
Logic Design: FSMs in Verilog.1 Brockman, ND, 2007

CSE 20221: Logic Design

Finite State Machines in Verilog

Jay Brockman
Department of Computer Science and Engineering

Department of Electrical Engineering
University of Notre Dame

Logic Design: FSMs in Verilog.2 Brockman, ND, 2007

Key Points

• Not difficult to describe FSM behavior in an HDL
• But goal is to synthesize good hardware

– Need to be very precise so synthesis tools can do this
– Subtle mistakes can have major effect

• My goal: equip you with a simple yet flexible and reliable
approach to writing FSMs in Verilog
– enough detail to avoid

getting bitten
– but also avoid confusion

Logic Design: FSMs in Verilog.3 Brockman, ND, 2007

What we know so far

• Finite state machines
– Binary encoded state names
– Next state depends on

• current state
• input

– Outputs depend on
• Moore machine: state only
• Mealy machine: state and inputs

• Verilog
– Combinational logic

• sensitive to changes in signal levels
– Sequential logic (registers)

• sensitive to changes in clock edges (and reset)
Logic Design: FSMs in Verilog.4 Brockman, ND, 2007

Describing FSM in Verilog

always @(posedge clk
or posedge reset)
. . .

register

comb logic
always @(state or a)
. . .

a
out1

out2

next_state

state

S0

S1

S2

out1

out2

a

a
aa

a

a

out2

S0

S1

S2

out1

a

a
aa

a

a

module fsm(clk, reset, a, out1, out2);
input clk;
input reset;
input a;
output reg out1;
output reg out2;

reg [1:0] state;
reg [1:0] next_state;

parameter s0 = 2'b00;
parameter s1 = 2'b01;
parameter s2 = 2'b10;

always @(posedge clk or posedge reset)
if (reset)

state <= s0;
else

state <= next_state;

always @(state or a)
case (state)

s0: begin
if (a == 0)

next_state <= s1;
else

next_state <= s2;
out1 <= 0;
out2 <= 0;

end
s1: begin

if (a == 0)
next_state <= s0;

else
next_state <= s2;

out1 <= 1;
out2 <= 0;

end
s2: begin

if (a == 0)
next_state <= s0;

else
next_state <= s1;

out1 <= 0;
out2 <= 1;

end
endcase

endmodule

Logic Design: FSMs in Verilog.6 Brockman, ND, 2007

Simulation Results

out2

S0

S1

S2

out1

a

a
aa

a

a

Looks good

Logic Design: FSMs in Verilog.7 Brockman, ND, 2007

Unassigned Output (Beware!)

always @(state or a)
case (state)

s0: begin
if (a == 0)

next_state <= s1;
else

next_state <= s2;
out1 <= 0;
out2 <= 0;

end
s1: begin

if (a == 0)
next_state <= s0;

else
next_state <= s2;

out1 <= 1;
end
s2: begin

if (a == 0)
next_state <= s0;

else
next_state <= s1;

out2 <= 1;
end

endcase
endmodule

from Chapter 3from Chapter 3

Logic Design: FSMs in Verilog.9 Brockman, ND, 2007

Unassigned Output: Simulation Results

1
0

1
1

0
1

1
1

out2

S0

S1

S2

out1

a

a
aa

a

a

s1
s2

Not what we intended!
• Doesn’t default to 0
• Keeps previous value

Logic Design: FSMs in Verilog.10 Brockman, ND, 2007

Synthesis of Unassigned Output

module unassigned_output(s, out1, out2);
input [1:0] s;
output reg out1;
output reg out2;

parameter s0 = 2'b00;
parameter s1 = 2'b01;
parameter s2 = 2'b10;

always @(s)
case (s)

s0: begin
out1 <= 0;
out2 <= 0;

end
s1: out1 <= 1;
s2: out2 <= 1;

endcase
endmodule

Latches!

Logic Design: FSMs in Verilog.11 Brockman, ND, 2007

Detecting Unassigned Output/Latch Problem

Logic Design: FSMs in Verilog.12 Brockman, ND, 2007

Always assign all outputs!
Don’t leave undefined input cases!

always @(s)
case (s)
s0: begin
out1 <= 0;
out2 <= 0;

end
s1: begin
out1 <= 1;
out2 <= 0;

end
s2: begin
out1 <= 0;
out2 <= 1;

end
default: begin
out1 <= 0;
out2 <= 0;

end
endcase

Define default input case so
FSM can’t get “stuck”
(Also a latch problem)

Logic Design: FSMs in Verilog.13 Brockman, ND, 2007

Mealy Machine

always @(state or enough)
case (state)
s_init: begin
next_state <= s_wait;
d <= 0; clear <= 1;

end
s_wait: begin
if (!enough)
begin
next_state <= s_wait;
d <= 0; clear <= 0;

end
else
begin
next_state <= s_init;
d <= 1; clear <= 0;

end
end

endcase

outputs on transitions

Logic Design: FSMs in Verilog.14 Brockman, ND, 2007

Binary vs. One-Hot Encoding

• Synthesis tools will generally optimize,
regardless of how you encode states

• FPGAs generally prefer one-hot
– less fan in → simpler logic
– less fan in → faster logic
– plenty of flip-flops available (approximately 1 per LUT)

parameter s0 = 2'b00;
parameter s1 = 2'b01;
parameter s2 = 2'b10;

parameter s0 = 3'b001;
parameter s1 = 3'b010;
parameter s2 = 3'b100;

binary one-hot

