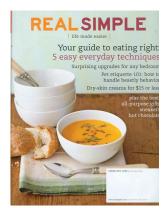
Lecture 01


Introduction to CSE 30321

Huh?

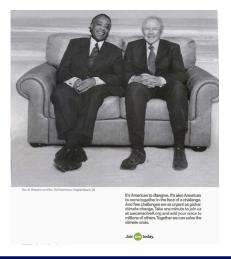
All of the following are magazines that are regularly delivered to the Niemier household.

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

You can learn about good routes to run if you're visiting Chicago...

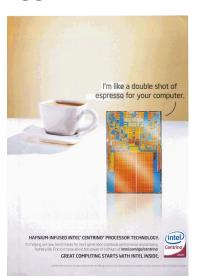
University of Notre Dame


University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

You can learn about the best ice cream...

You can read about Pat Robertson and Al Sharpton advocating ways to reduce the effects of global climate change!



University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

7

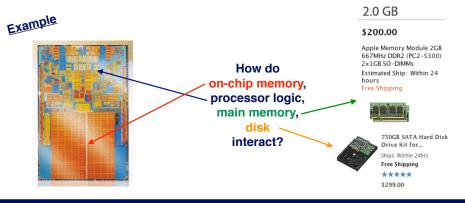
And if you're looking to buy a computer, Intel suggests their dual core Centrino chip...

As you might guess, this brings us to CSE 30321!

This is essentially a picture of one of Intel's computer architectures...

We'll learn about how different parts of a processor are organized and work together

If you're in the market for a wide-body jet, Boeing has just the thing...


University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

8

So, what are the goals of this course?

- At the end of the semester, you should be able to...
 - ...describe the fundamental components required in a single core of a modern microprocessor
 - (Also, explain how they interact with each other, with main memory, and with external storage media...)

University of Notre Dame

So, what are the goals of this course?

- At the end of the semester, you should be able to...
 - ...compare and contrast different computer architectures to determine which one performs better...

Processor Number ¹	Architecture	Cache	Clock Speed	Front Side Bus	Dual-core	Enhanced Intel SpeedStep® Technology²	Execute Disable Bit ^o	Inte 64
E2220	65 nm	1MB L2	2.40 GHz	800 MHz	1	/	1	/
E2200	65 nm	1MB L2	2 20 GH	800 MHz	1	/	1	/
E2180	65 nm	1MB L2	2.00 GHz	800 MHz	1	/	1	1
E2160	65 nm	1MB L2	1.80 GHz	800 MHz	1	/	✓	1
E2140	65 nm	1MB L2	1.60 GHz	800 MHz	1	1	/	1
T2330	65 nm	1MB L2	1.60 GHz	533 MHz	1	/	✓	/
T2310	65 nm	1MB L2	1.46 GHz	533 MHz	1	1	✓	1
T2130	65 nm	1MB L2	1.86 GHz	533 MHz	1	/	✓	
T2080	65 nm	1MB L2	1.73 GHz	533 MHz	1	/	1	
T2060	65 nm	1MB L2		533 MHz	1	/	1	
T2370	65 nm	1MB L2	1.73 GHz	533 MHz	/	/	/	/

If you want to do X, which processor is best?

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

So, what are the goals of this course?

- At the end of the semester, you should be able to...
 - ...understand how code written in a high-level language (e.g. C) is eventually executed on-chip...

Example

In C:

```
void insertionSort(int numbers[], int array_size)
 int i, j, index;
 for (i=1; i < array_size; i++)</pre>
    index = numbers[i];
    while ((j > 0) && (numbers[j-1] > index))
     numbers[j] = numbers[j-1];
j = j - 1;
    numbers[j] = index;
```

```
public static void insertionSort(int[] list, int length) {
   int firstOutOfOrder, location, temp;
   for(firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder++) {
     if(list[firstOutOfOrder] < list[firstOutOfOrder - 1]) {
        temp = list[firstOutOfOrder]:
        location = firstOutOfOrder:
           list[location] = list[location-1];
           location--:
        while (location > 0 && list[location-1] > temp);
        list[location] = temp;
```

Both programs could be run on the same processor... how does this happen?

University of Notre Dame

So, what are the goals of this course?

- At the end of the semester, you should be able to...
 - ...design a processor architecture to meet a specific performance target...

You might choose to add more or less on-chip memory...

University of Notre Dame

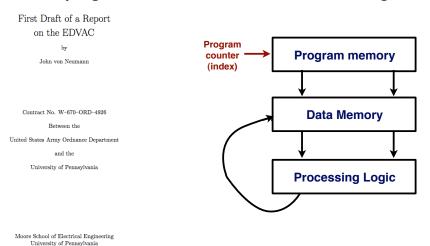
CSE 30321 - Lecture 01 - Introduction to CSE 30321

A tangent...

