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Abstract—This paper investigates the throughput for wireless
network with full-duplex radios using stochastic geometry. Full-
duplex (FD) radios can exchange data simultaneously with each
other. On the other hand, the downside of FD transmission is
that it will inevitably cause extra interference to the network
compared to half-duplex (HD) transmission. In this paper, we
focus on a wireless network of nodes with both HD and FD
capabilities and derive and optimize the throughput in such
a network. Our analytical result shows that if the network is
adapting an ALOHA protocol, the maximal throughput is al-
ways achieved by scheduling all concurrently transmitting nodes
to work in FD mode instead of a mixed FD/HD mode or HD
mode regardless of the network configurations. Moreover, the
throughput gain of using FD transmission over HD transmission
is analytically lower and upper bounded.

I. INTRODUCTION

Traditionally, radio transceivers are subject to a HD con-
straint because of the crosstalk between the transmit and
receive chains. The self-interference caused by the transmitter
at the receiver if using FD transmission overwhelms the
desired received signal from the partner node since it is much
stronger than the desired received signal. Therefore, current
radios all use orthogonal signaling dimensions, i.e., time
division duplexing (TDD) or frequency division duplexing
(FDD), to achieve bidirectional communication.

FD communication can potentially double the throughput
if the self-interference can be well managed. FD radios have
been successfully implemented in the industrial, scientific and
medical (ISM) radio bands in a laboratory environment in the
past few years [1]–[4]. Key to the success are novel analog
and digital self-interference cancellation techniques as well
as spatially separated transmit and receive antennas. A FD
system with only one antenna has also been implemented
in [5] by using specially designed circulator. In general, the
main idea is to let the receive chain of a node remove the
self-interference caused by the known signal from its transmit
chain, so that reception can be concurrent with transmission.
A novel signaling technique was proposed in [6] to achieve
virtual FD with applications in neighbor discovery [7] and
mutual broadcasting [8]

From a theoretical perspective, the two-way transmission
capacity of wireless ad hoc networks has been studied in [9]
for a FDD model. A FD cellular system has been analyzed
in [10] where the throughput gain has been illustrated via
extensive simulation for a cellular system with FD base
station and HD mobile users. The throughput gain of single
cell MIMO (Multiple-Input and Multiple-Output) wireless
systems with FD radios has been quantified in [11]. A

capacity analysis of FD and HD transmissions with bounded
radio resources has been presented in [12] with focus on a
single-link system. [13], [14] evaluate the capacity of FD ad
hoc networks and alleviate the capacity degradation due to
the extra interference of FD by using beamforming and ARQ
protocol respectively. Both capacity analyses in [13], [14] are
based on the approximation that the distances between the
desired receiver and the interfering pair are the same.

In this paper, the impacts of FD transmission on the
network throughput are explored. On the one hand, FD trans-
mission allows bidirectional communication between two
nodes simultaneously and therefore potentially doubles the
throughput. On the other hand, the extra interference caused
by FD transmissions can degrade the throughput gain over
HD, which makes it unclear that FD can actually outperform
HD for a given network configuration. This paper utilizes
the powerful analytical tools from stochastic geometry to
study the throughput performance of a wireless network
of nodes with both FD and HD capabilities. Our results
analytically show that for an ALOHA MAC protocol, FD
always outperforms HD in terms of throughput if perfect
self-interference cancellation is assumed. This result holds for
arbitrary node densities, path loss exponents, link distances
and SINR regimes.

II. NETWORK MODEL

Consider an independently marked Poisson point process
(PPP) [15] ˆ

� = {(x
i

,m(x

i

), s

x

i

)} on R2 ⇥ R2 ⇥ {0, 1, 2}
where � = {x

i

} is a PPP with density � and m(x

i

) and s

x

i

are the marks of point x
i

. The mark m(x

i

) defines the node
that x

i

communicates with. Here, we fix kx�m(x)k = R,
8x 2 �, i.e., R is the distance of all links. Therefore, m(x

i

)

can also be written as m(x

i

) = x

i

+ R (cos'

i

, sin'

i

),
where the '

i

s are independent and uniformly distributed on
[0, 2⇡]. The link distance R can also be random and the
main conclusion in this paper is not affected since we can
always derive the results by first conditioning on R and then
averaging over R. We define m(�) = {m(x) : x 2 �},
which is also a PPP of density �. The mark s

