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Abstract—In this paper, we propose a two-tier heterogeneous
cellular network (HCN) model with intra-tier dependence, where
the macro base stations (MBSs) and the pico base stations (PBSs)
follow a Poisson point process (PPP) and a Matern cluster
process (MCP), respectively. Due to the high spatial fluctuations
of the traffic demand, the users are modeled as a Cox process.
Conditioning on a fixed distance between a user equipment (UE)
and its nearest serving BS, exact calculations of the interference
and the outage probability are derived. The per-user capacity and
the area spectral efficiency are also analyzed. The results show
that the model with intra-tier dependence appears closer to the
real deployment than the extreme with the complete randomness
(the PPP). An important conclusion is that both the per-user
capacity and the area spectral efficiency improve with smaller
cells, but outage does not.

I. INTRODUCTION

With the rapid increase of mobile subscribers as well as the
traffic demand, the thoroughly planned architecture comprised
of macrocells designed to cater to large coverage regions
is evolving towards a much more heterogeneous architecture
where the macrocell network is overlaid by diverse kinds of
small cells deployed in an irregular and unplanned fashion
using universal frequency reuse [1]. This increasing hetero-
geneity and density in cellular networks renders the traditional
hexagonal and regular deployment models of limited utility
but, in turn, motivates recent studies, tools and results inspired
by stochastic geometry [2–4].

By far the most common assumption used in analytical cal-
culations for heterogeneous cellular networks (HCNs) is that
base stations (BSs) in different tiers follow mutually indepen-
dent homogeneous Poisson point processes (PPPs) [5–7]. This
means that the BSs are located independently of each other and
their spatial correlation is ignored. Although the assumption
of Poisson processes makes the analysis tractable, it does not
seem realistic because of the uneven population distributions
and the practical BSs deployment with an objective (say,
coverage-centric or capacity-centric) being strongly associated
with human activities, which leads to dependence among the
BSs including inter-tier dependence (i.e., the BSs belonging to
different tiers exhibit repulsion) and intra-tier dependence (i.e.,
the BSs within a tier are not totally independent but planned
deployments with a degree of randomness due to irregular
terrains and hotspots).

This motivates the approach of devising and analyzing
HCN models accounting for the spatial dependence. To our
best knowledge, very few articles have proposed a stochastic
geometry-based model considering inter-tier or intra-tier de-
pendence for HCNs: [8] proposes two spatial models of HCNs
according to the Ginibre point process (GPP) [9] whose points
exhibit repulsion and accounts for the repulsion among the
BSs in different tiers and that in the same tier, respectively.
Our previous work [10] proposes a two-tier HCN model with
inter-tier dependence, where the MBSs and the PBSs follow
a PPP and a Poisson hole process, respectively. Both [8] and
[10] focus on the repulsion among the BSs but, in fact, due
to the human activities and high spatial fluctuations in traffic
demand, the actual BSs in cellular networks are deployed
densely in some places, exhibiting clustering behavior, and
sparsely in other places. Therefore, for HCNs, where small
cells are primarily added to increase capacity in hotspots with
high user demand, it is unnecessary to add small cells to every
macrocell but to place them in regions where an MBS cannot
offer enough capacity. This is the motivation of our work.

In this paper, we consider a more practical HCN and focus
on the intra-tier dependence, where the traffic load can have
significant spatial fluctuations and clusters of PBSs are placed
in hotspot regions. Under this scenario, we propose a two-tier
HCN model with two types of BSs, i.e., MBSs and PBSs,
following a PPP and an independent Matern cluster process
(MCP) [2], respectively. Thereby, the intra-tier dependence is
reflected by the MCP whose points exhibit clustering behavior.
For the user distribution, the user density in hotspot regions
is higher than in the rest of the network, and thus the users
in the whole network form a Cox process [2]. Conditioning
on a fixed distance between a user equipment (UE) and its
nearest serving BS, exact expressions of the interference and
the outage probability are derived. The per-user capacity and
the area spectral efficiency are also analyzed. We then compare
the proposed model with the two-tier independent PPPs model
through numerical experiments to show the effect of the intra-
tier dependence on different performance metrics.

