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Abstract

Consider a cognitive radio network with two types of users: primary users (PUs) and cognitive users

(CUs), whose locations follow two independent Poisson point processes. The cognitive users follow the

policy that a cognitive transmitter is active only when it is outside the primary user exclusion regions.

We found that under this setup the active cognitive users form a point process called the Poisson hole

process. Due to the interaction between the primary users and the cognitive users through exclusion

regions, an exact calculation of the interference and the outage probability seems unfeasible. Instead,

two different approaches are taken to tackle this problem. First, bounds for the interference (in the form

of Laplace transforms) and the outage probability are derived, and second, it is shown how to use a

Poisson cluster process to model the interference in this kind of network. The bipolar network model

with different exclusion region settings is analyzed.

Keywords- Cognitive Radio, Cognitive Network, Interference Modeling, Poisson Point Process,

Poisson Cluster Process, Stochastic Geometry.

I. INTRODUCTION

The inefficiency in the spectrum usage of current wireless systems has led to significant

research activities in cognitive radio. One of the ideas in cognitive radio is that a cognitive

(secondary) user is allowed to share the spectrum with primary users as long as the interference is

below a threshold (the underlay type of cognitive network) [1]. In wireless networks, a cognitive

user can take advantage of either the time (when a primary user is not transmitting), the frequency

(when a primary user is transmitting at a different frequency band), or the space (when a primary

user is far away). The latter is a form of spatial reuse, thus the geometry plays a key role in

this type of cognitive network. A cognitive user may transmit when the neighboring primary

users are idle, but the signals of several secondary users could still cause harmful interference at
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primary users further away. As a result, there is a need to characterize the aggregate interference

in order to satisfy the interference temperature metric [2].

This paper considers a cognitive radio network with two types of users: primary users (PUs)

and cognitive users (CUs). Primary users are licensed users while cognitive users are allowed

to transmit only if the performance of the primary network is not harmfully affected. This is

the so-called underlay type of cognitive network. The cognitive users employ the following

“cognition” in order to control their interference: a cognitive user may transmit only when it

is outside the primary exclusion regions. For this setup, the primary metrics of interest are the

aggregate interference and the outage probabilities at the primary and secondary users.

In this paper, we assume that the locations of PUs and CUs follow two independent Poisson

point processes. The advantages and validity of using spatial Poisson process for modeling the

locations of the wireless devices have been stated in many articles1. Quite often the user locations

are time-varying, and we would like to determine the average performance over a large population

of users for a class of random networks [3]. Stochastic geometry, a field focusing on the study of

random spatial patterns, provides an elegant way of analyzing large networks. The spatial points,

representing the locations of users, are constructed according to a spatial point process model.

Without any prior knowledge, the user locations are often assumed independent and completely

random. The spatial Poisson process is thus a natural (and a popular) choice in such situations

because, given that a user is inside a region B, the PDF of its location is conditionally uniform

over B [4]. In addition, the Poisson process is a fundamental point process that is easy to handle

analytically, and it provides bounds for the performance of more general network models. The

performance in clustered networks is lower than for the PPP [5], whereas the performance in

more regular networks is higher [6], [7]. The Poisson bipolar network model was considered in

[8], in which further justification of using the PPP model is given.

This stochastic geometry model also applies to multi-channel networks. If multiple channels

are available, our model captures the situation in a single channel. Moreover, stochastic geometry

permits spatial averaging and thus inherently considers all possible network realizations, weighed

by their likelihood of occurring. As a result, time, space, and frequency sharing in the cognitive

1See the IEEE Journal of Selected Areas on Communications Special Issue: Stochastic Geometry and Random Graphs for

Wireless Networks (September 2009) and the references therein.
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network are all included in the stochastic geometry model presented in this paper.

A. Contributions

Due to the interaction between the primary and the cognitive users, an exact calculation of

the interference and outage probability seems unfeasible. Instead, two different approaches are

taken in this paper: the first approach is to derive bounds for the outage probability, and the

second approach is to approximate the point process formed by the active cognitive users using

Poisson cluster processes. From the first approach, the interference and outage for the bipolar

Poisson cognitive network model are analyzed and bounded. Variations of the model are also

discussed. In the second approach, it will be shown that under the exclusion region setup, the

cognitive users form a Poisson hole process [6], which exhibits properties similar to a Poisson

cluster process.

Our main contributions are the following: (1) This paper analyzes all four types of aggre-

gate interference between primary and cognitive users, including the auto-interference between

primary users among themselves and secondary users among themselves as well as the cross-

interference from secondary to primary users and vice versa, in spectrum sensing cognitive

networks, considering simultaneously the Rayleigh fading, the Poisson point process (PPP)

model, and the exclusion regions. (2) A novel approach is proposed to estimate the interference

between cognitive users, namely, approximations based on the Poisson cluster process.

