CSE30321 Computer Architecture I
Lab 2: Implementation and Usage of a Simple Processor
Assigned: Week of September 14. Due: Week of September 21

1 What am I going to do?

e Become familiar with the Verilog code for the 6-instruction processor — more specifically
the finite state machine (FSM) needed to properly control the processor. (Suggestion: make
sure that you really understand how the FSM works. In later labs, you’ll need to add new
instructions to the 6-instruction processor and will have to modify this FSM accordingly.)

e Get more practice with coding in assembly — specifically for the 6-instruction processor. (In
lab, we’ll look at a more complex example than what we’ve done in class or in the HW thus
far...)

e Learn to use a simple assembler/simulator. (You should find this to be a useful debugging
tool that you can use in future assignments.)

e Study how changes to a processor datapath, reflected by a FSM, can affect overall perfor-
mance.

2 Useful References

e Frank Vahid’s Digital Design (Ch. 8, 9).

e CSE20221 Handouts on Verilog (links on course web page).

3 Processor Design in Verilog

3.1 Whatto do:

e Complete the Verilog implementation of a processor similar to the six-instruction processor
described in Chapter 8.4 of the textbook.

e Verify and debug the processor design by functional simulation.

3.2 Procedure

1. Open ISE and create a new project called “lab2” in an empty directory. Download and extract
the zip file for this lab into a separate directory (the zip file is located on the course web
page). In ISE, add the extracted files to the project by clicking the Project menu and then
“Add Copy of Source...” (be sure to choose “Files of type: All files” so everything is copied).

2. Look through each of the Verilog files to understand the structure of the processor. Note the
hierarchy of the modules in the project and how it relates to the organization of the processor
as described in Vahid Fig. 8.12.

3. Open the file “controller.v”. A number of “holes” exist in the FSM that describes the con-
troller. Fill in the holes in the FSM based on the state diagram in the class notes.



4. Use different instructions to test all six of the opcodes. Put the desired instructions in
“inst_mem.v” and any desired data in “data_mem.v”. Both memory files have a few lines
showing how to input data (e.g. “mem][0] = 16’h0000;” in data_mem.v, and ”0: douta <=
16'h0000;” in inst_ mem.v). Remember to keep all your addresses in hexadecimal to avoid
confusion.

5. Test your program in ModelSim or ISE Simulator. Print out parts of the waveform that
demonstrate the functionality of the instructions. If the instructions do not work as intended,
use ModelSim or ISE Simulator to determine why, and then fix the problems.

6. Record the number of cycles each instruction type took.

Note: The finite state machine implemented in this processor differs slightly from that in
Vahid Ch. 8. The reason for this is that the memory modules created by the ISE Core Gen-
erator have a read latency of 1 clock cycle, when in reality we expect the data from memory
to be available immediately after a read. This causes a problem in states where memory is
read (i.e. in Fetch and Load) because the data from memory is expected to be available in the
same state we say to read. To fix this problem, wait states were inserted after the Fetch and
Load states to give the memory time to output its data. In this lab the Core Generator is not
used to save the frustration of having to wait for the cores to generate each time a change is
made. Instead, we use a behavioral model of the memories that is basically two very large
register files. However, in future labs when downloading to the board we will need to use
the Core Generator (since the register-based memories are too large to synthesize), so we
leave these extra states to avoid confusion later on.

4 The Assembler and Simulator

4.1 What to do:
e Write assembly code based on given pseudocode.

e Use the assembler to test assembly code.

4.2 Procedure

1. Open the assembler/simulator in your web browser — a link is on course web page and
Java and Flash are required to view. (Note: If you have problems with this version, go to:
http:/ /www.cs.ucr.edu/ vahid/dd/SIM/ for another version of the assembler.) Assemble
and step through the example program to become familiar with the controls available.

2. Create and open a file called FreqCalc.s for your assembly code. Write a “frequency calcu-
lator” program in assembly that steps through a four element array in memory and counts
the occurence of a certain value (store this count in memory). Following is the pseudocode
for this program:

a=[1241524];

i=0;
j = 24; / /the value to search for
count = 0;



5.

6

for(i=0;i < 4;i++)
if a[i] ==j
count++;

Test your program in the assembler by copying your code from FreqCalc.s to the first text
box in the simulator. Click the ”Assemble” button, which will update the next text box with
the appropriate machine code. Step through your program until the final count is written to
data memory, and take a screenshot of this. Include this screenshot of the final contents of
data memory in your report.

Simulate your assembly with ModelSim or ISE Simulator by copying your code from Freq-
Calc.s into the instruction memory (by editing inst_ mem.v) and the array values in the data
memory (by editing data_mem.v). Print out waveforms that demonstrate correct functional-
ity of your assembly code.

Record how many cycles it took to execute the program.

Question to Answer:

Draw the state machine associated with the modified design described in Sec. 3 (i.e. where
extra “wait” states are added). You do not need to show control signals.

Assuming an instruction mix of 6 adds, 6 subtract, 4 jump-if-zeros that are taken, 5 jump-if-
zeros that are not taken, 10 loads, 6 stores, and 3 load constants, what is the execution time
if the processor’s clock rate is 50 MHz.

What if the un-modified state machine is used? What is the difference in performance be-
tween the two versions?

What to Turn In:

For this lab, no demonstration is required. Your report should include the following:

Answers to the questions in Sec. 5.
Cycle data collected with proper explanation.

The waveforms with appropriate explanation demonstrating that you properly fixed the
issues in the controller, and the correct functionality of your assembly code. Be sure to an-
notate all waveforms to show key points of the simulation.

The screenshot of the final memory contents of the online simulator.

Put the modified “controller.v” and the memory contents files into one group member’s
dropbox (note whose dropbox is used in the lab report, dropboxes are at:
/afs/nd.edu/courses/cse/cse30321.01/dropbox/your_name).

For the assembly task, put “FreqCalc.s” in the same dropbox.