From a broader perspective, the contribution of the paper
lies in the investigation of a novel model with intra-tier
dependence for HCNs, which is applicable to actual network
deployments, especially for those having hotspots with high
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Fig. 1. The two-tier HCN model with intra-tier dependence. The
squares are the MBSs and the triangle is the typical MU at a distance
rm from its serving MBS in a random direction. The dots are the
PBSs and the ‘+’ is the typical PU at a distance rp from its serving
PBS in a random direction.

user density.

II. NETWORK MODEL

Consider a two-tier HCN with two types of BSs: MBSs
and PBSs, shown in Figure 1. The locations of the active
MBSs follow a homogeneous PPP Φm = {x1, x2, . . .} ⊂ R

2

of density λm, and the locations of the PBSs follow an
independent MCP Φp = {y1, y2, . . .} ⊂ R

2 with the parent
point process Φl with density λl. Denoting the average number
of points per cluster as c̄, the density of the PBSs can be
expressed as λp = λlc̄. Points in each cluster are uniformly
distributed in the circle of radius R centered at its parent point.
For the user distribution, it is assumed that the user density
in those regions (i.e., the hotspots) covered by PBSs is higher
than in the rest of the network. Specifically, the population
centers of radius R are assumed to be Poisson distributed and
the active user, i.e., the pico user (PU), density in these centers
is c̄/(πR2). These population centers are covered using PBSs
forming a MCP such that (on average) each PU can be served
by its own PBS. The macro users (MUs) distributed in the rest
of the network are served by their own MBSs. To facilitate
the calculation, we assume that each PBS serves one PU and
each MBS serves one MU in one resource block at a time,
thus the densities of MUs and PUs are equal to that of MBSs
and PBSs, respectively. Under this setup, the total UEs in the
network form a Cox process with density λm+λp, which are
clustered in hotspots and uniformly distributed in the rest.

The transmit power is μm for each MBS and μp for each
PBS. The power received by a receiver located at z due to
a transmitter at x is modeled as hx�(x − z), where hx is
the power fading coefficient (square of the amplitude fading
coefficient) associated with the channel between x and z.
We assume that the fading coefficients are i.i.d. exponential

(Rayleigh fading) with E[h] = 1. �(x) = ‖x‖−α is the large-
scale path loss model with α > 2. We focus on an MU at
a distance rm from the serving MBS in a random direction
and a PU at a distance rp from the serving PBS in a random
direction. The signal-to-interference ratio (SIR) threshold is
denoted as θm for MUs and θp for PUs.

III. ANALYSIS OF THE TWO-TIER HCN MODEL WITH
INTRA-TIER DEPENDENCE

In this section, we first analyze the aggregate interference to
both MUs and PUs, including the intra-tier interference and the
inter-tier interference, and then give the outage probability, the
per-user capacity and the area spectral efficiency, respectively.

There are four types of interference: the interference from
the MBSs to the MUs Imm, the interference from the MBSs
to the PUs Imp, the interference from the PBSs to the MUs
Ipm, and the interference from the PBSs to the PUs Ipp. Each
of them can be defined as I(z) =

∑
x∈Φ\{x0} μhx�(z− x) to

represent the interference at z resulting from the interferers
positioned at the points of the process Φ (i.e., either Φm

or Φp), where x0 is the serving BS, and μ is either μm or
μp, depending on which type of interference is considered.
To calculate the interference to the MUs, we condition on
having a MU at the origin, the typical user, i.e., there is an
extra MBS, namely, the serving MBS, on the circle of radius
rm centered at o, which yields the Palm distribution for the
MBSs. By Slivnyak’s theorem [2], this conditional distribution
is the same as the original one for the macro-tier in the region
R

2 \ b(o, rm). For the pico-tier, we also condition on having a
typical PU at the origin, which is the same as the macro-tier.