B. Related Work

Point process theory has been successfully applied to wireless network analysis in the last

two decades [9]. Recently, with the prosperity of research on cognitive radio, point process

models find applications to cognitive networks. Pinto et al. considered a stochastic geometry-

based mathematical model for coexistence in networks composed of both narrowband and ultra-

wideband (UWB) wireless nodes [4]. In the paper by Huang et al. [10], the capacity trade-off

between the coexisting cellular uplink and mobile ad hoc networks under spectrum underlay

and spectrum overlay was analyzed based on the transmission capacity of a network with

Poisson interferers. Ren et al. studied power control in cognitive networks and qualitatively

characterized the impacts of the transmission power of secondary users on the occurrence of
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spectrum opportunities and the reliability of opportunity detection [11]. Riihijarvi and Mahonen

utilized spatial statistics to improve the performance of cognitive radio networks [12].

Although there is already a vast body of research on cognitive networks, very few papers

have focused on the aggregate interference caused by multiple secondary users, together with

the interference that the primary users cause among themselves in the Poisson point process setup.

Three papers are closest to our work. Hong et al. [13] and Ghasemi and Sousa [14] modeled

the aggregate interference from the cognitive users outside the primary exclusion regions in

fading channel, but both papers only considered a single primary receiver (instead of multiple

primary transmitters and receivers). Yin et al. [15] derived the maximum primary and secondary

transmitter densities given outage constraints for the overlaid network with multiple primary and

cognitive users, but they considered non-fading channel and no exclusion regions.

C. Mathematical Preliminaries

Here we give a brief overview of some terminology and mathematical tools for stochastic

geometry. Readers are referred to [9], [16]–[18] for further details.

Definition 1. The Poisson point process with uniform intensity λ > 0 is a point process in R2

such that [16]

1) For every bounded closed set B, the counting measure (number of points) N(B) has a

Poisson distribution with mean λ · |B|, where |B| denotes the area of B.

2) If B1, ...,Bm are disjoint regions, then N(B1), ...,N(Bm) are independent.

This definition leads to the following property: given N(B) = n, then the n points are inde-

pendently, uniformly distributed in B. This point process is thus a good model when the user

locations are independent and completely random.

Definition 2. A hard-core point process is a point process in which the points are forbidden to

lie closer than a certain minimum distance [18].

Definition 3. A Poisson cluster process is formed by taking a Poisson process Φ of parent points

and replacing each point x ∈ Φ by a random cluster Zx which is a finite point process. The

superposition of all clusters yields the Poisson cluster process Y =
⋃
x∈Φ Zx [16].
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Definition 4. The Laplace transform L of X is defined as LX (s) = E [exp (−sX)] [17].

In the case of Rayleigh fading, the received signal power S is exponentially distributed. Let the

transmit power be µ, the transmission distance r, and the path loss r−α with a path loss exponent

α. Then E [S] = µr−α. Denoting the interference by I and ignoring the noise, the success

probability ps (θ) is a function of the threshold θ as ps (θ) = P
[
S
I
> θ
]

= E
[
exp

(
− θrα

µ
I
)]

.

Since E [exp (−sI)] is the Laplace transform of the interference, the success probability can be

obtained by setting s = θµ−1rα. As a result, the Laplace transform characterizes the interference

and the success probability in Rayleigh fading. We will frequently use the property that the

Laplace transform of the sum of independent random variables is the product of the individual

Laplace transforms. See [17] for further details on using the Laplace transform.

Definition 5. Let v (x) : R2 → [0,∞) be measurable. The probability generating functional

(PGFL) of the point process Φ is defined as G [v] = E
[∏

x∈Φ v (x)
]

[17].

For example, it can be found that for PPP, G [v] = exp
[
−
´
R2 (1− v(x))λ(dx)

]
[17].

D. Organization

Section II describes the network model. Section III derives bounds of interference and outage

probability for the bipolar network setup. Section IV then generalizes the results to variations of

the bipolar model. Section V introduces the Poisson cluster process as an approximation model

for the Poisson hole process. Finally, the paper is concluded in Section VI.

II. NETWORK MODEL

Let us consider an underlay type of cognitive network with all the primary and cognitive

users operating at the same frequency band. Assume that the cognitive users can perfectly detect

the primary receivers2, so that the cognitive users have full knowledge of the locations of the

primary users. The cognitive users also know the transmission parameters of the primary users

in order to set up the exclusion regions (described later). Since the cognitive users will avoid

2How to detect the primary users is outside the scope of this paper, and many schemes have been proposed. If the primary

receivers are passive, detecting the power leakage of local oscillator is a possible way. See [19] for a survey.
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the exclusion regions to limit their interference, the primary users do not need any information

about the cognitive users.

The bipolar network model is considered in this paper. In this model, transmitters are assumed

to have receivers at a fixed distance. This model provides an insight into how the network

performance depends on the link distance. The results obtained thus can also be interpreted as

the performance of networks with random link distances conditioned on the link distance having

a certain value.

