
1

University of Notre Dame

1Lecture 28 – Parallel Processing

Lecture 28
Introduction to Parallel Processing

and some Architectural
Ramifications

2

University of Notre Dame

2Lecture 28 – Parallel Processing

3

University of Notre Dame

3Lecture 28 – Parallel Processing

Multiprocessing
• Flynn’s Taxonomy of Parallel Machines

– How many Instruction streams?
– How many Data streams?

(note: we’ll spend most time talking about just 1 class…)

• SISD: Single I Stream, Single D Stream
– A uniprocessor

• SIMD: Single I, Multiple D Streams
– Each “processor” works on its own data
– But all execute the same instrs in lockstep
– E.g. a vector processor or MMX
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Flynn’s Taxonomy

• MISD: Multiple I, Single D Stream
– Not used much

• MIMD: Multiple I, Multiple D Streams
– Each processor executes its own instructions and

operates on its own data

– This is your typical off-the-shelf multiprocessor
(made using a bunch of “normal” processors)

• Not superscalar

• Each node is superscalar

• Lessons will apply to multi-core too!
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Or…in pictures!
• Uni:

• Pipelined

• Superscalar

• VLIW/”EPIC”

• SMP (“Symmetric”)

– (Also “CSM”)

• Distributed
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Multiprocessors

• Why do we need multiprocessors?
– Uniprocessor speed improving fast

– But there are things that need even more speed
• Wait for a few years for Moore’s law to catch up?

• Or use multiple processors and do it now?

• (Is Moore’s Law still catching up?  M/C?)

• Multiprocessor software problem
– Most code is sequential (for uniprocessors)

• MUCH easier to write and debug

– Correct parallel code very, very difficult to write
• Efficient and correct is much more difficult

• Debugging even more difficult

Let’s look at a few MIMD example configurations…



7

University of Notre Dame

7Lecture 28 – Parallel Processing 8

University of Notre Dame

8Lecture 28 – Parallel Processing

MIMD Multiprocessors

Centralized

Shared

Memory

Note:  just 1 memory
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MIMD Multiprocessors

Distributed Memory

Multiple, distributed memories here.
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Before, we did parallel processing by
chaining together separate

processors.

Now we can do it on the same chip.
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Ok, after all of that, what does
parallel processing really do for

performance?
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Speedup
metric for performance on latency-sensitive applications

• Time(1)  /  Time(P)    for P processors
– note: must use the best sequential algorithm for
Time(1) -- the parallel algorithm may be different.
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Parallel Performance

• Serial sections
– Very difficult to parallelize the entire app

– Amdahl’s law
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Let’s look at an example

in context of CPI
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Parallel Programming

• Parallel software is the problem

• Need to get significant performance improvement
– Otherwise, just use a faster uniprocessor, since it’s

easier!

• Difficulties
– Partitioning

– Coordination

– Communications overhead
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Amdahl’s Law

• Sequential part can limit speedup

• Example: 100 processors, 90! speedup?
– Tnew = Tparallelizable/100 + Tsequential

–

– Solving: Fparallelizable = 0.999

• Need sequential part to be 0.1% of original time
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Scaling Example
• Workload: sum of 10 scalars, and 10 ! 10 matrix sum

– Speed up from 10 to 100 processors

• Single processor: Time = (10 + 100) ! tadd

• 10 processors
– Time = 10 ! tadd + 100/10 ! tadd = 20 ! tadd

– Speedup = 110/20 = 5.5 (55% of potential)

• 100 processors
– Time = 10 ! tadd + 100/100 ! tadd = 11 ! tadd

– Speedup = 110/11 = 10 (10% of potential)

• Assumes load can be balanced across processors



25

University of Notre Dame

25Lecture 28 – Parallel Processing

Scaling Example (cont)
• What if matrix size is 100 ! 100?

• Single processor: Time = (10 + 10000) ! tadd

• 10 processors
– Time = 10 ! tadd + 10000/10 ! tadd = 1010 ! tadd

– Speedup = 10010/1010 = 9.9 (99% of potential)

• 100 processors
– Time = 10 ! tadd + 10000/100 ! tadd = 110 ! tadd

– Speedup = 10010/110 = 91 (91% of potential)

• Assuming load balanced
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Speedup Challenge

• To get full benefit of parallelism need to be able to
parallelize the entire program!

• Amdahl’s Law
– Timeafter = (Timeaffected/Improvement)+Timeunaffected

– Example: We want 100 times speedup with 100 processors

– Timeunaffected  = 0!!!
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Cache Coherence Problem
• Shared memory easy with no caches

– P1 writes, P2 can read
– Only one copy of data exists (in memory)

• Caches store their own copies of the data
– Those copies can easily get inconsistent
– Classical example: adding to a sum

• P1 loads allSum, adds its mySum, stores new allSum
• P1’s cache now has dirty data, but memory not updated
• P2 loads allSum from memory, adds its mySum, stores

allSum
• P2’s cache also has dirty data
• Eventually P1 and P2’s cached data will go to memory
• Regardless of write-back order, the final value ends up

wrong
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Seems like lots of trouble.
Why do it?

Because we sort of have to…
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Let’s look back to Lecture 01
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There’s another kind of parallelism
too.
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Multithreading
• Performing multiple threads of execution in parallel

– Replicate registers, PC, etc.
– Fast switching between threads

• Fine-grain multithreading
– Switch threads after each cycle
– Interleave instruction execution
– If one thread stalls, others are executed

• Coarse-grain multithreading
– Only switch on long stall (e.g., L2-cache miss)
– Simplifies hardware, but doesn’t hide short stalls (eg, data

hazards)
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Examples