A. Interference and Outage Analysis of MUs

The MUs suffer from two types of interference: Imm and
Ipm. The typical MU is assumed to access the nearest MBS
x0 at distance rm. Since the fading is Rayleigh and the MBSs
are distributed as a PPP, the Laplace transform of Imm is

LImm(s)=E
!x0

Φm,hx

(
exp

(
−s

∑
x∈Φm

μmhx�(x)

))

=E
!x0

Φm

( ∏
x∈Φm

1

1 + sμm�(x)

)
(a)
=exp

(
−λm

∫
R2\b(o,rm)

1− 1

1 + sμm�(x)
dx

)
(b)
=exp

{
−πλm

μmsδ

1−δ
r2−α
m F (1, 1−δ; 2−δ;−μmsr

−α
m )

}
,

(1)

where δ = 2/α, (a) follows from the probability generating
functional (PGFL) of the PPP, and the integration regions is
R

2\b(o, rm) since the closest interferer is at least at a distance
rm. F (x, y; z;w) is the hypergeometric function [11] and (b)
can be obtained with the help of equation (3.194.5) in [11]
and polar coordinates.



Let LIpm(s) be the Laplace transform of the interference
from a MCP at the typical MU located at the origin. According
to [2, Cor. 4.13], we have

LIpm(s) = exp

{
−λl

∫
R2

[1− exp(−c̄ν(s, y))]dy
}
, (2)

where ν(s, y) =
∫
R2

f(x)
1+(sμp�(x−y))−1 dx, and f(x) is the PDF

of the node distribution around the parent point. For the MCP,

f(x) =

{
1

πR2 , ‖x‖ < R
0, otherwise.

(3)

With Rayleigh fading, the transmission success probabil-
ity of the MU is the Laplace transform evaluated at s =
θmμ

−1
m rαm. Since Φm and Φp are independent, Imm and Ipm

are independent. Therefore, the outage probability of the MU
is

εm = 1− LImm(θmμ
−1
m rαm)LIpm(θmμ

−1
m rαm). (4)

B. Interference and Outage Analysis of PUs

Similar to the case of estimating the interference to the
MUs, the PU also experiences two types of interference: Imp

and Ipp. First, we consider the interference from other PBSs
Ipp. Let LIpp(s) be the Laplace transform of the interference
from a MCP at the typical PU located at the origin. Since the
typical PU is served by the nearest PBS located at (rp, 0), there
is no PBS in the disk region centered at the origin with radius
rp. Thus, using the modified path loss law �̃(x) = �(x)1‖x‖>rp

and according to Eq. (34) in [12], we have

LIpp(s) = exp

{
−λl

∫
R2

[1− exp(−c̄ν(s, y))]dy
}

×
∫
R2

exp(−c̄ν(s, y))f(y)dy, (5)

where ν(s, y) =
∫
R2

f(x)

1+(˜�(x−y)sμp)−1
dx.

Now let us consider the interference from the MBSs Imp.
Let LImp(s) be the Laplace transform of the interference from
a PPP at the typical PU located at the origin and we have
LImp(s) = exp

(
−λm

π2δ
sin(πδ)μ

δ
ms

δ
)

. The success probability
of PUs is the Laplace transform evaluated at s = θpμ

−1
p rαp .

