
University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 1

Lecture 05
Performance Metrics and Benchmarking

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Which is “the best”?

2

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 3

Plane People Range
(miles)

Speed
(mph)

Avg. Cost

(millions)

Passenger*Miles

$

(full range)

Passenger*Miles
$

(1500 mile trip)

737-800 162 3,060 530 63.5 7806 3826

747-8I 467 8000 633 257.5 14508 2720

777-300 368 5995 622 222 9945 2486

787-8 230 8000 630 153 12026 2254

Measuring & Improving Performance
(if planes were computers...)

Which is best?

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

An “architecture” example

4

1 GHz clock rate, each

instruction takes ~1.2 cycles to

execute

2 GHz clock rate, each
instruction takes ~1.8 cycles to

execute

How do we determine
which machine is better? ...

MOV R1, d(8)
Add R2, R3, R1
Sub R5, R2, R1
MOV d(9) R5
Add R4, R3, R0

...

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Characterizing Performance

• How can one computer!s performance be understood
or two computers be compared?

• What factors go into achieving “high performance”?

– Raw CPU speed?

– Memory speed or bandwidth?

– I/O speed or bandwidth?

– The operating system!s overhead?

– The compiler?

• It is critical to succinctly summarize performance, and
be able to meaningfully compare.

5

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

The Impact of a Computer Architect
• Number of instructions:

– ISA design

• Number of clock cycles for each instruction:

– Computer organization

• Cycle length:

– Computer organization and lower level implementation

• What about the compiler and others?

6

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Performance Metrics
• latency: response time, execution time

– good metric for fixed amount of work (minimize time)

• throughput: bandwidth, work per time, “performance”

– = (1 / latency) when there is NO OVERLAP

– > (1 / latency) when there is overlap

• in real processors there is always overlap

– good metric for fixed amount of time (maximize work)

• comparing performance

– A is N times faster than B if and only if:

• perf(A)/perf(B) = time(B)/time(A) = N

– A is X% faster than B if and only if:

• perf(A)/perf(B) = time(B)/time(A) = 1 + X/100

7

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

A more “qualitative” example...
• What is better?

– A machine that takes 1 ns to do “task X” 1 time

– A machine that takes 15 ns to do “task X” 30 times...

• ...but 5 ns to do “task X” 1 time

– You could say that the 1st machine has a lower latency

for a single operation...

– ...while the 2nd machine has better throughput for

multiple operations

8

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Measures of Response Time
• Elapsed Time (total)

– Counts everything:

• Disk, memory, and I/O access

• Operating System Overhead

• Time when the process may be blocked

– In some ways the most critical number, but often difficult

to use for the purposes of enhancement

• CPU Time (execution time)

– Does not include I/O or the time spent executing other

programs

– Often broken up into system time and user time

– Generally accounts for memory performance

9

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 10

• “X is n times faster than Y”

• “Throughput of X is n times that of Y”

• Goal: Improve overall CPU performance

•

Comparing Performance

Various
definitions
of speedup.

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Execution time and throughput are really good
performance metrics in that they!re “lowest common

denominators”

(i.e. if X finishes in 5 seconds and Y finishes in 10, its
hard to make the case that Y is faster!)

Later, we discuss a few other performance metrics that
you may sometimes see - but are generally not as good

and/or misleading.

11

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 12

A CPU : The Bigger Picture

• We can see CPU performance dependent on:

– Clock rate, CPI, and instruction count

• CPU time is directly proportional to all 3:

– Therefore an x % improvement in any one variable leads

to an x % improvement in CPU performance

• But, everything usually affects everything:

Hardware

Tech.
Organization ISAs

Compiler

Technology

Clock Cycle

Time

CPI

Instruction

Count

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

See Problem 1 in Handout

13

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

IC, CPI and IPC

| | | | | | | | | | | | | | | |
time

1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 7 8 9 10

Total Execution Time = 15 cycles

Instruction Count (IC) = Number of Instructions = 10

Average number of cycles per instruction (CPI) = 15/10 = 1.5

Instructions per Cycle (IPC) = 10/15 = 0.66

Can CPI < 1?

Consider the processor we have worked on.

What is its CPI? IPC?

14

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Lots of examples!
• See problems in handout distributed in class.

