
1

University of Notre Dame

1Lecture 28 – Parallel Processing

Lecture 28
Introduction to Parallel Processing

and some Architectural
Ramifications

2

University of Notre Dame

2Lecture 28 – Parallel Processing

3

University of Notre Dame

3Lecture 28 – Parallel Processing

Multiprocessing
• Flynn’s Taxonomy of Parallel Machines

– How many Instruction streams?
– How many Data streams?

(note: we’ll spend most time talking about just 1 class…)

• SISD: Single I Stream, Single D Stream
– A uniprocessor

• SIMD: Single I, Multiple D Streams
– Each “processor” works on its own data
– But all execute the same instrs in lockstep
– E.g. a vector processor or MMX

4

University of Notre Dame

4Lecture 28 – Parallel Processing

Flynn’s Taxonomy

• MISD: Multiple I, Single D Stream
– Not used much

• MIMD: Multiple I, Multiple D Streams
– Each processor executes its own instructions and

operates on its own data

– This is your typical off-the-shelf multiprocessor
(made using a bunch of “normal” processors)

• Not superscalar

• Each node is superscalar

• Lessons will apply to multi-core too!

5

University of Notre Dame

5Lecture 28 – Parallel Processing

Or…in pictures!
• Uni:

• Pipelined

• Superscalar

• VLIW/”EPIC”

• SMP (“Symmetric”)

– (Also “CSM”)

• Distributed

P M

M

M

M

P

M

P

P M

P M

N

E

T

6

University of Notre Dame

6Lecture 28 – Parallel Processing

Multiprocessors

• Why do we need multiprocessors?
– Uniprocessor speed improving fast

– But there are things that need even more speed
• Wait for a few years for Moore’s law to catch up?

• Or use multiple processors and do it now?

• (Is Moore’s Law still catching up? M/C?)

• Multiprocessor software problem
– Most code is sequential (for uniprocessors)

• MUCH easier to write and debug

– Correct parallel code very, very difficult to write
• Efficient and correct is much more difficult

• Debugging even more difficult

Let’s look at a few MIMD example configurations…

7

University of Notre Dame

7Lecture 28 – Parallel Processing 8

University of Notre Dame

8Lecture 28 – Parallel Processing

MIMD Multiprocessors

Centralized

Shared

Memory

Note: just 1 memory

9

University of Notre Dame

9Lecture 28 – Parallel Processing

MIMD Multiprocessors

Distributed Memory

Multiple, distributed memories here.

10

University of Notre Dame

10Lecture 28 – Parallel Processing

Before, we did parallel processing by
chaining together separate

processors.

Now we can do it on the same chip.

11

University of Notre Dame

11Lecture 28 – Parallel Processing 12

University of Notre Dame

12Lecture 28 – Parallel Processing

13

University of Notre Dame

13Lecture 28 – Parallel Processing 14

University of Notre Dame

14Lecture 28 – Parallel Processing

15

University of Notre Dame

15Lecture 28 – Parallel Processing 16

University of Notre Dame

16Lecture 28 – Parallel Processing

17

University of Notre Dame

17Lecture 28 – Parallel Processing 18

University of Notre Dame

18Lecture 28 – Parallel Processing

19

University of Notre Dame

19Lecture 28 – Parallel Processing

Ok, after all of that, what does
parallel processing really do for

performance?

20

University of Notre Dame

20Lecture 28 – Parallel Processing

Speedup
metric for performance on latency-sensitive applications

• Time(1) / Time(P) for P processors
– note: must use the best sequential algorithm for
Time(1) -- the parallel algorithm may be different.

1 2 4 8 16 32 64

1
 2

4

8

16

3

2

6
4

processors

sp
e
e
d
up

“linear” speedup
(ideal)

typical: rolls off
w/some # of
processors

occasionally see
“superlinear”... why?

B

21

University of Notre Dame

21Lecture 28 – Parallel Processing

Parallel Performance

• Serial sections
– Very difficult to parallelize the entire app

– Amdahl’s law

Parallel

Parallel
Parallel

Overall

Speedup

F
)F-(1

1
 Speedup

+

=
1024 SpeedupParallel =

0.5 F
Parallel

=

1.998 SpeedupOverall =

1024 SpeedupParallel =

0.99 F
Parallel

=

91.2 SpeedupOverall =

C
Let’s look at an example

in context of CPI

22

University of Notre Dame

22Lecture 28 – Parallel Processing

Parallel Programming

• Parallel software is the problem

• Need to get significant performance improvement
– Otherwise, just use a faster uniprocessor, since it’s

easier!