x

i

indicates
the independently chosen state of the link that consists of
x

i

and m(x

i

): s

x

i

= 0 means the link is silent, s

x

i

= 1

means the link is in HD mode, and s

x

i

= 2 means in FD
mode. HD means that in a given time slot the transmission is
unidirectional, i.e., only from x

i

to m(x

i

), while FD means
that x

i

and m(x

i

) are transmitting to each other. Therefore,
for any link there are three states: silence, HD and FD.
Assume that a link is in the state of silence with probability
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Figure 1: An example of the class of wireless networks considered
in this paper where the dashed lines indicate the link is being silent,
the arrows mean the link is in HD mode and the double arrows in
FD mode. The x’s form � while the o’s form m(�).

p

0

, HD with probability p

1

and FD with probability p

2

,
where p

0

+ p

1

+ p

2

= 1. p
1

and p

2

are the medium access
probabilities (MAPs) for HD and FD modes respectively. As
a result, � =

S
2

i=0

�

[i]

, where �

[i]

= {x 2 � : s

x

= i} with
density �p

i

and i 2 {0, 1, 2}. From the marking theorem [15,
Thm. 7.5], these three node sets �

[i]

are independent from
each other.

The marked point process ˆ

� can be used to model a wire-
less network of nodes with both FD and HD capabilities. The
self-interference in the FD links is assumed to be cancelled
perfectly. In the following, we will use this model to study
the performance of wireless networks with FD radios. An
example of such a wireless network is illustrated in Figure
1.

In this network setup, consider the Signal-to-Interference
Ratio (SIR) model where a transmission attempt from x to y

is considered successful if

SIR
y

=

h

xy

l(x, y)P
z2˜

�\{x} hzy

l(z, y)

> ✓,

where ˜

� is the set of transmitting nodes in a given time slot,
✓ is the SIR threshold, and h

xy

and h

zy

are the fading power
coefficients with mean 1 from the desired transmitter x and
the interferer z to y respectively. The transmit powers are
fixed to 1. We focus on the Rayleigh fading case for both the
desired link and interferers. The path loss function l(x, y)

between node x and y considered is l (x, y) = kx� yk�↵

where ↵ > 2 is the path-loss exponent. If y is at the origin,
the index y will be omitted. Also, we define a given set of
system parameters (�, ✓, R,↵) as one network configuration.
We will show that some conclusions hold regardless of the
network configuration.

III. SUCCESS PROBABILITY

Our first metric of interest is the success probability,
defined as

p

s

= P (SIR
y

> ✓) , (1)

which is also the complementary cumulative distribution
function (ccdf) of the SIR. Without changing the distribution

of the point process, assume that the receiver y is at the
origin. This implies there is a transmitter at fixed distance R

from the origin. The success probability plays an important
role in determining the throughput as will be described in the
following section.

The following theorem gives the success probability of the
FD/HD-mixed wireless network modeled by the marked PPP:

Theorem 1. In a wireless network described by the marked
PPP ˆ

�, the success probability defined in (1) is given by

p

s

= exp (��p

1

G(✓R

↵

,↵)) exp (��p

2

F (✓R

↵

,↵, R)) ,

(2)
where G(s,↵) =

⇡

2
�s

�

sin(⇡�)

with � , 2/↵ and
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0

✓
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◆
rdr

with K(s, r, R,↵) =

R
2⇡

0

d'

1+s(r

2
+R

2
+2rR cos')

�↵/2 .

Proof: With Rayleigh fading, the desired signal strength
S at the receiver at the origin is exponential, i.e., S = hR

�↵.
The interference I consists of two parts: the interference from
the HD nodes �

[1]

and the interference from the FD nodes
�

[2]

. It can be expressed in the following form:

I =

X
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h

x
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X
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�
h

x
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�
.

