
CSE 30321 –  Computer Architecture I – Fall 2009 
Lab 06 –Introduction to Multi-core Processors and Parallel Programming 

Assigned:  November 3, 2009 – Due:  November 17, 2009 
 

1.  Introduction: 
This lab will introduce you to how multi-core computer architectures can impact system-level 
performance as well as conventional “software engineering.”  More specifically, we will work with a 
recursive mergesort algorithm – where a dataset will be sorted on both single and N-core machines.  
You will see that by understanding what the underlying (multi-core) architecture looks like, it is possible 
to write more efficient software.  You will also see that performance evaluation techniques learned in 
previous lectures / used in previous assignments are just as relevant to multi-core processing too. 
 
2.  Background – Introduction to and Applications for Multi-Core Computing: 
(Source:  Intel white paper “From a Few Cores to Many:  A Tera-scale Computing Research Overview) 
 
(i) The Basics: 
Intel processors with two and four cores are here now, and eight-core processors are right around the 
corner. In the coming years, the number of cores on a chip will continue to grow, launching an era of 
vastly more powerful computers. 
 
At the highest-level, the motivation for this switch is because incremental improvements in performance 
and capabilities simply wonʼt support things like: 

- Real-time data mining across teraflops of data 
- Artificial intelligence (AI) for smarter cars and appliances 
- Virtual reality (VR) for modeling, visualization, physics simulation, and medical training 
- Other applications that are still on the edge of being science fiction.  

 
Also, data stores are becoming larger and more complex. In medicine, a full-body medical scan already 
contains terabytes of information. Even at home, people are generating large amounts of data, 
including hundreds of hours of video, thousands of documents, and tens of thousands of digital photos 
that need to be indexed and searched. Tera-scale1 computing is the way to bring the massive compute 
capabilities of supercomputers to everyday devices, from servers, to desktops, to laptops.  
 
For example, with a tera-scale computer, you could create studio quality, photo-realistic 3-D graphics in 
real time. Or you could manage personal media better by automatically analyzing, tagging, and sorting 
snapshots and home videos. Advanced algorithms could be used to improve the quality of movies 
captured on older, low-resolution video cameras. An advanced digital health application might assess a 
patientʼs health by interpreting huge volumes of data in a scan and aid in making decisions in real time. 
 
The essential aspect of tera-scale technologies—and the heart of Intelʼs research—is being able to do 
such complex calculations in real-time, primarily through the execution of multiple tasks in 
parallel. That is the fundamental requirement for the complex and compelling applications we will see 
in the future. 
 
(ii) 
Question: Why are we going to multi-core chips to find performance? 
Answer: Because we have to. 
                                                 
1 The term itself—tera-scale—refers to the terabytes of data that must be handled by platforms capable of 
teraflops of computing performance. Thatʼs a thousand times more compute capability than is available in todayʼs 
giga-scale devices. 



 
In the last twenty years, Intel has delivered dramatic performance gains by increasing the frequency of 
its processors, from 5 MHz to more than 3 GHz, while at the same time, improving IPC (instructions per 
cycle2). Recently, power-thermal issues—such as dissipating heat from increasingly densely packed 
transistors—have begun to limit the rate at which processor frequency can also be increased. Although 
frequency increases have been a design staple for the last 20 years, the next 20 years will require a 
new approach. Basically, industry needs to develop improved microarchitectures at a faster rate, and in 
coordination with each new silicon manufacturing process, from 45 nm, to 32 nm, and beyond.  
 
For this new approach we can take advantage of Mooreʼs law. Transistor feature size is expected to 
continue to be reduced at a rate similar to that in the past. For example, a 0.7x reduction in linear 
dimensions enables a 2.0x increase in the transistor density. Thus, we should assume that with every 
process generation, we will be able to build chips with twice the number of transistors as on the 
previous process generation. New technologies, such as 3-D die stacking, may allow even greater 
increases in total transistor counts within a given footprint, beyond the increases made possible by 
improvements in lithography alone.  