Since Imp and Ipp are independent, the outage probability of
the PU is

εp = 1− LImp(θpμ
−1
p rαp )LIpp(θpμ

−1
p rαp ). (6)

C. Per-user Capacity and Area Spectral Efficiency

According to our network model, since the densities of MUs
and PUs are equal to that of MBSs and PBSs, respectively, and
the PUs are concentrated in the densely populated regions, the
MUs take the proportion κm = λm

λm+λp
of the total UEs and

the proportion of PUs is κp = 1−κm. Then, we obtain the per-
user capacity of the MU and PU for a fixed-rate transmission
based on the SIR threshold, respectively, as follows,

cm = (1− εm) log2(1 + θm) (7)
cp = (1− εp) log2(1 + θp) (8)

Thus, the per-user capacity cu can be derived as

cu =κmcm + κpcp

=
λm(1−εm) log2(1+θm) + λp(1−εp) log2(1+θp)

λm + λp
. (9)

Finally, the area spectral efficiency (ASE) of the proposed
model with intra-dependence can be defined as [13]

ASE=λm(1−εm) log2(1+θm)+λp(1−εp) log2(1+θp). (10)

D. Comparison with the Two-tier Independent PPP Model

Compared with the two-tier independent PPP model, i.e.,
the MBSs and PBSs follow two mutually independent homo-
geneous PPPs with the same densities λm and λp, respectively,
the only difference from our proposed model is that the PBSs
are distributed as a homogeneous PPP. Under the same user
distribution, in order to make this comparison relatively fair,
we assume that at least one PBS is located in each hotspot
region and hence model the PBSs in the two-tier independent
PPP model as the superposition of Φl and another independent
homogeneous PPP Φ′p with density λl(c̄− 1).

First, the outage probability of the MU can be easily
obtained as

εm = 1− exp

{
−πλm

θmδ

1− δ
r2mF (1, 1− δ; 2− δ;−θm)

− π2δθδm
sin(πδ)

r2mλp

(
μp

μm

)δ
}
. (11)

Then, for those PUs that actually have a serving PBS, the
outage probability is

εsp = 1− exp

{
− π2δθδp
sin(πδ)

r2pλm

(
μm

μp

)δ

−πλp
θpδ

1− δ
r2pF (1, 1− δ; 2− δ;−θp)

}
, (12)

and the outage probability of the PU not served (i.e. blocked)
is εbp = 1. Since Φp=Φl+Φ

′
p, there are Np=

λl(c̄−1)
λl+λm

+1 PBSs
on average in each hotspot region to serve the c̄ PUs. Thus,
the outage probability of an arbitrary PU can be derived as

εp =
Np

c̄
εsp + 1− Np

c̄
(13)

Note that when c̄ = 1, our proposed model and the two-tier
independent PPP model are the same. And for the latter, as
c̄ increases, the number of PUs that are actually served will
decrease until when c̄→∞, the proportion of the served PUs
reaches the minimum of λl

λm+λl
.

For the per-user capacity, we have cm=(1−εm) log2(1+θm)
for the MU and cp=(1−εp) log2(1+θp) for the PU, respec-
tively. Thus, the per-user capacity for the two-tier independent
PPP model is

cu=
λm(1−εm) log2(1+θm)+λp(1−εp) log2(1+θp)

λm + λp
. (14)
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Fig. 2. The outage probability of MUs. Fig. 3. The outage probability of PUs.

Finally, the ASE for the two-tier independent PPP model is
defined as

ASE=λm(1−εm) log2(1+θm)+λp
Np

c̄
(1−εsp) log2(1+θp). (15)

IV. NUMERICAL RESULTS

In this section, we give some numerical results of the outage
probability for MU and PU, the per-user capacity, and the area
spectral efficiency, respectively, where λm = λl = 8 × 10−6,
μm = 1, μp = 0.05, rm = 40, rp = 10, α = 4, c̄ = 20,
R = (π(λm + λl))

−1/2. As a baseline, we also provide the
performance of the two-tier independent PPP model with the
same densities of the MBSs and the PBSs, and the same user
distribution to show the effect of the intra-tier dependence on
different performance metrics.