The Laplace transform of the interference follows as

L

I

(s) = E

0

@
Y

x2�[1]

e

�sh

x

l(x)

Y

x2�[2]

e

�s

(

h

x

l(x)+h

m(x)l(m(x))

)

1
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A ·
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e

�s

(
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)

1

A
, (3)

where (a) comes from the fact that �

[1]

and �

[2]

are inde-
pendent PPPs from the coloring theorem [16, page 53]. The
first term in the product of (3) is the Laplace transform of
the interference of the PPP �

[1]

, given by [15, page 103]:

L

I1 (s) = E

0

@
Y

x2�[1]

e

�sh

x

l(x)

1

A

= exp (�⇡�p

1

�(1 + �)�(1� �) s

�

)

= exp (��p

1

G(s,↵)) ,

where �(·) is the gamma function.
The second term in the product of (3) can be written as
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follows:

L
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0
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)

1
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= E

0

@
Y
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1

1 + sl(x)

1
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1
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= exp

✓
��p

2

Z

R2

(1� v(x))

◆

= exp

✓
��p

2

Z 1

0

✓
2⇡ � K(s, r, R,↵)

1 + sr

�↵

◆
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◆

(6)

where (a) follows from the probability generating functional
of the PPP with v(x) =

1

1+sl(x)

1

1+sl(m(x))

. As a result, the
success probability is

p

s

= L

I1 (✓R
↵

)L

I2 (✓R
↵

)

= exp (��p

1

G(✓R

↵

,↵)) exp (��p

2

F (✓R

↵

,↵, R)) ,

which completes the proof.
The fact that the success probability (and the Laplace

transform of the interference) are a product of two terms
follows from the independence of the point processes �

[i]

.
The success probability is not in closed-form due to the
integral form of F (✓R

↵

,↵, R). However, tight bounds can
be obtained.

Theorem 2. The success probability is lower and upper
bounded by

p

s

= exp (�� (p

1

+ 2p

2

)G(✓R

↵

,↵))

and

p

s

= exp (�� (p

1

+ p

2

(1 + �))G(✓R

↵

,↵)) .

Proof: Bounds only need to be established for the second
term of the product in the success probability.

Lower Bound: From (4),

L
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G(s,↵)) exp (��p
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= exp (�2�p
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G(s,↵)) , (8)

where (a) follows from the Fortuin-Kasteleyn-Ginibre (FKG)
inequality [15, Thm. 10.13] since both

Q
x2�

e

�sh

x

l(x) andQ
x2�

e

�sh

m(x)l(m(x)) are decreasing random variables. In
(7), the first term is similar to the calculation of L

I1 (s) with
�

[1]

replaced by �

[2]

while in the second term, m(�

[2]

) is a
PPP with the same density of �

[2]

due to the displacement
theorem [15, page 35]. As a result, the two factors in (7) are
equal, and

p

s

� L
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) exp (�2�p
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s

.

Upper Bound: The upper bound can be obtained from the
Cauchy-Schwarz inequality. From (5),

L
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which follows from the Cauchy-Schwarz inequality with
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(s,↵) because m(�
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) is a PPP with the
same density as �
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. As a result,

L
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= exp (��p
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Therefore,
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↵

,↵)

= p

s

.

The lower bound can be intuitively understood as lower
bounding the interference of the FD nodes (which are formed
by two dependent PPPs) by that of two independent PPPs
with the same density.

The upper bound turns out to be the same as the result
by assuming l(x) = l(m(x)) i.e., the distances between the
receiver at the origin and the interfering pair from the FD
links are the same. Indeed, assuming l(x) = l(m(x)), we
have

˜

L

I2 (s) = E
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Y

x2�[2]

e
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h
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+h

m(x))l(x)

1

A

= exp

⇣
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where E
h
(h

x

+ h

y

)

�

i
= �(2 + �) comes from the fact

that h

x

+ h

y

has an Erlang distribution and �(2 + �) =

(1 + �)�(1 + �) is due to the property of the gamma func-
tion. Hence, the approximated success probability assuming
l(x) = l(m(x)) is p̃

s
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I1 (✓R
↵

)

˜

L

I2 (✓R
↵

) = p

s

.
This result is not surprising. The equality holds for

the Cauchy-Schwarz inequality if
Q

x2�[2]

1

(1+sl(x))

2 andQ
x2�[2]

1

(1+sl(m(x)))

2 are linearly dependent. Obviously,
l(x) = l(m(x)) satisfies this condition. Therefore, we have
p̃

s

= p

s

as expected. Also, p
s

/p

s

= e

�p2(1��)G

(

✓R

2
,↵

) ! 1

as � ! 0 or R ! 0. Hence, the bounds are very tight in the
asymptotic case.
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Figure 2: Comparison of success probability between simulation
and its bounds as a function of the node density �: ↵ = 4, ✓ = 1,
R = 1, p0 = 0, p1 = p2 = 0.5.