A. Bipolar Model

The bipolar (BP) model is shown in Fig. 1(a). The locations of the primary transmitters

follow a homogeneous Poisson point process (PPP) Φp = {x1, x2, . . .} ⊂ R2 of density λp, and

the locations of the potential cognitive transmitters follow another, independent, homogeneous

Poisson point process Φc = {y1, y2, . . .} ⊂ R2 of density λc. Assume that all the primary

transmitters use the same transmission power µp, and all the primary receivers are at a distance

rp from the corresponding primary transmitters in a random direction. Similarly, all the cognitive

transmitters use the same transmission power µc, and all the cognitive receivers are at a distance

rc from the corresponding cognitive transmitters. The locations of the primary and the cognitive

receivers are also PPPs with density λp and λc, respectively. rc is assumed to be small relative to

the mean nearest-neighbor distance of Φc (rc � λ
− 1

2
c ) since the transmission power and the range

of the cognitive users are usually small. The activation of the cognitive users depends on the

exclusion region setup of the primary users. The exclusion regions are circular regions with radius

D designed to guarantee that cognitive transmitters will, on average, not generate an aggregate

interference resulting in the outage of primary users, which occurs when the instantaneous signal-

to-interference ratio (SIR)3 is lower than θp. Similarly, the SIR threshold for the cognitive users

is denoted as θc.

The radius D of the exclusion region in the bipolar model is chosen as

D = rp

[
θp

(
βµc
µp

)] 1
α

, (1)

3Throughout the paper, the noise is neglected since interference is what causes the interaction between primary and cognitive

users. Hence the focus is on the SIR instead of the signal-to-interference-and-noise ratio (SINR).
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where α is the path loss exponent and β is a design factor such that β cognitive transmitters

will, on average, not generate an aggregate interference resulting in an SIR below the threshold.

The expression for D reflects the fact that in order to protect the primary users, the exclusion

region must grow along with the increase in the transmission power of the cognitive users, the

SIR threshold of the primary network, and the primary user transmission distance. On the other

hand, the exclusion region shrinks when the transmission power of the primary user increases

such that more cognitive users can be active. Besides, the path loss exponent must also be taken

into account. Let us assume that D is larger than rp + rc, ensuring that the primary transmitters

are inside the exclusion regions such that a cognitive receiver and a primary transmitter cannot

be arbitrarily close.

B. Interference Model

Define I(y) =
∑

x∈Φ µxhx`(y− x) as the total interference at y resulting from the interferers

positioned at the points of the process Φ, where `(x) = ‖x‖−α is the large-scale path loss

model, and assume the power fading coefficients hx are i.i.d. exponential (Rayleigh fading)

with E [h] = 1. µx is either µp or µc (thus a fixed value), depending on which interference is

considered.

The interference to the primary users and the interference to the cognitive users are consid-

ered separately. For each case, the interference is comprised of contributions by both primary

transmitters and cognitive transmitters, so there are four types of interference: the interference

from the primary transmitters to the primary receivers Ipp, the interference from the primary

transmitters to the cognitive receivers Ipc, the interference from the cognitive transmitters to

the primary receivers Icp, and the interference from the cognitive transmitters to the cognitive

receivers Icc. To calculate the interference to the primary users, we condition on having a primary

receiver at the origin, the typical receiver, which yields the Palm distribution for the primary

transmitters. By Slivnyak’s theorem [18], this conditional distribution is the same as the original

one for the rest of the primary network. For the secondary network, however, conditioning on a

typical cognitive receiver generally changes the distance distribution since the activation of the

cognitive transmitters is determined by the locations of the primary users. This is the reason

why only bounds can be obtained for any interference involving the cognitive users.
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III. ANALYSIS OF THE BIPOLAR MODEL

In this section, the bipolar model with the exclusion regions around the primary receivers is

discussed4. Let us define δ , 2/α. The following two lemmas are used as building blocks for

the analysis of the bipolar model.

Lemma 1. ((3.21) in [17]) Let I(y) =
∑

x∈Φ ηhx ‖x− y‖
−α where Φ is a PPP with density ν

and hx’s are i.i.d. exponential with E [h] = 1, η is the transmission power, and

L0(ν, η, s) , exp

{
−ν π2δ

sin(πδ)
ηδsδ

}
. (2)

Then the Laplace transform of the interference I is L0(ν, η, s).

Lemma 2. ((3.46) in [17]) Let

L1(ν, η, ρ, s) , exp

{
−νπ

(
ηδsδEh

[
hδγ

(
1− δ, sηhρ−α

)]
− sηρ2−α

1 + sηρ−α

)}
, (3)

where γ(a, z) =
´ z

0
exp(−t)ta−1dt is the lower incomplete gamma function. Following the setup

in Lemma 1, except that now the interference from the users within the distance ρ is not included,

the Laplace transform of the interference I is L1(ν, η, ρ, s).

A. Interference to Primary Users

The interference to a primary user is composed of two parts: the interference to a primary

receiver from other primary transmitters, denoted as Ipp, and the interference to a primary receiver

from the cognitive transmitters, denoted as Icp.