Figure 2 and 3 illustrate the outage probabilities of MUs and
PUs, respectively, for different path-loss exponents α, where
the simulation result matches the analytical result well, thus
corroborating the accuracy of our theoretical analysis. We can
observe that for both MUs and PUs, the model with larger α
has better outage performance due to the fast attenuations of
the interference signals. For the MU, the outage performance
of the proposed model with intra-tier dependence is superior
than that of the two-tier independent PPP model; while for
the PU, significant gains are obtained by the proposed model
when θp is small and the outage probability of the two-tier
independent PPP model starts from 0.5, which is consistent
with the theoretical analysis in Section III-D due to the
parameter settings in the simulations1. When θp increases
larger enough, say θp > 15dB, the outage performance of the
proposed model suffers much more serious deterioration than
that of the independent model due to the greater interference
caused by the clustering behavior among the PBSs even though
the proposed model can serve more users (but, actually, most

1From (13), the proportion of the PUs that are actually served is Np

c̄
=

λl
λm+λl

+ λm
λm+λl

1
c̄

. Since c̄ = 20 and λl = λm, the second term can be
ignored. Thus, εp = 0.5εsp + 0.5.

of them suffer the outage), leading to the inferior outage
performance than the independent model.

Figure 4 shows the relationship between the per-user capac-
ity and the user threshold (θm= θp= θ) for different average
numbers of PBSs per cluster c̄. We can observe that for both
models, i.e., the proposed model and the two-tier independent
PPP model, the model with smaller c̄ has higher per-user
capacity. For the former, smaller c̄ means smaller number of
PBSs per cluster, causing less interference from the PBSs,
thus both the MU and PU have smaller outage probability
and further increase the per-user capacity; while for the latter,
since there are not enough PBSs for the many users in hotspot
regions, the smaller the number of the PUs is, the higher per-
user capacity can be obtained. Furthermore, for each case of c̄,
the proposed model has higher per-user capacity than the two-
tier independent PPP model which indicates that the model
with intra-tier dependence is a more appropriate model than
the two-tier independent PPP model for the HCNs where the
traffic demand exhibits high spatial fluctuations.

Figure 5 depicts how the ASE changes with the hotspot
area fraction for different thresholds of both MUs and PUs.
We set λm+λl=1.6×10−5, then changing λl can be viewed
as changing the ratio of the hotspot area to the whole network,
i.e., the hotspot area fraction. It is seen that the ASE increases
with λl. This is because, as λl increases, the hotspot area take
more proportion in the network and the capacity provided by
the PBSs increases, leading to the rise of the ASE. When λl =
1.6× 10−5, i.e., the HCN degrades into a single-tier network
only with the PBSs deployed, all curves reach the peak, which
indicates that putting a cluster of small cells at some location
in the network may indeed deteriorate the outage by the greater
interference, but it will increase the ASE (which is related to
the per-user capacity). Besides, the effect of the PU threshold
θp on the ASE becomes more noticeable as λl increases while
the MU threshold θm is not, because the increase of λl leads
to more PBSs and less MBSs deployed, hence leading the
PBSs to be the main provider of the network capacity. For
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Fig. 5. Area spectral efficiency versus hotspot area fraction. For
the two-tier independent PPP model, θm = θp = 5dB.

the comparison between the proposed model and the two-tier
independent PPP model, the result is similar to that of the
per-user capacity.

V. CONCLUSION

In this paper, we proposed a two-tier HCN model account-
ing for intra-tier dependence, where traffic demand exhibits
high spatial fluctuations and clusters of PBSs are placed in
hotspot regions. By modeling the MBSs, the PBSs, and the
users as a PPP, an independent MCP and a Cox process,
respectively, and conditioning on a fixed distance between
a UE and its nearest serving BS, exact calculations of the
interference, the outage probability, the per-user capacity and
the ASE were derived. The results indicate that the theoretical
curves match the simulation results extremely well, thus cor-
roborating the accuracy of the theoretical analysis. Besides,
since for both outage and capacity, the proposed model is
superior than the two-tier independent PPP model, we can
conclude that the model with intra-tier dependence is a more
promising and practical HCN model than the complete and
independent randomness for actual network deployments with
hotspots. Overall, both the per-user capacity and the ASE
improve with smaller cells, but outage does not.
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