Figure 2 plots the success probability from simulation and
its closed-form upper and lower bounds as a function of the
node density. As seen, both bounds are tight.

Corollary 3. The function F (s,↵, R) can be bounded as
follows:

(1 + �)G(s,↵)  F (s,↵, R)  2G(s,↵). (11)

Proof: From the proof of the upper and lower bounds
of the success probability p

s

, i.e., (8) and (10), we have

exp (�2�p

2

G(s,↵))  L

I2 (s)  exp (��p

2

(1 + �)G(s,↵)) ,

(12)
where L

I2 (s) = exp (��p

2

F (s,↵, R)) from (6). By taking
logarithm on both sides of the above, we have

�2�p

2

G(s,↵)  ��p

2

F (s,↵, R)  ��p

2

(1 + �)G(s,↵),

(13)
which leads to (11).

This corollary is useful in calculating the maximal through-
put and its bounds in the following section.

IV. THROUGHPUT PERFORMANCE ANALYSIS

A. Problem Statement
The goal of FD transmission in a network is to increase the

network throughput. While FD increases the link throughput,
it also causes additional interference to the other links. Given
a network that consists of nodes of FD and HD capabilities,
how should a node choose between FD and HD transmissions
as the network configuration varies? Should the node always
transmit in a FD mode, or should it always work in HD mode?
Or should it sometimes work in FD mode while sometimes
in HD mode? It is unlikely to conclude to make the nodes
work in HD mode all the time. Otherwise, there is no need
for FD. However, it is interesting to figure out which is better
between a FD-only network or a FD/HD-mixed network. In
our model, the question is equivalent to given a network that
consists of nodes with both HD and FD capabilities, how
can we choose p

1

and p

2

to optimize the throughput in the
network? To see that, we first define the throughput. In a

random wireless network described by ˆ

�, we can consider
the typical link, consisting of a node x

0

and its mark m(x

0

).
The typical link has probability p

1

to be in HD mode and p

2

to be in FD mode. Therefore, its throughput can be defined
as follows:

Definition 4. For a wireless network described by ˆ

�, the
throughput of the typical link is defined as

T = (p

1

+ 2p

2

) p

s

(14)

Inserting p

s

from (2) into (14), we have

T (p

1

, p

2

) = (p

1

+ 2p

2

) e

�(�p1G+�p2F )

. (15)

From now on, we will use G to denote G(✓R

↵

,↵) and F

to denote F (✓R

↵

,↵, R) for simplicity. Given the definition of
throughput, there are two extreme cases that are particularly
interesting: one is the case where all concurrently transmitting
nodes work in HD mode, i.e., p

2

= 0, and the other is
where all concurrently transmitting nodes work in FD mode,
i.e., p

1

= 0. Their throughputs are given as: T

HD
(p

1

) =

p

1

exp (��p

1

G) and T

FD
(p

2

) = 2p

2

exp (��p

2

F ) .

B. Throughput Optimization
It is interesting to find the relationship between the max-

imal values of T

HD, T FDand T , denoted as T

HD
max

, T FD
max

and
T

max

. In other words, we would like to determine how to
choose p

1

and p

2

such that the maximal throughput of the
network is achieved. First of all, THD

max

and T

FD
max

can be easily
obtained by the following lemma.

Lemma 5. For a wireless network of HD-only network,
described by ˆ

� with p

2

= 0, THD
max

is given by

T

HD
max

=

(
T

HD
(

1

�G

) =

1

�G

e

�1 if �G � 1

T

HD
(1) = e

��G if �G < 1

, (16)

with optimal MAP

p

opt
1

= min

✓
1

�G

, 1

◆
. (17)

Similarly, for a wireless network of FD-only network, de-
scribed by ˆ

� with p

1

= 0, T FD
max

is given by

T

FD
max

=

(
T

FD
(

1

�F

) =

2

�F

e

�1 if �F � 1

T

FD
(1) = 2e

��F if �F < 1

, (18)

with optimal MAP
p

opt
2

= min

✓
1

�F

, 1

◆
. (19)

Proof: The proof is straightforward by taking the deriva-
tives of THD and T

FD with respect to p

1

and p

2

.
In the following theorem, we show that T

max

is achieved
by setting all concurrently transmitting nodes to be in FD
mode and that T

max

= T

FD
max

.