 

 
 
Since Mooreʼs law is expected to continue to deliver more transistors every process generation, and 
since platform power and energy budgets will be increasingly limited, the trend is to deliver increased 
performance through parallel computing. Essentially, to achieve the desired improvements in 
performance without a corresponding increase in energy bills, we must increase the efficiency and 

                                                 
2 Recall that this is simply the inverse of CPI. 



number of cores on a chip, rather than increase clock frequency. 
 
With so many transistors available, we have already began to design chips with multiple processor 
cores (also called CMP or chip-level multiprocessing). Instead of focusing solely on performing 
individual tasks faster, we will execute many more tasks in parallel at the same time.  We will also 
distribute those tasks across a grouping of cores that work in a coordinated fashion. 
 
Many simple cores can be built within the same area as a small number of large complex cores. In 
addition, power consumption can be optimized by using multiple types of cores tuned to match the 
needs of different usage models. Also, cores that are not busy can be powered down to reduce power 
consumption during idle times. These advanced power-saving techniques are enabled by multiple cores 
working in a coordinated fashion.  
 
(iii) Impact on Software: 
 
Intel has identified several key attributes that will be required of future tera-scale platforms:  
 

- Programmability. Without optimized software, tera-scale platforms will not live up to their potential. 
Platforms must effectively address the needs of new and existing programming models. This 
also includes software development/debug tools, as well as new performance benchmarks 
consistent with highly parallel execution.  

 
- Adaptability. The platform must be able to change configuration to match varied usage and 

workloads, as well as adapt to changes in the hardware environment, such as from power and 
thermal factors.  

 
- Reliability. The platform must preserve current levels of reliability or increase its reliability despite 

the increased complexity inherent in these platforms.  
 

- Trust. The platform must provide a trustworthy environment, despite its flexibility and the 
complexity of its design.  

 
- Scalability. The platform must deliver performance that increases in proportion to the number of 

cores, with hardware and software that also effectively scales.  
 
More will be said about programmability issues in future assignments.  However, if you are interested in 
learning more about how multi-core chips might impact software now, please see Sec. 2.3 of the Intel 
white paper linked on the course website. 
 
 
 
 
 
 
 
 
 
 
 
 



3.  Performance in Multi-Core Chips: 
In this question, youʼre going to leverage techniques that youʼve learned so far in class to quantitatively 
see how a multi-core computer architecture might improve overall performance (i.e. decrease execution 
time).  Weʼll keep the discussion pretty simple for now… 
 
Given the above context assume that we want to compare 2 designs – each with its own execution 
model: 

- Design 1 is a single core machine with a 4 GHz clock rate. 
- Design 2 is a dual core machine with a clock rate that is 20% slower. 

 
Assume that we are interested in how long it will take to execute all of the instructions associated with 2 
processes on each design. 
 
You know the following: 

- Process 1 requires 2.5 million MIPS instructions 
- Process 2 requires 6 million MIPS instructions 
- In the tables below, we list the number of CCs each instruction type requires on each design, as 

well as the percentage of each instruction type: 
 

Instruction Type % (Process 1) % (Process 2) 
ALU 45% 65% 
Store 12% 5% 
Load 22% 15% 

Branch/Jump 21% 15% 
 

Instruction Type CCs on Design 1 CCs on Design 2 
ALU 4 4 
Store 4 5 
Load 5 6 

Branch/Jump 3 3 
 

(Note difference in shaded boxes) 
 
On Design 1, Process 1 will be executed first, there will be a context switch (where we update the 
register file with the data for Process 2, etc. that will take 100,000 CCs), and then Process 2 will run 
until completion.  On Design 2, each process can be mapped to a different core. 
 
What performance improvement do we get by executing the instructions for these two processes on the 
dual core machine? 
 
 
 
 
 
 
 
 
 
 
 



4.  Mergesort: 
The material covered thus far in CSE 30321 – e.g. on datapath design – is just as relevant in the multi-
core regime too.  Code written in a high-level language still must be translated to assembly instructions, 
and there can be multiple (identical) datapaths on the same chip.  In the Section 5, weʼll work with a 
parallel version of mergesort – that will still be based on a “core” mergesort function like that described 
below. 
 
