A little history... Zuse's paradigm

- Konrad Zuse (1938) Z3 machine
- Use binary numbers to encode information
- Represent binary digits as on/off state of a current switch

Lecture 28

Introduction to Parallel Processing

A little history... programs

- Stored program model has been around for a long time...

[^0]CSE 30321 - Lecture 28 - Introduction to Parallel Processing

Transistors used to manipulate/store 1s \& 0s

Switch-level representation

PMOS
(ov) -0

Cross-sectional view

Using above diagrams as context, note that (with NMOS) if we (i) apply a suitable voltage to the gate \& (ii) then apply a suitable voltage between source and drain, current will flow.

Moore's Law

- "Cramming more components onto integrated circuits."
- G.E. Moore, Electronics 1965
- Observation: DRAM transistor density doubles annually
- Became known as "Moore's Law"
- Actually, a bit off:
- Density doubles every 18 months
- (in 1965 they only had 4 data points!)
- Corollaries:
- Cost per transistor halves annually (18 months)
- Power per transistor decreases with scaling
- Speed increases with scaling
- Reliability increases with scaling
- Of course, it depends on how small you try to make things
» (I.e. no exponential lasts forever)
Remember these!
University of Notre Dame, Department of Computer Science \& Engineering

CSE 30321 - Lecture 28 - Introduction to Parallel Processing

A bit on device performance...

- One way to think about switching time:
- Charge is carried by electrons
- Carrier velocity is proportional to the lateral E-field between source and drain
- i.e. $v=m E$
- $m=$ carrier mobility (and can be though of as a constant)
- Electric field defined as: $E=V_{d s} / L$
- Time for charge to cross channel = length/speed
- (i.e. meters $/$ (meters/s) $=$ seconds)
- = L/v
- = $\mathrm{L} /(\mathrm{mE})$
- = $\mathrm{L} /\left(\mathrm{m}^{*}\left(\mathrm{~V}_{\mathrm{ds}} / \mathrm{L}\right)\right)$
- $=\mathrm{L}^{2} /\left(\mathrm{m} \mathrm{V}_{\mathrm{ds}}\right)$

Thus, to make a device faster, we want to either increase $V_{\text {ds }}$ or decrease feature sizes (i.e. L)

Some more important relationships

- What about power (i.e. heat)?
- First, need to quickly discuss equation for capacitance:
- $C_{L}=\left(e_{o x W L}\right) / d$
- $e_{o x}=$ dielectric, WL = parallel plate area, $d=$ distance between gate and substrate
- Then, dynamic power becomes:
- $\mathbf{P}_{\text {dyn }}=C_{L} V_{\text {dd }}{ }^{2} \mathrm{f}_{0-1}$
- Dynamic power is a function of the frequency of 0 to 1 or 1 to 0
transitions (as this involves the movement of charge)
» Note frequency in this context is NOT clock frequency
Note that as W and L scale, C_{L} decreases which in turn will cause a decrease in $P_{\text {dyn }}$.
Note that while an increase in $V_{d d}$ will *decrease* switching time, it will also cause a quadratic *increase* in dynamic power.

A funny thing happened on the way to 45 nm

2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at $3+\mathrm{GHz}$ in production.

CSE 30321 - Lecture 28 - Introduction to Parallel Processing

A funny thing happened on the way to 45 nm

-Power decreases with scaling...
Remember these!

A funny thing happened on the way to 45 nm

```
- Speed increases with scaling...
    - Power decreases with scaling... Remember these!
```

Why the clock flattening? POWER!!!!

Recall...

- $\mathbf{P}_{\text {dyn }}=C_{L} V_{d d}{ }^{2} f_{0-1}$
- Dynamic power is a function of the frequency of 0 to 1 or 1 to 0
transitions (as this involves the movement of charge)
» Note frequency in this context is NOT clock frequency

Transistors used for memory too...

- Why? Put faster memory closer to processing logic...
- SRAM (logic): density $+\mathbf{2 5 \%}$, speed $\mathbf{+ 2 0 \%}$
- DRAM (memory): density $+60 \%$, speed $+4 \%$
- Disk (magnetic): density +25\%, speed +4\%

[^0]: June 30,1945