Theorem 6. For a wireless network described by ˆ

�, the
maximal throughput is given by

T

max

= T

FD
max

, (20)

with the optimal MAP (p

1

, p

2

) =

�
0, p

opt
2

�
=�

0,min

�
1

�F

, 1

��
. Also, (20) holds regardless of the

network configuration (�, ✓, R,↵).
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Proof: Taking the derivative of T w.r.t. p
1

and p

2

leads
to

@T

@p

1

= exp (�� (p

1

G+ p

2

F )) [1� �G (2p

2

+ p

1

)] , (21)

@T

@p

2

= exp (�� (p

1

G+ p

2

F )) [2� �F (2p

2

+ p

1

)] . (22)

Note that 2p
2

+ p

1

2 [0, 2] and �F < 2�G from Corollary
3.

1) �F < 2�G < 1: 2�G < 1 leads to @T

@p1
> 0. Therefore,

T is an increasing function in p

1

. �F < 1 implies
@T

@p2
> 0. T is also an increasing function in p

2

. As a
result, T

max

= max

�
T

HD
(1), T

FD
(1)

 
. Since

T

FD
(1)

T

HD
(1)

= 2e

�(G�F )

(a)

� 2e

��F/2

(b)

� 2e

� 1
2
> 1,

where (a) follows from Corollary 3 and (b) from �F <

1, T
max

= T

FD
(1) = T

FD
max

in this case.
2) �F < 1 < 2�G: Under this condition, let @T

@p1
= 0 and

we have 2p

2

+ p

1

= 1/�G. Also, @T

@p2
> 0 still holds.

Therefore, the maximal T is achieved at (p

1

, p

2

) =�
0,

1

2�G

�
from 2p

2

+ p

1

=

1

�G

and @T

@p2
> 0. Note that

T (0,

1

2�G

) = T

FD
(

1

2�G

) < T

FD
(1). Hence, T

max

=

T

FD
(1) = T

FD
max

.
3) 1 < �F < 2�G: Let @T

@p1
= 0 and @T

@p2
= 0 and we

have
2p

2

+ p

1

= 1/�G (23)

and
2p

2

+ p

1

= 2/�F . (24)

From (23), T is maximized at p
1

=

1

�G

� 2p

2

, which
leads to

T =

1

�G

e

�p2(2G�F )�1  T (0,

1

2�G

) =

1

�G

e

� F

2G

From (24), T is maximized at p
2

=

1

�F

� p1

2

, which
leads to

T =

2

�F

e

�p1(
F

2 �G

)

�1  T (0,

1

�F

) =

2

�F

e

�1

Therefore, T
max

= max

�
T (0,

1

2�G

), T (0,

1

�F

)

 
. Since

T (0,

1

2�G

)

T (0,

1

�F

)

=

F

2G

e

1�F

G

(a)

 e

1�F

G

(b)

 e

��

< 1,

where (a) follows from F < 2G and (b) from F >

(1 + �)G. Hence, T
max

= T

FD
(

1

�F

) = T

FD
max

.

To summarize,
T

max

= T

FD
max

for all the cases, which means T

max

is always achieved by
setting all transmitting nodes to work in FD mode instead of
in HD mode, i.e. p

1

= 0, despite the interference caused by
the FD nodes. This conclusion is not affected by the network
configuration (�, ✓, R,↵). The corresponding optimal MAPs
is (p

1

, p

2

) =

�
0,min

�
1

�F

, 1

��
, which is equivalent to setting

p

2

to be the optimal MAP of FD-only network given in (19)
with p

1

= 0.