The code below performs a mergesort of an array that has a power-of-two size. We assume that we 
have an external routine merge() that merges two sorted arrays into one sorted array of twice the size; 
this is for simplicity (a real mergesort needs to handle boundary cases in the merge loop that would 
be too complicated here). Translate the code into MIPS assembly, with stack handling appropriate for 
the MIPS calling convention. 
 
void mergesort(int *array, int size) 
{ 

if (size == 1) return;    /* recursive base-case */ 
 

mergesort(&array[0], size/2); 
mergesort(&array[size/2], size/2); 

 
/* assume that merge() can do an in-place operation, 

         writing the merged list back into array[] */ 
 
 /* note that you do not have to write the merge() function! */ 
 /* you might just have a line that says “jal merge” */ 
    merge(&array[0], &array[size/2], &array[0]); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
5.  Parallel Mergesort: 
The challenge of multicore is to make use of the multiple processors: it is not enough to simply split a 
program into N equal chunks for N processors. The separate subproblems solved by each CPU core 
usually must communicate with each other to coordinate their work and produce the final solution. 
Though the product of the number of cores and the computational power per core may be much greater 
for a multicore than a single core of the same size, this inter-core communication is often very costly 
and can affect the design of the algorithms involved. 
 
We will look at a very simple application of a multicore microprocessor, to solve the sorting problem 
with a modified mergesort algorithm. Essentially, this parallel mergesort will split the input into equally-
sized chunks for each core, and then after each core sorts its partial list, these lists are combined 
(merged) into the final answer. 
 
 
Roughly, parallel mergesort looks like this: 
 
Parallel_Mergesort(S) 
{ 
   S1, S2, ..., Sn  = Partition(S, number_of_cores) 
 
   for i = 1 to n: 
        Dispatch_Core(i, Si) 
 
   Wait_for_Cores_to_Finish() 
 
   Sorted_S1, Sorted_S2, ..., Sorted_Sn = Receive_From_Cores() 
 
   return merge(Sorted_S1, Sorted_S2, ..., Sorted_Sn) 
} 
 
Core_Mergesort(sublist) 
{ 
   if (length(sublist == 1)) : return sublist 
 
   S1, S2 = Split(sublist) 
 
   S1 = Core_Mergesort(S1) 
   S2 = Core_Mergesort(S2) 
 
  return Merge(S1, S2) 
} 
 
(Note that Core_Mergesort is essentially the same function that you wrote in Section 4 – and this code 
would be part of a multi-core implementation.) 
 
For simplicity, presume the multi-core machines can do everything in parallel until the final merge step. 
All of the CPUs have the exact same instruction set and have the same rate of execution for each core, 
and the clock rates for all machines/cores are equal. However, the time to transfer the sorted sublists 
back to the master routine is given in clock cycles per list element – and does depend on the number of 
cores.   
 
 



Weʼll consider 3 CPU designs: 
 

- CPU 1:  
o Single core. 

- CPU 2: 
o 2 cores.  
o Time to message between CPUs: 70 CC / element 

- CPU 3: 
o 4 cores.  
o Time to message between CPUs: 120 CC / element 

 
Additionally (so you donʼt have to extract data from your code), you can simply assume that on each 
core: 

- the Split(L) function takes 2 CC per element in L 
- the Merge(L1, L2) function takes 15 CC per element in L1 or L2.  

 
Finally, recall that the depth of recursion for a mergesort will be logarithmic (base 2) – specifically, for a 
power-of-two input size 2N, there will be N+1 levels of recursion in Core_Mergesort (since the 
recursion bottoms out at N = 0, not 1. 
 
Find the fastest CPU for each of the following input sizes: 64, 256, 2048 elements.  Explain why you 
believe a given CPU is best for a each of the above data sizes.  What do these results suggest if you're 
writing / compiling code that can be parallelized? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.  What to turn in: 
A typed lab report that contains the following: 

- An answer (with quantitative justification) to the question in Section 3. 
- The MIPS code for mergesort 
- An answer (with quantitative justification) to the question in Section 5. 
- A group evaluation sheet (see link on course website). 

 
Notes: 

- To preserve anonymity (if needed), group evaluation sheets should be (a) turned in individually, 
and (b) folded in half with your name on the outside of the form.  These forms will not be 
returned. 

- Also, please submit your MIPS code and a PDF of your lab report in the dropbox of one of your 
group members. 