Since the fading is Rayleigh and the primary transmitters are distributed as a PPP, the Laplace

transform of Ipp, denoted as LIpp(s), is obtained from Lemma 1 with density λp and transmission

power µp, i.e.,

LIpp(s) = L0(λp, µp, s). (4)

The interference to a primary receiver from the cognitive transmitters, denoted as Icp, is hard

to calculate exactly. Instead, a bound can be derived as follows. Let Φa and Φa′ be the partition

4In Section IV, the case with exclusion regions around the primary transmitters will be considered.
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of Φc into active and inactive nodes depending on whether the cognitive transmitters are outside

or inside the exclusion regions. Let ΦD include all the points in Φc except the points that are

within the exclusion region of the typical primary receiver. Since Φa ⊂ ΦD, the interference Icp

caused by the active cognitive transmitters is stochastically dominated5 by the interference Îcp

caused by ΦD (denoted as Icp
s
< Îcp). Since the cognitive transmitters are at least at distance

D, the Laplace transform of Îcp, denoted as LÎcp(s), is given by Lemma 2 with density λc and

transmission power µc, i.e.,

LÎcp(s) = L1(λc, µc, D, s). (5)

Now we are ready to bound the outage probability of the primary users.

Theorem 1. The outage probability of the primary users εp is upper-bounded as

εp < 1− exp

{
−θδpr2

p

[
λp

π2δ

sin(πδ)
+ λcπ

(
µc
µp

)δ (
Eh
[
hδγ

(
1− δ, h

β

)]
− βδ

1 + β

)]}
. (6)

Proof: With Rayleigh fading, the transmission success probability of the primary users is the

Laplace transform evaluated at s = θpµ
−1
p rαp . Since the interference from the primary transmitters

and the interference from the cognitive transmitters are independent, the outage probability εp

is upper-bounded by ε̂p = 1− LIpp
(
θpµ

−1
p rαp

)
· LÎcp

(
θpµ

−1
p rαp

)
.

When α = 4 (δ = 1
2
) and β = 1, the upper bound for the outage probability of the primary

users εp can be simplified to

εp < 1− exp

{
−
√
θpr

2
p

(
λp
π2

2
+ λc

π2

4

√
µc
µp

)}
, (7)

which follows from Eh[hδγ (1− δ, vh)] = π
2
− arctan

(
1√
v

)
+
√
v

1+v
.

Note that the point process of active cognitive users Φa is not a PPP but a Poisson hole process

(see Def. 6 and Prop. 1 in Section V). Nonetheless, independent thinning of the cognitive users

outside the exclusion regions with probability exp(−λpπD2) yields a good approximation on

Icp, since the higher-order statistics of the point process, which govern the interaction between

5A random variable A stochastically dominates a random variable B if P [A > x] ≥ P [B > x] for all x, or equivalently,

FA(x) ≤ FB(x) for cumulative distribution functions FA(x) and FB(x).
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nodes, become less relevant if D is not too small. Thus we obtain the approximation Ĩcp with

Laplace transform

LĨcp(s) = L1

(
λc exp(−λpπD2), µc, D, s

)
. (8)

An approximation to the outage probability of the primary users εp is, therefore, given by

εp ≈ 1− exp

{
−θδpr2

p

[
λp

π2δ

sin(πδ)
+ λcπ exp

(
−λpπr2

pθ
δ
p

(
βµc
µp

)δ)

×
(
µc
µp

)δ (
Eh
[
hδγ

(
1− δ, h

β

)]
− βδ

1 + β

)]}
. (9)

When α = 4 and β = 1, the above approximation can be simplified to

εp ≈ 1− exp

{
−
√
θpr

2
p

(
λp
π2

2
+ λc

π2

4

√
µc
µp

exp

[
−λpπr2

p

√
θp

(
µc
µp

)])}
. (10)

B. Interference to Cognitive Users

Similar to the case of estimating interference to the primary users, the interference to a

cognitive user is composed of two parts: the interference to a cognitive receiver from the primary

transmitters, denoted as Ipc, and the interference to a cognitive receiver from other cognitive

transmitters, denoted as Icc.

First let us consider the interference from the primary transmitters. Since a cognitive transmitter

is at least at distance D from a primary receiver, and the distance between a primary transmitter-

receiver pair is rp, the distance between a primary transmitter and a cognitive transmitter is at

least D − rp. Furthermore, the distance between a cognitive transmitter and its corresponding

cognitive receiver is rc, so the distance to the nearest primary transmitter for a cognitive receiver

is at least D̄ = D − rp − rc (D̄ > 0 since D > rp + rc as described in Section II). Denote

by Îpc the random variable whose Laplace transform is L1(λp, µp, D̄, s). Since the location of

the transmitter is not at the center of the exclusion region, the interference Ipc to a cognitive

receiver from the primary transmitters is stochastically dominated by the random variable Îpc

with Laplace transform

January 18, 2011 DRAFT



11

LÎpc(s) = L1(λp, µp, D̄, s). (11)

Now let us consider the interference from the other cognitive transmitters. Let Îcc be the

interference generated by the process Φc. Since Φa ⊂ Φc, Icc is stochastically dominated by Îcc.

Since Φc is a PPP, the Laplace transform of Îcc, denoted as LÎcc(s), is

LÎcc(s) = L0(λc, µc, s), (12)

which follows from Lemma 1.

The following theorem gives a upper bound for the outage probability of the cognitive users.