C. Comparison of FD with HD
Since the mixed FD/HD network will achieve maximal

throughput at the extreme case of an FD-only network, we
can simply focus on the FD-only and HD-only networks and
compare their optimal MAPs and maximal throughputs from
the results in Lemma 5. Given a fixed set of system param-
eters (✓, R,↵), the optimal MAPs to achieve the maximal
throughput for FD and HD networks as a function of node
density � are illustrated in Figure 3. The figure is plotted
according to (17) and (19) and it shows that both FD and
HD network will make all nodes transmit when the node
density is lower than 1

F

and 1

G

, respectively, and after that
the MAPs will be inversely proportional to the node density
�. The throughput gain of FD network with respect to HD
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Figure 3: Optimal MAPs that achieve the maximal throughput for
FD and HD networks as a function of the node density �: ↵ = 4,
R = 1, ✓ = 1.
network is of great interest. In the following, the throughput
gain is defined:

Definition 7. The throughput gain (TG) is defined as the
ratio between the maximal throughput of FD network and HD
network given the same network configuration (�, ✓, R,↵):

TG =

T

FD
max

T

HD
max

.

The following corollary gives the theoretical expression of
TG in terms of �, F and G together with its lower and upper
bounds in closed-form. Note that F and G are constant given
fixed (✓, R,↵).

Corollary 8. The throughput gain is given by

TG =

8
><

>:

2e

�(G�F ) if �F < 1,�G < 1

2

�F

e

(�G�1) if �F � 1,�G < 1

2G

F

if �F � 1,�G � 1

(25)

and bounded as
8
><

>:

2e

��G

< TG < 2e

���G if �F < 1,�G < 1

e

(�G�1)

�G

< TG <

2e

(�G�1)

(1+�)�G

if �F � 1,�G < 1

1 < TG <

2

1+�

if �F � 1,�G � 1

(26)

Proof: From (16) and (18), when �F < 1 (it implies
�G < 1 from Corollary 3), TG = T

FD
(1)/T

HD
(1) =



6

2e

�(G�F ); when �F > 1 and �G < 1, TG =

T

FD
(1/�F )/T

HD
(1) = 2e

(�G�1)

/�F ; and when �F > 1

and �G > 1, TG = T

FD
(1/�F )/T

HD
(1/�G) = 2G/F .

Therefore, we have (25). The upper and lower bounds can be
easily proven by using Corollary 3. Note that G = G(✓R

↵

,↵)

and hence both bounds are in closed form.
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Figure 4: Throughput gain as a function of the node density � and
its bounds: ↵ = 4, R = 1. The two dashed vertical lines indicate
the point where � = 1/F for different ✓ while the two solid vertical
lines indicate � = 1/G.

Figure 4 illustrates the throughput gain as a function of the
node density together with its upper and lower bounds given
in (26). Given ✓, R, and ↵, the estimate of F (✓R

↵

,↵, R)

can be obtained numerically. As seen, the throughput gain is
approaching 2 asymptotically as the node density � ! 0. As
the node density increases, the throughput gain decreases.
The throughput gain will become constant after the node
density is greater than the threshold 1/G, which is illustrated
by two solid vertical lines for different ✓. The reason is that
the density of concurrent transmitting nodes will get saturated
under ALOHA protocol for both FD and HD networks if �

is great than 1/G. This constant throughput gain is upper
bounded by 2

1+�

and lower bounded by 1. The effect of the
SINR threshold ✓ is that a larger SINR threshold gets the
network saturated at lower node density since a larger SINR
threshold implies the system can tolerate less interference.
As a result, the constant throughput gain will be higher for
larger ✓. In general, an ALOHA protocol will guarantee
the throughput gain of the FD transmission to be greater
than 1 for all network configurations, which means that FD
transmission always outperforms HD transmission.

V. CONCLUSION

In this paper, we analyzed the throughput of wireless
networks with FD radios using mathematical tools from
stochastic geometry. Given a wireless network of radios with
both FD and HD capabilities, we showed that FD trans-
mission is always preferable compared to HD transmission
in terms of throughput. Although the throughput of FD
transmission can not be doubled, the gain is considerable in
an ALOHA protocol. In general, FD can be a very powerful

technique that can be adapted for the next-generation wireless
networks if the limitations from the real world can be well
mitigated, i.e., the imperfect self-interference cancellation.
Moreover, the throughput gain is expected to be larger if
more advanced MAC protocols other than ALOHA are used
or the interference management can be used for the pairwise
interferers in the FD links. Future work will focus on the
modeling of imperfect self-interference cancellation in our
mathematical framework and the impact that imperfect self-
interference cancellation has on the throughput gain of FD
over HD.
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