- We'll talk about 2 more course goals in a little bit, but right now, I'd like to ask the class a few questions...
 - Question 1:
 - How many people are EE, CPEG, CS, other?
 - Question 2:
 - By major, does anyone have any definitive thoughts about what they want to do after graduation?
 - Question 3:
 - Preface: last slide talked about SW...
 - How many people are more interested in the SW side of CSE than the HW side of CSE?
 - Question 4:
 - How many people view CSE 30321 as more a "HW course"
 - How many people think other more "SW oriented" courses are more relevant for their major?

Let's digress...

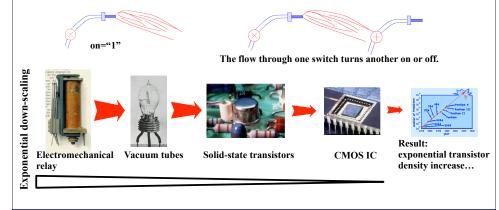
- I asked the questions on the last slide not just to gauge interest, but to bring up an important point...
 - For last 20 years, if interested in SW, computer architecture was probably *not* the most important class for you.
- But...changes in technology are having a profound impact on conventional/established computer architectures
 - We're presently at the very beginning of this storm...
- We'll need significant engagement from programmers to continue the processor performance scaling trends of the last 40 years...
 - ... this will impact your career...


June 30, 1945

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

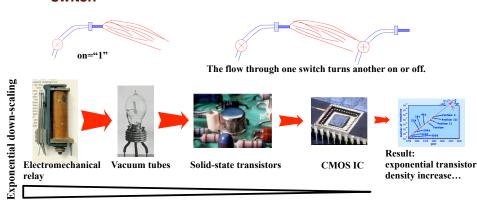
A little history... programs


Stored program model has been around for a long time...

University of Notre Dame

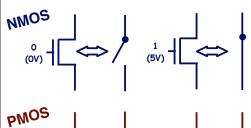
A little history... Zuse's paradigm

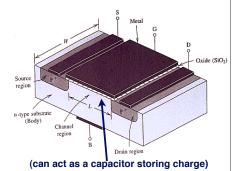
- Konrad Zuse (1938) Z3 machine
 - Use binary numbers to encode information
 - Represent binary digits as on/off state of a current switch



University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 01 - Introduction to CSE 30321

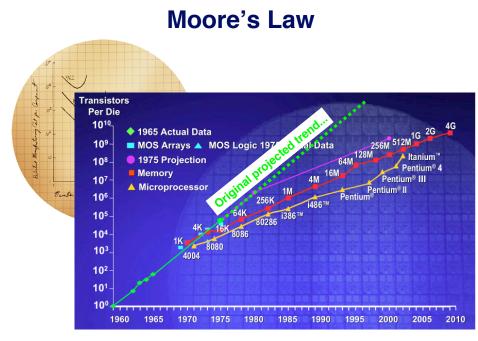

Represent binary digits as on/off state of a current switch



Transistors used to manipulate/store 1s & 0s

Switch-level representation

Cross-sectional view



Using above diagrams as context, note that (with NMOS) if we (i) apply a suitable voltage to the gate & (ii) then apply a suitable voltage between source and drain, current will flow.

University of Notre Dame

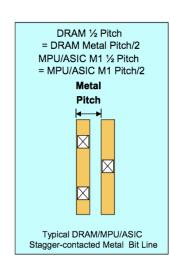
CSE 30321 - Lecture 01 - Introduction to CSE 30321

University of Notre Dame

Moore's Law

"Cramming more components onto integrated circuits."

- G.E. Moore. Electronics 1965


- Observation: DRAM transistor density doubles annually
 - · Became known as "Moore's Law"
 - Actually, a bit off:
 - Density doubles every 18 months (now more like 24)
 - (in 1965 they only had 4 data points!)
- Corollaries:
 - Cost per transistor halves annually (18 months)
 - · Power per transistor decreases with scaling
 - · Speed increases with scaling
 - · Reliability increases with scaling
 - Of course, it depends on how small you try to make things
 - » (I.e. no exponential lasts forever)

Remember these!

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

Feature sizes...

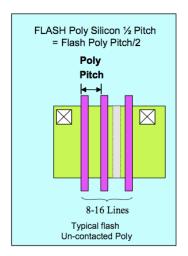


Figure 2 2005 Definition of Pitches

Moore's Law

- Moore's Curve is a self-fulfilling prophecy
 - · 2X every 2 years means ~3% per month
 - I.e. $((1 \times 1.03) \times 1.03) \times 1.03 \times 1.03 \times 24 \times 1.03 \times 1$
 - Can use 3% per month to judge performance features
 - If feature adds 9 months to schedule...it should add at least 30% to performance
 - (1.039 = 1.30 \Rightarrow 30%)