Theorem 2. Let ξ = θcµp
µc

[(
θpβµc
µp

) 1
α
(
rp
rc

)
− rp

rc
− 1

]−α
. The outage probability of the cognitive

users εc is upper-bounded as

εc < 1−exp

{
−λpπ

θδc (µpµc
)δ

r2
cEh

[
hδγ (1− δ, ξh)

]
− r2

p

[(
θpβµc
µp

) 1
α

− rc
rp
− 1

]2(
ξ

1 + ξ

)
− λc

π2δ

sin(πδ)
θδcr

2
c

}
. (13)

Proof: The success transmission probability of the cognitive users is the Laplace transform

evaluated at θcµ−1
c rαc . Since the interference from the primary transmitters and the interference

from the cognitive transmitters are independent, the outage probability εc is upper-bounded by

ε̂c = 1− LÎpc (θcµ
−1
c rαc ) · LÎcc (θcµ

−1
c rαc ).

For α = 4, the upper bound for the outage probability of the primary users εc can be simplified

to

εc < 1− exp

{
−λpπ

[√
θc

(
µp
µc

)
r2
c

(
π

2
− arctan

(
1√
ξ

)
+

√
ξ

ξ + 1

)

−r2
p

[(
θpβµc
µp

) 1
4

− rc
rp
− 1

]2(
ξ

1 + ξ

)− λcπ2

2

√
θcr

2
c

 . (14)
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C. Numerical Examples

Fig. 2 shows the simulation results and the upper bounds of the outage probabilities of the

primary and cognitive users for different θp and θc. It also shows the approximation of the

primary user outage probability and the simulation results for the primary user-only network.

The simulation parameters are: λp = 0.1, λc = 1, µp = 1, µc = 0.2, rp = 0.5, rc = 0.1, β = 81,

and α = 4. D is determined using (1). We observe that for large θp the primary user outage is

dominated by the interference from the primary users, since a large θp implies a large exclusion

region radius D, which means that few secondary users are active. Fig. 2 also shows that the

approximation of the location distribution of the cognitive users outside the exclusion regions

with a PPP of the same intensity using (9) is very good.

D. Asymptotic Regions of εp and εc

Besides of showing the tightness of the bounds, it is interesting to explore some asymptotic

regions of εp and εc. First we check the invariant properties. If λp and λc are scaled by some

factor c and both rp and rc by c−
1
2 , the same result will be obtained. Thus, as a function of the

ratio λc/λp, the results should look the same as as a function of
√
rp/rc. The result will also be

the same if both µp and µc are scaled by c. However, εp and εc are not only a function of the

ratio λc/λp, but also a function of the densities λp and λc themselves. Fig. 3 shows εp and εc

as a function of λc/λp under different λp using (6) and (13). These two bounds also imply that

(a) εp becomes smaller with the decrease in rp, λp, λc, and µc and the increase in µp, and (b) εc

becomes smaller with the decrease in rc, λp, λc, and µp and the increase in rp and µc. Thus, it is

easy to obtain the following results: (a) If rp →∞ (then D →∞), there will be no interference

from CU. Under fixed µp, however, µpr−αp → 0. Therefore, εp → 1. For the same reason, if

rc → ∞, then εc → 1 since µc is fixed. (b) If rp → 0, then εp → 0; similarly, if rc → 0, then

εc → 0. (c) If λp → ∞ or λc → ∞, then εp → 1 and εc → 1 since the total interference sums

to infinity. (d) Obviously, if θp → 0, then εp → 0; if θp → ∞, then εp → 1. The same results

apply to θc.

IV. VARIATIONS ON THE BIPOLAR MODEL

In Section III, bounds of the outage probabilities for the exclusion regions around the primary

receivers for the bipolar model have been derived. In this section, some variations, i.e., exclusion
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regions around the primary transmitters, exclusion regions around both the transmitters and the

receivers, and the case when primary users employ a CSMA-type MAC, are considered.

A. Exclusion Regions around Primary Transmitters

Detecting primary receivers is very difficult if the receivers are passive. In this case, setting the

exclusion regions according to the primary transmitters is a reasonable and practical compromise

[20], [21]. Under this setup, the interference Ipp,PT and the interference Icc,PT (the subscript “PT”

denotes the case of exclusion regions around the primary transmitters) remain the same as Ipp

and Icc, respectively, in the primary receiver exclusion region case. This is because the exclusion

regions do not apply to the primary users, so the interference between the primary users is not

affected by the change of exclusion regions. The interference between the cognitive users is

the same since no matter whether the exclusion regions are around the primary transmitters or

around the primary receivers, the fraction of the cognitive users that are active is the same. For

the interference Icp,PT to a primary receiver from the cognitive transmitters and the interference

Ipc,PT to a cognitive receiver from the primary transmitters, bounds can be obtained as follows.

