

Lecture 26 - Storage + I/O

Comparison with SRAM

SRAM

- · optimized for speed, then density
- + 1/4-1/8 access time of DRAM
- 1/4 density of DRAM
- bits stored as flip-flops (4-6 transistors per bit)
- static: bit not erased on a read
 - + no need to refresh
 - greater power dissipated than DRAM
 - + access time = cycle time
- non-multiplexed address/data lines

© 2004 by Lebeck, Sorin, Roth, COMPSCI 220 / ECE 252 Lecture Notes Hill, Wood, Sohi, Smith, Storage Hierarchy II: Main Memory Vijaykumar, Lipasti

University of Notre Dame

6

Lecture 26 - Storage + I/O

DRAM Chip Specs

Year	#bits	Access Time	Cycle Time
1980	64Kb	150ns	300ns
1990	1Mb	80ns	160ns
1993	4Mb	60ns	120ns
2000	64Mb	50ns	100ns
2004	1Gb	45ns	75ns

- density: +60% annual
 - Moore's law: density doubles every 18 months
- speed: %7 annual

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vilaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

7

University of Notre Dame

Lecture 26 - Storage + I/O

Simple Interleaving

cycle	addr	bank0	bank1	bank2	bank3
1	12	A	A	A	A
2		A	Α	A	Α
3		T/B	В	B	В
4		В	T/B	B	В
5				Т	В
6					Т

4-word access = 6 cycles

4-word cycle = 4 cycles

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

- + can start a new access in cycle 5
- + overlap access with transfer
- + and still use a 32-bit bus!

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory 12

University of Notre Dame

Lecture 26 - Storage + I/O

Bandwidth Determines Capacity?

aggressive configurations need a lot of banks

- 120ns DRAM (assume 64-bit banks)
- processor 1: 4ns clock, no cache ⇒ 1 64-bit ref / cycle
 at least 32 banks (64 bits/4ns ~= 64bits/120ns * 32 banks)
- processor 2: add write-back cache ⇒ 1 64-bit ref / 4 cycles
 at least 8 banks (64 bits/16 ns ~= 64 bits/120ns * 8 banks)
- hard to make this many banks from narrow DRAMs $\,$ * e.g., 32 64-bit banks from 1x64Mb DRAMS \Rightarrow 2048 DRAMS (16GB)
 - e.g., 32 64-bit banks from 4x16Mb DRAMS \Rightarrow 512 DRAMS (1GB)
 - can't force people to buy that much memory just to get bandwidth
- use wide DRAMs (32-bit) or optimize narrow DRAMs

University of Notre Dame

© 2004 by Lebeck, Sorin, Roth, COMPSCI 220 / E Hill, Wood, Sohi, Smith, Storage Hieran Vilavkumar, Linasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith, Vilaykumar, Lipasti

Processor/Memory Integration Storage Hierarchy III: I/O System the next logical step: processor and memory on same chip · often boring, but still quite important reg • move on-chip: FP, L2 caches, graphics. why not memory? · ostensibly about general I/O, mainly about disks - problem: processor/memory technologies incompatible I\$ D\$ • performance: latency & throughput · different number/kinds of metal layers disks L2 • DRAM: capacitance is a good thing, logic: capacitance a bad thing parameters I will briefly touch what needs to be done? extensions L3 on all topics; (re-added to complete • redundancy and RAID • use some DRAM area for simple processor (10% enough) system architecture buses picture) · eliminate external memory bus, milk performance from that memory • I/O system architecture · integrate interconnect interfaces (processor/memory unit) DMA and I/O processors • re-examine tradeoffs: technology, cost, performance isk (swar • current research in I/O systems • research projects: PIM, IRAM COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory 22 COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O University of Notre Dame University of Notre Dame

Lecture 26 - Storage + I/O Lecture 26 - Storage + I/O I/O (Disk) Performance I/O Device Characteristics · who cares? you do type Input to system • remember Amdahl's Law · input: read only Output to display · want fast disk access (fast swap, fast file reads) • output: write only storage: both • I/O performance metrics device type partner data rate KB/s partner • bandwidth of requests: I/Os per second (IOPS) mouse 0.01 Requests processed human CRT 0 60,000 • raw data bandwidth: bytes per second human human modem I/O machine 2-8 · latency: response time machine · Bytes/s LAN I/O 500-6000 machine · data rate 2000 tape storage machine · peak transfer rate Response time per IO disk 2000-10.000 Both input & output Of interest to this discussion COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O 2004 by Lebeck, Sorin, Rot Hill, Wood, Sohi, Smith, © 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith, University of Notre Dame versity of Notre Dame

