(((1 − 𝑝)𝑀 + 𝑝𝐴)− 𝑝(𝐴−𝑀))

= ℙ(𝑆𝐴 = 𝑀)(𝑀 − 𝑝𝑀 + 𝑝𝐴− 𝑝𝐴+ 𝑝𝑀)

= 𝑀ℙ(𝑆𝐴 = 𝑀) ≥ 0 (46)

And the proof is completed.

PROOF OF COROLLARY 2

For the 𝐷 ≥ 0 case, a necessary condition on 𝜆 and the
transmit power can be formulated by inserting 𝑘1 = 𝛽𝜂

𝜌𝑅−𝛼 =
𝛽

SNR and 𝑘2 = 𝜆𝛽2/𝛼𝐾𝛼𝑅
2 to get

𝜆 ≤
(
𝜂

𝜌

) 2
3
(
3

2

) 5
3 1

𝐾3
⇒ 𝜌

𝜂
≤
√(

3

2

)5
1

𝐾3
3𝜆

3
. (47)

The roots of such a 3rd order polynomial consist of 1 real and
2 complex roots. The real root is given by

𝑀 =

(
3𝑘1
2

+
√
𝐷

) 1
3

+

(
3𝑘1
2

−
√
𝐷

) 1
3

(48)

which results in (17).
When 𝐷 < 0 there exist three distinct real roots. The nec-

essary conditions (47) are simply the converse of (47), but the
polynomial solution requires some trigonometric calculations.
Define

𝜁 =
2

3

√
2𝑘32
3

, cos𝜙 =
3𝑘1
2𝜁

⇒ 𝜙 = arc cos

(
3𝑘1
2𝜁

)
, (49)

then the three possible solutions are

𝑦1 = 2𝜁
1
3 cos

(
𝜙

3

)
(50)

𝑦2 = 2𝜁
1
3 cos

(
𝜙+

2𝜋

3

)
(51)

𝑦3 = 2𝜁
1
3 cos

(
𝜙+

4𝜋

3

)
. (52)

For these three real roots, Vieta’s Theorem states that for a
3rd order polynomial 𝑎3𝑦3 + 𝑎2𝑦

2 + 𝑎1𝑦 + 𝑎0 that the roots
will satisfy 𝑦1𝑦2𝑦3 = −𝑎0

𝑎3
, which gives from (16) that

𝑦1𝑦2𝑦3 = 3𝑘1 ⇒ 𝑦1𝑦2𝑦3 > 0. (53)

Thus the roots must either be all positive or comprise one
positive and two negative. They cannot all be positive since
𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦3 = 0, also a consequence of Vieta’s
Theorem. Hence, there is a single positive root, which is 𝑦1,
and by expanding 𝜁 and 𝜙 can be expressed as 𝑀∗ = 𝑦1,
given in (19).

PROOF OF COROLLARY 3

The polynomial for 𝛼 = 4 becomes

𝑀4 − 2𝑘2𝑀
2 − 4𝑘1 = 0. (54)

Using a dummy variable for 𝑀2, this can be easily solved
using the quadratic formula to give

𝑀∗(4) = ±𝛽
1
4𝑅

√√√⎷𝜆
𝜋2

2
±
√
𝜆2

𝜋4

4
+

4𝜂

𝜌
, (55)

of which only the solution given in (20) is both positive and
real.
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