The cognitive transmitters must be at distance at least D from the primary transmitters, so

the distance between a primary receiver and a cognitive transmitter is at least D − rp and the

distance between a primary transmitter and a cognitive receiver is at least D− rc. Plugging this

into (3), it is easy to find that Icp,PT is stochastically dominated by the random variable Îcp,PT

with Laplace transform

LÎcp,PT
(s) = L1(λc, µc, D − rp, s), (15)

and Ipc,PT is stochastically dominated by the random variable Îpc,PT with Laplace transform

LÎpc,PT
(s) = L1(λp, µp, D − rc, s). (16)

The outage probability of the primary users εp,PT and the outage probability of the cognitive

users εc,PT when the exclusion regions are around the primary transmitters are upper-bounded

respectively by

ε̂p,PT = 1− LIpp
(
θpµ

−1
p rαp

)
· LÎcp,PT

(
θpµ

−1
p rαp

)
(17)

= 1− L0

(
λp, µp, θpµ

−1
p rαp

)
· L1

(
λc, µc, D − rp, θpµ−1

p rαp
)
, (18)
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and

ε̂c,PT = 1− LÎpc,PT

(
θcµ
−1
c rαc

)
· LÎcc

(
θcµ
−1
c rαc

)
(19)

= 1− L1

(
λp, µp, D − rc, θcµ−1

c rαc
)
· L0

(
λc, µc, θcµ

−1
c rαc

)
. (20)

B. Exclusion Regions around both Primary Transmitters and Receivers

In practical scenarios, traffic is often bi-directional due to acknowledgments (ACK). The roles

of transmitters and receivers change frequently, and so do the exclusion regions. However, a

cognitive user might not be able to react in such a short time, and the consequence of failing

to do so is significant. One possible solution is to set the exclusion regions based on both

the primary transmitters and the receivers. In this case, the density of active cognitive users is

lower compared to the single-exclusion region setup. Hence, the interference from the cognitive

transmitters (to either primary or other cognitive receivers) is stochastically dominated by the

interference in the single-exclusion region setup, which is bounded according to (5) and (12).

Since the exclusion region setup does not affect the relationship between the primary users, the

interference between the primary users is the same as Ipp. The interference from the primary

users to a cognitive user is bounded by (16) due to the exclusion regions around the primary

transmitters. Note that the bounds become less tight due to the silencing of extra cognitive users.

C. Primary User MAC

Until now, only the case of controlling the interference from the cognitive users is discussed.

However, as shown in Fig. 2, the interference from other primary users might dominate since

primary interferers may be arbitrarily close. It is therefore reasonable to apply a MAC scheme

among primary users. When a CSMA-type MAC is employed, the primary transmitters form a

hard-core process, in which no any two primary transmitters are allowed to be closer than a

distance Dp (the radius of a guard zone).

When the primary users employ the CSMA-type MAC, the interference Ipp,CSMA to a primary

receiver from the other primary transmitters is stochastically dominated by the random variable

Îpp,CSMA with Laplace transform LÎpp,CSMA
(s) = L1(λp, µp, Dp, s), which follows directly from

Lemma 2, but now the interference is smaller due to the CSMA-type MAC for every primary

transmitter.
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Since the active primary transmitters form a hard-core process, the density of the active

primary transmitters when the primary users apply CSMA-type MAC with sensing range Dp is

λ′p =
1−exp(−λpπD2

p)

πD2
p

[18]. An approximation of LIpp,CSMA
(s) is thus LĨpp,CSMA

(s) = L0(λ′p, µp, s).

Eqn. (5) can be used to bound the interference Icp,CSMA from the cognitive transmitters to the

primary receivers. The bound is tighter in the case with primary user MAC than without primary

user MAC. The reason is the following. Let λ′a = exp(−πλ′pD2) and λa = exp(−πλpD2) be the

densities of the active cognitive users with and without primary user MAC, respectively. Since

λ′p < λp, it follows that λa < λ′a < λc. Since L0(ν, η, s) is a monotonically decreasing function

of the variable ν, the bound is tighter in the case with the primary user MAC.

Eqn. (11) and Eqn. (16) can be used to give bounds for the interference Ipc,CSMA from

the primary transmitters to a cognitive receiver when the exclusion regions are around the

primary receivers and around the primary transmitters respectively. The interference Ipc,CSMA

to a cognitive receiver from the primary transmitters is approximated by the random variable

Ĩpc,CSMA with Laplace transform LĨpc,CSMA
(s) = L1(λ′p, µp, D − rp − rc, s) and LĨpc,CSMA

(s) =

L1(λ′p, µp, D − rc, s) if the exclusion regions are around the primary receivers and around the

primary transmitters, respectively. Eqn. (12) can also be used to bound the interference Icc,CSMA

from the cognitive transmitters to the primary receivers. Note that again this bound is tighter

than in the case without primary user MAC because λ′a > λa.

V. INTERFERENCE MODELING USING POISSON CLUSTER PROCESSES

It turns out that the interference between the cognitive users is the hardest to calculate or

bound. In this section, a novel approach will be pursued: modeling the interference using a

different point process model. We start by defining the Poisson hole process:

Definition 6. (Poisson hole process) Let Φ1 and Φ2 be independent PPPs of intensities λ2 > λ1.

For each x ∈ Φ1, remove all the points in Φ2 ∩ b(x,D), where b(x,D) is a ball centered at x

with radius D. All the removed points of Φ2 form the hole-0 process and the remaining points

form the hole-1 process, as introduced in [6]. Here we denote the hole-1 process as the Poisson

hole process.

Then we make the following observation of the process of active cognitive users.