Disk Alternatives				Extensions to Conventional Disks • increasing density: more sensitive heads, finer control		
solid state disk (SSD) DRAM + battery backup with standard disk interface						
 + fast: no seek time, no rotation time, fast transfer rate – expensive FLASH memory 						
 + fast: no seek time, no rotation time, fast transi + non-volatile - slow - "wears" out over time • optical disks (CDs, DVDs) • cheap if write-once, expensive if write-multiple - slow 		sfer rate Actually, reads are proportional to normal DRAM, but writes take longer le				
© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti	COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/	10		© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti	COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Diske, Buses and VO	
University of Notre Dame			University of Notre Dame			

More Extensions to Conventional Disks

Lecture 26 - Storage + I/O

· disk caches: disk-controller RAM buffers data

- + fast writes: RAM acts as a write buffer
- + better utilization of host-to-device path
- high miss rate increases request latency

• disk scheduling: schedule requests to reduce latency

- e.g., schedule request with shortest seek time
- e.g., "elevator" algorithm for seeks (head sweeps back and forth)
- works best for unlikely cases (long queues)

Lecture 26 - Storage + I/O

11

Disk Fault Tolerance with RAID

- · Redundant Array of Inexpensive Disks
 - Several smaller disks play a role of one big disk
- · Can improve performance
 - Data spread among multiple disks
 - Accesses to different disks go in parallel
- · Can improve reliability
 - Data can be kept with some redundancy

© 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith, COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O 12

University of Notre Dame

Lecture 26 - Storage + I/O

RAID 0

- · Striping used to improve performance
 - Data stored on disks in array so that consecutive "stripes" of data are stored on different disks
 - Makes disks share the load, improving
 - Throughput: all disks can work in parallel
 - · Latency: less queuing delay a queue for each disk
- No Redundancy
 - Reliability actually lower than with single disk (if any disk in array fails, we have a problem)

Lecture 26 - Storage + I/O

University of Notre Dame

RAID 1

- Disk mirroring
 - Disks paired up, keep identical data
 - A write must update copies on both disks
 - A read can read any of the two copies
- Improved performance and reliability
 - Can do more reads per unit time
 - If one disk fails, its mirror still has the data
- If we have more than 2 disks (e.g. 8 disks)
 "Striped mirrors" (RAID 1+0)
 - Pair disks for mirroring, striping across the 4 pairs
 - "Mirrored stripes" (RAID 0+1)
 - \cdot Do striping using 4 disks, then mirror that using the other 4

18 19

BAID

Lecture 26 - Storage + I/O

8

12 P3 13 14 15

P4 16 17

20 21 22 23 P5

University of Notre Dame

Lecture 26 - Storage + I/O

Bus Issues (Memory & I/O Buses)

- asynchronous: no clock, use "handshaking" instead \Rightarrow slow

• switching: when is control of bus acquired and released?

• arbitration: how do we decide who gets the bus next?

• overlap arbitration for next master with current transfer

• distributed: wired-OR, low-priority back-off \Rightarrow medium

• split-transaction (pipelined): bus free btwn request & reply \Rightarrow fast

8

12

16

20 21 22 23 P5

17 18

14 13

RAID

• clocking: is bus clocked?

some other issues

© 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

• synchronous: clocked, short bus \Rightarrow fast

• atomic: bus held until request complete \Rightarrow slow

- daisy chain: closer devices have priority \Rightarrow slow

• split data/address lines, width, burst transfer

15 P3

19 P4

Lecture 26 - Storage + I/O

University of Notre Dame

Lecture 26 - Storage + I/O

Arbitration

- · DMA implies multiple "owners" of the bus
 - must decide who owns the bus from cycle to cycle

Arbitration

- Daisy chain
- Centralized parallel arbitration
- Distributed arbitration by self selection
- Distributed arbitration by collision detection
- (see board for detailed examples and pictures...)

University of Notre Dame

Lecture 26 - Storage + I/O

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

17

Daisy Chain

University of Notre Dame

Lecture 26 - Storage + I/O

Centralized Parallel Arbitration

- · Requires central arbiter
- Each device has separate line
- · Central arbiter may become bottleneck
- Used in PCI bus

Lecture 26 - Storage + I/O

Distributed Arbitration by Self Selection

- Each device sees all requestors
- · Priority scheme allows each to know if they get bus
- Requires lots of request lines

Lecture 26 - Storage + I/O

Distributed Arbitration by Collision Detection

- · Devices independently request bus
- Devices have ability to detect simultaneous requests or Collisions.
- Upon collision a variety of schemes are used to select among requestors
- · Used by Ethernet