• Difficulties
– Partitioning

– Coordination

– Communications overhead

23

University of Notre Dame

23Lecture 28 – Parallel Processing

Amdahl’s Law

• Sequential part can limit speedup

• Example: 100 processors, 90! speedup?
– Tnew = Tparallelizable/100 + Tsequential

–

– Solving: Fparallelizable = 0.999

• Need sequential part to be 0.1% of original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

=
+!

=

24

University of Notre Dame

24Lecture 28 – Parallel Processing

Scaling Example
• Workload: sum of 10 scalars, and 10 ! 10 matrix sum

– Speed up from 10 to 100 processors

• Single processor: Time = (10 + 100) ! tadd

• 10 processors
– Time = 10 ! tadd + 100/10 ! tadd = 20 ! tadd

– Speedup = 110/20 = 5.5 (55% of potential)

• 100 processors
– Time = 10 ! tadd + 100/100 ! tadd = 11 ! tadd

– Speedup = 110/11 = 10 (10% of potential)

• Assumes load can be balanced across processors

25

University of Notre Dame

25Lecture 28 – Parallel Processing

Scaling Example (cont)
• What if matrix size is 100 ! 100?

• Single processor: Time = (10 + 10000) ! tadd

• 10 processors
– Time = 10 ! tadd + 10000/10 ! tadd = 1010 ! tadd

– Speedup = 10010/1010 = 9.9 (99% of potential)

• 100 processors
– Time = 10 ! tadd + 10000/100 ! tadd = 110 ! tadd

– Speedup = 10010/110 = 91 (91% of potential)

• Assuming load balanced

26

University of Notre Dame

26Lecture 28 – Parallel Processing

Speedup Challenge

• To get full benefit of parallelism need to be able to
parallelize the entire program!

• Amdahl’s Law
– Timeafter = (Timeaffected/Improvement)+Timeunaffected

– Example: We want 100 times speedup with 100 processors

– Timeunaffected = 0!!!

27

University of Notre Dame

27Lecture 28 – Parallel Processing

Cache Coherence Problem
• Shared memory easy with no caches

– P1 writes, P2 can read
– Only one copy of data exists (in memory)

• Caches store their own copies of the data
– Those copies can easily get inconsistent
– Classical example: adding to a sum

• P1 loads allSum, adds its mySum, stores new allSum
• P1’s cache now has dirty data, but memory not updated
• P2 loads allSum from memory, adds its mySum, stores

allSum
• P2’s cache also has dirty data
• Eventually P1 and P2’s cached data will go to memory
• Regardless of write-back order, the final value ends up

wrong

28

University of Notre Dame

28Lecture 28 – Parallel Processing

Seems like lots of trouble.
Why do it?

Because we sort of have to…

29

University of Notre Dame

29Lecture 28 – Parallel Processing 30

University of Notre Dame

30Lecture 28 – Parallel Processing

Let’s look back to Lecture 01

31

University of Notre Dame

31Lecture 28 – Parallel Processing

There’s another kind of parallelism
too.

32

University of Notre Dame

32Lecture 28 – Parallel Processing

33

University of Notre Dame

33Lecture 28 – Parallel Processing 34

University of Notre Dame

34Lecture 28 – Parallel Processing

35

University of Notre Dame

35Lecture 28 – Parallel Processing 36

University of Notre Dame

36Lecture 28 – Parallel Processing

37

University of Notre Dame

37Lecture 28 – Parallel Processing 38

University of Notre Dame

38Lecture 28 – Parallel Processing

39

University of Notre Dame

39Lecture 28 – Parallel Processing 40

University of Notre Dame

40Lecture 28 – Parallel Processing

41

University of Notre Dame

41Lecture 28 – Parallel Processing 42

University of Notre Dame

42Lecture 28 – Parallel Processing

43

University of Notre Dame

43Lecture 28 – Parallel Processing 44

University of Notre Dame

44Lecture 28 – Parallel Processing

45

University of Notre Dame

45Lecture 28 – Parallel Processing 46

University of Notre Dame

46Lecture 28 – Parallel Processing

47

University of Notre Dame

47Lecture 28 – Parallel Processing

Multithreading
• Performing multiple threads of execution in parallel

– Replicate registers, PC, etc.
– Fast switching between threads

• Fine-grain multithreading
– Switch threads after each cycle
– Interleave instruction execution
– If one thread stalls, others are executed

• Coarse-grain multithreading
– Only switch on long stall (e.g., L2-cache miss)
– Simplifies hardware, but doesn’t hide short stalls (eg, data

hazards)

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

48

University of Notre Dame

48Lecture 28 – Parallel Processing

Examples