Proposition 1. Φa is a Poisson hole process.
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Proof: Let Φp be Φ1, λp be λ1, Φc be Φ2, and λc be λ2 in Def. 6. Then it follows that the

point process formed by the active cognitive users is indeed a Poisson hole process.

The Poisson hole process behaves like a Poisson cluster process. The reason is that forming

“holes” (due to the exclusion regions in our case) forces nodes to concentrate in some areas.

This kind of node distribution looks as if the nodes are “clustered” by nature. Fig. 4 compares

the Poisson hole process and the Thomas cluster process, with the same parameters given in

Section III (λp = 0.1, λc = 1, µp = 1, µc = 0.2, rp = 0.5, β = 81, α = 4, θp = 10, and

D = 1.7838). It is easy to observe that both processes are very different from a PPP.

A. Fitting a Poisson Cluster Process

Since the Poisson hole process is analytically intractable (in particular, its probability generat-

ing functional is unknown), we approximate it with a Poisson cluster process by matching first-

and second-order statistics. The first-order statistic is the intensity, so

λc exp
(
−λpπD2

)
= λlc̄, (21)

where the left hand side is the intensity of the active cognitive users; λl at the right hand side

is the density of parent points of the cluster process, and c̄ is the average number of points

in a cluster. For motion-invariant processes, the second-order statistics are fully described by

the pair-correlation function g(r) [18]. Here two kinds of Poisson cluster processes, the Matern

cluster process and the Thomas cluster process, are considered.

Let R be the cluster radius in the Matern cluster process. The g-function of the Matern cluster

process is [18]

gM(r) =


1 + 2

λlπ2R2

[
arccos

(
r

2R

)
− r

2R

√
1− r2

4R2

]
if 0 < r < 2R,

1 if r ≥ 2R.

(22)

λl and R can be determined using curve-fitting to the g-function of the Poisson hole process. c̄

is then determined using (21).

The g-function of the Thomas cluster process is [18]

gT (r) = 1 +
1

4πλlσ2
exp

(
− r2

4σ2

)
. (23)
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Again, λl and σ are obtained using curve-fitting and c̄ is then determined using (21).

To illustrate the fitting, we use the same example in Section III (λp = 0.1, λc = 1, µp = 1,

µc = 0.2, rp = 0.5, β = 81, and α = 4) and let θp = 10, then D is 1.7838. By using the

nlinfit function (nonlinear least-squares fit) in Matlab, we get λl = 0.0825, c̄ = 4.4623, and

R = 1.5305 for the Matern cluster process, and λl = 0.0809, c̄ = 4.5497, and σ = 0.8206

for the Thomas cluster process. Fig. 5(a) shows the g-functions of the Poisson hole process,

Thomas cluster process, Matern cluster process, and PPP obtained by simulations. Following

the same procedure, the Poisson hole process resulting from the primary user MAC (a hard-core

process) can also be modeled, as shown in Fig. 5(b), where Dp = 2. The parameters for fitting

are λl = 0.1722, c̄ = 2.1370, and R = 1.4033 for the Matern cluster process and λl = 0.1673,

c̄ = 2.1997, and σ = 0.7664 for the Thomas cluster process. The results show that the Poisson

hole process can be closely approximated by the Thomas and the Matern cluster processes, no

matter whether the primary users employ a CSMA-type MAC or not.

Note that the difference between the Poisson hole process and the Poisson cluster process (as

an approximation to the Poisson hole process) is the higher-order statistics. Although we are able

to fit the first- and the second-order statistic of the Poisson hole process using the Poisson cluster

process, the higher-order statistics might be different. For the interference modeling, however,

the first- and the second-order statistics prove sufficient, as shown in the following subsection.

B. Interference Modeling using Poisson Cluster Processes

As explained earlier, it is possible to approximate the Poisson hole process using a Poisson

cluster process; now we will show how the Poisson cluster process models the interference in the

cognitive network. The focus will be on the interference to a cognitive receiver from the other

cognitive transmitters for the following reasons. The Laplace transform of the interference to a

primary receiver from the other primary transmitters is given in (4), and the Laplace transform

of the interference to a cognitive receiver from the primary transmitters is tightly upper-bounded

using (11). For the interference to a primary receiver from the cognitive transmitters, the higher-

order statistics of the point process formed by the active cognitive transmitters is less relevant as

long as the exclusion region is large enough (see (8)). Whether the cognitive transmitters behave

as a Poisson hole process or a PPP will introduce approximately the same interference to the

primary receivers (as shown in (8) and Fig. 2).
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Fig. 6 shows the simulation results of the complementary cumulative density function (CCDF)

of the interference among active cognitive users (Poisson hole process) and among the nodes in

the Matern and Thomas cluster processes. The simulation uses the same parameters as before:

λp = 0.1, λc = 1, µp = 1, µc = 0.2, rp = 0.5, β = 81, α = 4, θp = 10, and D = 1.7838. From

the simulation, the interference distributions in the Poisson cluster process and the Poisson hole

process are essentially the same.

