

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 28 - Introduction to Parallel Processing

Moore's Law

- Moore's Curve is a self-fulfilling prophecy
 - 2X every 2 years means ~3% per month
 - I.e. ((1 X 1.03) * 1.03)*1.03... 24 times = ~2
 - Can use 3% per month to judge performance features
 - If feature adds 9 months to schedule...it should add at least 30% to performance
 - (1.03⁹ = 1.30 ⇒ 30%)

CSE 30321 - Lecture 28 - Introduction to Parallel Processing

A bit on device performance...

- One way to think about switching time:
 - Charge is carried by electrons
 - Carrier velocity is proportional to the lateral E-field between source and drain
 - i.e. v = mE
 - m = carrier mobility (and can be though of as a constant)
 - Electric field defined as: E = V_{ds}/L
 - Time for charge to cross channel = length/speed
 - (i.e. meters / (meters/s) = seconds)
 - = L/v
 - = L/(mE)
 - = $L/(m^*(V_{ds}/L))$
 - = L²/(mV_{ds})

Thus, to make a device faster, we want to either increase V_{ds} or decrease feature sizes (i.e. L)

Some more important relationships

- What about power (i.e. heat)?
 - First, need to quickly discuss equation for capacitance:
 - $C_L = (e_{ox}WL)/d$
 - e_{ox} = dielectric, WL = parallel plate area, d = distance between gate and substrate
 - Then, dynamic power becomes:
 - $P_{dyn} = C_L V_{dd}^2 f_{0-1}$
 - Dynamic power is a function of the frequency of 0 to 1 or 1 to 0 transitions (as this involves the movement of charge)
 - » Note frequency in this context is NOT clock frequency
 - Note that as W and L scale, C_{L} decreases which in turn will cause a decrease in $\mathsf{P}_{dyn}.$
 - Note that while an increase in V_{dd} will *decrease* switching time, it will also cause a quadratic *increase* in dynamic power.

University of Notre Dame, Department of Computer Science & Engineering

A funny thing happened on the way to 45 nm

2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at 3+ GHz in production.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 28 - Introduction to Parallel Processing

Remember these!

A funny thing happened on the way to 45 nm

- Speed increases with scaling...
- Power decreases with scaling...

Why the clock flattening? POWER!!!!

University of Notre Dame, Department of Computer Science & Engineering

Other reasons too, but this should give you a good feel for technology...

University of Notre Dame, Department of Computer Science & Engineering

- Disk (magnetic): density +25%, speed +4%

University of Notre Dame, Department of Computer Science & Engineering

University of Notre Dame, Department of Computer Science & Engineering