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

00E 000E1 Ecolule 01 IIII 0ddciloii to 00E 000E1

Some more important relationships

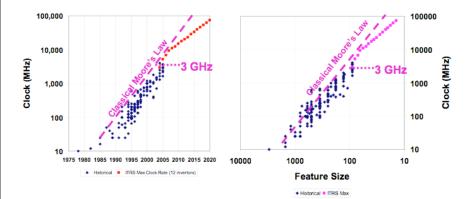
- What about power (i.e. heat)?
 - First, need to quickly discuss equation for capacitance:
 - $C_L = (e_{ox}WL)/d$
 - e_{ox} = dielectric, WL = parallel plate area, d = distance between gate and substrate
 - Then, <u>dynamic</u> power becomes:
 - $P_{dyn} = C_L V_{dd}^2 f_{0-1}$
 - Dynamic power is a function of the frequency of 0 to 1 or 1 to 0 transitions (as this involves the movement of charge)
 - » Note frequency in this context is NOT clock frequency
 - Note that as W and L scale, C_L decreases which in turn will cause a decrease in P_{dvn} .
 - Note that while an increase in V_{dd} will *decrease* switching time, it will also cause a quadratic *increase* in dynamic power.

A bit on device performance...

- One way to think about switching time:
 - Charge is carried by electrons
 - Carrier velocity is proportional to the lateral E-field between source and drain
 - i.e. v = mE
 - m = carrier mobility (and can be though of as a constant)
 - Electric field defined as: E = V_{ds}/L
 - Time for charge to cross channel = length/speed
 - (i.e. meters / (meters/s) = seconds)
 - $\cdot = L/v$
 - $\cdot = L/(mE)$
 - $\cdot = L/(m^*(V_{ds}/L))$
 - = L²/(mV_{ds})

Thus, to make a device faster, we want to either increase V_{ds} or decrease feature sizes (i.e. L)

University of Notre Dame


CSE 30321 - Lecture 01 - Introduction to CSE 30321

2

A funny thing happened on the way to 45 nm

Speed increases with scaling...

Remember these!

2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at 3+ GHz in production.

University of Notre Dame

A funny thing happened on the way to 45 nm

350 250 180 130 90 65

Power decreases with scaling...

dormalized Power

0.0001

0.0000001

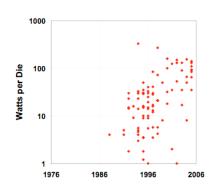
Remember these!

Technology

Node (nm)

Dynamic power

2015


CSE 30321 - Lecture 01 - Introduction to CSE 30321

A funny thing happened on the way to 45 nm

- Speed increases with scaling...
- · Power decreases with scaling...

Remember these!

Why the clock flattening? POWER!!!!

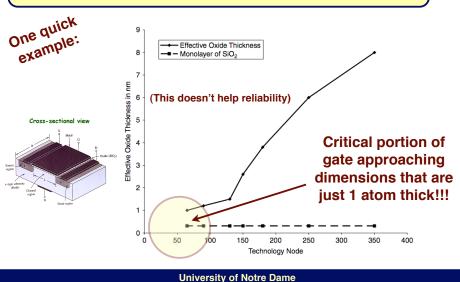
University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

0

Static Power

2000



2005

University of Notre Dame

2010

•Reliability increases with scaling... Remember these!

Other reasons too, but this should give you a good feel for technology...

University of Notre Dame, Department of Computer Science & Engineering

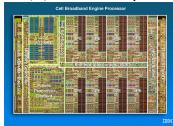
Transistors used for memory too...

Saw earlier, that transistors used for *on chip* memory too... Problem: Program, data = bigger + power problem isn't going away...

- Why? Put faster memory closer to processing logic...
 - SRAM (logic): density +25%, speed +20%
 - DRAM (memory): density +60%, speed +4%
 - Disk (magnetic): density +25%, speed +4%

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 01 - Introduction to CSE 30321


31

This idea has been extended...

Quad core chips...

7, 8, and 9 core chips...

Practical problems must be addressed!

Advances in parallel programming are necessary! (We'll get into later in the semester)

University of Notre Dame, Department of Computer Science & Engineering

Solution?

Motivation:
Processor complexity is good enough,
transistor sizes scale,
we can slow processors down,

manage power, and get performance from...

Parallelism

Top 5 Must-Haves

POWERFUL PROCESSOR

A portrait of performance. "My generative portraits are demanding on the processors in my laptop, as they continuously manipulate video," says Lincoln. Thankfully, the dual-core performance of Intel Centrino processor technology can handle intensive tasks with flying colors.

(i.e. 1 processor, 1 ns clock cycle vs. 2 processors, 2 ns clock cycle)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 01 - Introduction to CSE 30321

- 3

So, what are the goals of this course?

- At the end of the semester, you should be able to...
 - ...explain and articulate why modern microprocessors now have more than 1 core...
- Why?
 - For 8, 16 core chips to be practical, we have to be able to use them
 - Students in this class should go on to play a role in making such chips useful...

So, what are the goals of this course?

- · At the end of the semester, you should be able to...
 - Apply fundamental knowledge about single core machines, dual core machines, performance metrics, etc. to design a microprocessor such that it (a) meets a target set of performance goals and (b) is realistically implementable.

Now, let's look at the syllabus

University of Notre Dame