The way to obtain the outage probability of the cognitive users for Poisson-type cognitive

networks from the known results of the Poisson cluster process is the following. First we find

the parameters of the Poisson cluster process which give the first- and second-order statistic that

match the Poisson hole process. The formula for calculating the outage probability is then adapted

from [5], as shown later. By plugging the parameters into the formula, the outage probability is

obtained.

Let LIPCP
(s, z) be the Laplace transform of the interference in the Poisson cluster process,

where z ∈ R2 is the location of the receiver under consideration. We have [5]6

LIPCP
(s, z) = exp

{
−λl
ˆ
R2

[1− exp(−c̄ϕ(s, z, y))] dy

}
×
ˆ
R2

exp(−c̄ϕ(s, z, y))f(y)dy, (24)

where

ϕ(s, z, y) =

ˆ
R2

g(x− y − z)

s−1 + g(x− y − z)
f(x)dx. (25)

f(x) is the PDF of the node distribution around its parent point. For the Thomas process,

f(x) =
1

2πσ2
exp

{
−‖x‖

2

2σ2

}
, (26)

and for the Matern process,

f(x) =


1

πR2 if ‖x‖ < R,

0 otherwise.
(27)

6Note that this equation is different from (35) in [5] due to a different setup. In [5], the transmitter corresponding to the

conditioned receiver is at the origin but in our setup, the transmitter is at a fixed distance away from the receiver.
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Note that the interference is location-dependent, since the Palm distributions of the cluster and

the hole processes are not stationary.

The Laplace transform of the interference among the cognitive receivers can then be approx-

imated as

LĨcc(s) ≈
ˆ
z∈R2

LIPCP
(s, z)f(z)dz, (28)

which is obtained by averaging over all the possible locations of the cognitive receivers. Fur-

thermore, since every cognitive receiver is part of the cluster process (recall that rc � λ
− 1

2
c ), it

must belong to one of the clusters. That means only the locations within one cluster need to be

considered.

VI. CONCLUSIONS

The interference in the cognitive radio network is hard to analyze due to the interaction

between the primary and the cognitive users: the Poisson point process of the primary users

and the Poisson hole process of the cognitive users are not independent. Two approaches have

been taken in this paper: bounding and approximation. First, we have bounded the four types of

interference for the bipolar model: the interference from the primary transmitters to the primary

receivers, from the cognitive transmitters to the primary receivers, from the primary transmitters

to the cognitive receivers, and from the cognitive transmitters to the cognitive receivers. The

outage probabilities for the primary and the cognitive users are also bounded. Different exclusion

region setups have been discussed, including exclusion regions around the primary receivers,

primary transmitters, and both. Second, we have shown that the Poisson cluster process can

model the Poisson hole process accurately, and a good estimate of the interference can be

obtained. Consequently, the known results of the Poisson cluster process can be applied to the

Poisson hole process formed by the active cognitive users.
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Figure 1. The bipolar network model. The squares are the primary transmitters and the triangles are the primary receivers,

and the transmitter-receiver pairs are represented by thick lines with the arrows pointing to the receivers. The distance between

a primary transmitter-receiver pair is rp. The big circles are the exclusion regions with radius D. The filled circles are the

cognitive transmitters and the x’s are the cognitive receivers. The hollow circles and the +’s are the cognitive transmitters and

receivers that are inactive due to the exclusion regions. The cognitive transmitter-receiver pairs are represented by thin lines

with the arrows pointing to the receivers, and the distance between a cognitive transmitter-receiver pair is rc.
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Figure 2. Bounds and simulation results of the outage probabilities of the primary and the cognitive users. For comparison,

the outage probability in the primary network without the presence of cognitive users (“PU only” in the figure) is also shown.

The simulation parameters are: λp = 0.1, λc = 1, µp = 1, µc = 0.2, rp = 0.5, rc = 0.1, β = 81, and α = 4. D is determined

using (1). When calculating the outage probability of the cognitive users, θp is set to 10.
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Figure 3. εp and εc as a function of λc/λp under different λp using (6) and (13), respectively. µp = 1, µc = 0.2, rp = 0.5,

rc = 0.1, θp = 10, and θc = 10.
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Figure 4. Comparison of the Poisson hole process (left) and the Thomas cluster process (right). λp = 0.1, λc = 1, µp = 1,

µc = 0.2, rp = 0.5, β = 81, α = 4, θp = 10, and D = 1.7838.
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Figure 5. (a) Comparison of g-functions of the Poisson hole process, the Thomas cluster process, the Matern cluster process,

and PPP. (b) Comparison of g-functions of the Poisson hole process resulting from the primary user hard-core process, the

Thomas cluster process, and the Matern cluster process. In both cases, λp = 0.1, λc = 1, µp = 1, µc = 0.2, rp = 0.5, β = 81,

α = 4, θp = 10, and D = 1.7838. For (b), Dp = 2.
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Figure 6. The CCDF P(I > x) of the interference among active cognitive users (Poisson hole process) and among the nodes

in the Matern and Thomas cluster processes. The simulation parameters are λp = 0.1, λc = 1, µp = 1, µc = 0.2, rp = 0.5,

β = 81, α = 4, θp = 10, and D = 1.7838.
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