
CSE30321 Computer Architecture I

Lab 3: Processor Performance Analysis and Extending the Simple Processor

Assigned: Week of September 28. Due: Week of October 5

A. Objectives

• Become familiar with benchmarking processor performance

• Gain understanding in the impact of compiler optimizations on performance

• Practice processor design in Verilog

B. References

• A basic Linux tutorial (links on course web page)

• Textbook by Patterson and Hennessy

• Benchmark Documentation (http://www.spec.org/cpu/CINT2000/)

• Textbook by Vahid (Ch. 8, 9)

• CSE20221 Handouts on Verilog (links on course web page)

C. Analyzing Processor Performance

C.1 What to Accomplish

• Execute given benchmarks and collect data

• Analyze collected data for performance comparisons

C.2 Procedure

1. Copy all benchmarks from (/afs/nd.edu/courses/cse/cse30321.01/labs/lab3/) to a directory
in your AFS space. You should find the following three benchmarks:

• dhrystone - a synthetic integer benchmark

• gzip - a compression tool using Lempel-Ziv coding

• parser - a link grammar syntactic parser for English

2. Compile and run all benchmarks without compiler optimizations. To assist the compilation,
you are given a sample Makefile for each benchmark. Make any necessary adjustments before
using it. Use the following input(s) for each benchmark. Run the dhrystone and gzip bench-
marks first so that you get a feel for how to do this from the command line. Also practice
with the time command to time program execution times. (Consult the Linux tutorial posted
for more information or talk to a TA.)

Benchmark piped input input file input value

DHRYSTONE 50 million

GZIP input.graphic

PARSER test.in 2.1.dict

If you are running the bash shell, it has a different built-in time command. Use the time

command located at /usr/bin/time. Always pipe the output of your tests to file so that you

1



can have a record and so that you can go back to the results later. Record user time for all
runtimes.

Once you get the hang of it, compile and test each benchmark on two different machines
of your choice. (Make sure that the machines contain different processor models.) Modify
Makefile to help with this process. For each program and machine, record 3 tests in the
following tables.

Iteration Machine 1 MIPS Rating Machine 2 MIPS Rating

1st Run

2nd Run

3rd Run

Average

For Machine 1:

Iteration GZIP Runtime PARSER Runtime

1st Run

2nd Run

3rd Run

Average

For Machine 2:

Iteration GZIP Runtime PARSER Runtime

1st Run

2nd Run

3rd Run

Average

3. Record the executable file size of the parser benchmark compiled for Machine 1. Recompile
the parser benchmark with two different compiler optimizations (O2 and Os (“Oh-2” and
“Oh-s”)). For each recompile, record the compile time, the new executable size, and the
benchmark runtime.

Opt. Level 1st Runtime 2nd Runtime 3rd Runtime Avg. Runtime

No Opt.

-02 Opt.

-0s Opt.

Opt. Level Compile Time File Size

No Opt.

-02 Opt.

-0s Opt.

2



C.3 Analysis

1. Based on the MIPS rating you calculated from the Dhrystone benchmark and the clock
frequency, compute the CPI for both machines.

Platform Clock Freq. Avg. MIPS Rating Functional CPI

Machine 1

Machine 2

2. Using the MIPS rating for each machine and the average runtimes for the non-optimized
tests, calculate the approximate number of instructions executed for each benchmark.

For Machine 1:

Benchmark Avg. MIPS Rating Avg. Runtime Approx. Instr.

GZIP

PARSER

For Machine 2:

Benchmark Avg. MIPS Rating Avg. Runtime Approx. Instr.

GZIP

PARSER

C.4 Questions

1. Using the average O2 optimized runtime for the parser benchmark and the MIPS rating,
calculate a new instruction count for the benchmark on each machine. How does it compare
to the earlier instruction count? What could account for the difference? What does this say
about the MIPS rating and the compiler?

2. Is CPI always a constant for the same machine? Is it possible that Intel runs favorable
benchmarks to produce lower than “normal” CPI when producing its marketing material.
Considering the clock rate and CPI, what can you say about the two machines?

3. Look at the differences in runtime and executable size based on the different compiler opti-
mizations. What does this say about the different optimizations? Is there an optimization
level that is superior in all categories?

4. For each benchmark there are many input files given. For example, the gzip benchmark comes
with five input files called “input.graphic”, “input.log”, “input.program”, “input.random”,
and “input.source”. Based on you knowledge of the gzip benchmark, why are different input
files included and why these specific five?

5. Take a look at the current list of SPEC programs on p.260 of the textbook. Consider how
you typically use your computer. What classes of programs are irrelevant or missing? Why
do you think they were or were not included in the SPEC2000 collection?

3



D. Extending a Given ISA

D.1 What to Accomplish

• Add two new instructions jmpn and jmp to the six-instruction ISA discussed in class.

• Verify and debug the new processor design with ModelSim or the ISE simulator.

D.1 Procedure

1. Open ISE and create a new project called ”lab3” in an empty directory. Download and
extract the zipped Verilog files from the course web page into a different directory. In ISE,
add the Verilog files by clicking ”Add Copy of Source...” under the ”Project” menu.

2. Add the new instructions to the processor by adding states to the controller and making any
other necessary changes.

3. We have discussed jmp in class. For jmpn, it is used as jmpn Ra OFFSET and accomplishes
the following:

if Rf[a] < 0
PC=PC+OFFSET

else
PC=PC+1

4. Write a simple program in assembly to test the new opcodes with your Verilog processor.

5. Test your program in ModelSim or the ISE simulator and print out parts of the waveform
that demonstrate the functionality of the instructions. If the instructions do not work as
intended, use the simulator to determine why, and then fix the problems.

6. Record the # of cycles each new instruction takes.

E. What to Turn In

For this lab, no demonstration is required. Your report should include the following:

• For the performance analysis portion: a short summary of the experiments, details of your
results and calculations, and discussion of the questions raised. (i.e. make sure you include
information associated with the tables and questions in Sec. C.3 and C.4)

• For the processor design portion: a short description (about 2 paragraphs) explaining how
you modified the existing datapath to support the new instructions.

• Also, for the processor design portion: the waveforms with appropriate explanation demon-
strating that you properly implemented the new instructions. Be sure to annotate all wave-
forms to show key points of the simulation.

• For the processor design portion: list the cycle counts for the new instructions and explain
why you need X cycles for each.

4