15

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Different Types of Instructions
• Multiplication takes more time than addition

• Floating point operations take longer than integer
operations

• Memory accesses take more time than register
accesses

• NOTE: changing the cycle time often affects the
number of cycles an instruction will take

CPU Clock Cycles

16

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Metrics
• Metrics Discussed:

– Execution Time (instructions, cycles, seconds)

– Machine Throughput (programs/second)

– Cycles Per Instruction (CPI)

– Instructions Per Cycle (IPC)

• Other Common Measures

– MIPS (millions of instructions per second)

– MFLOPS (megaflops) = millions of floating point

operations per second

MIPS =
 IC
 seconds x 106

= IPC x fclk (MHz)

17

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Exercise: Measurement Comparison
• Given that two machines have the same ISA, which

measurement is always the same for both machines
running program P?

– Clock Rate: No

– CPI: No

– Execution Time: No

– Number of Instructions: Yes

– MIPS: No

18

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Performance Metric I: MIPS
• MIPS (millions of instructions per second)

– (instruction count / execution time in seconds) x 10-6

– instruction count is not a reliable indicator of work

• Prob #1: some optimizations add instructions

• Prob #2: work per instruction varies (FP mult >> register
move)

• Prob #3: ISAs not equal (3 Pentium instrs != 3 Alpha instrs)

– You!ll see more when we talk about addressing modes

» Auto-increment may be a good example...

– may vary inversely with actual performance

19

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Performance Metric I: MIPS
• relative MIPS

– (timereference / timenew) x MIPSreference

• (pro) a little better than native MIPS

• (con) but very sensitive to reference machine

– upshot: may be useful if same ISA/compiler/OS/workload

20

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Benchmarks and Benchmarking
• “program” as unit of work

– millions of them, many different kinds, which to use?

• benchmarks

– standard programs for measuring/comparing performance

• + represent programs people care about

• + repeatable!!

• benchmarking process

– define workload

– extract benchmarks from workload

– execute benchmarks on candidate machines

– project performance on new machine

– run workload on new machine and compare

– not close enough -> repeat

21

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Benchmarks: Instruction Mixes
• instruction mix: instruction type frequencies

– (minus) ignores dependences

– (plus) ok for non-pipelined, scalar processor w/o caches

• the way all processors used to be

– example: Gibson Mix - developed in 1950!s at IBM

• load/store: 31%, branches: 17%

• compare: 4%, shift: 4%, logical: 2%

• fixed add/sub: 6%, float add/sub: 7%

• float mult: 4%, float div: 2%, fixed mul: 1%, fixed div: <1%

• qualitatively, these numbers are still useful today!

22

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Benchmarks: Toys, Kernels, Synthetics
• toy benchmarks: little programs no one really runs

– e.g., fibonacci, 8 queens

– little value, what real programs do these represent?

• kernels: important (frequently executed) pieces of real
programs

– e.g., Livermore loops, Linpack (inner product)

– (plus) good for focusing on individual features not big picture

• For example, maybe you want to test the design of two
different floating point units?

– (minus) over-emphasize target feature (for better or worse)

• synthetic benchmarks:

– programs made up for benchmarking

• toy kernels++, which programs do these represent?

23

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Benchmarks: Real Programs
• real programs

– (plus) only accurate way to characterize performance

– (minus) requires considerable work (porting)

• Standard Performance Evaluation Corporation (SPEC)

– http://www.spec.org

– collects, standardizes and distributes benchmark suites

– consortium made up of industry leaders

– SPEC CPU (CPU intensive benchmarks)
• SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006

– other benchmark suites
• SPECjvm, SPECmail, SPECweb

• Other benchmark suite examples: TPC-C, TPC-H for databases

24

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

SPEC CPU 2000
• 12 integer programs (C, C++)

• gcc (compiler), perl (interpreter), vortex (database)

• bzip2, gzip (replace compress), crafty (chess, replaces go)
• eon (rendering), gap (group theoretic enumerations)

• twolf, vpr (FPGA place and route)

• parser (grammar checker), mcf (network optimization)

• 14 floating point programs (C, FORTRAN)
• swim (shallow water model), mgrid (multigrid field solver)

• applu (partial diffeq!s), apsi (air pollution simulation)
• wupwise (quantum chromodynamics), mesa (OpenGL library)

• art (neural network image recognition), equake (wave
propagation)

• fma3d (crash simulation), sixtrack (accelerator design)

• lucas (primality testing), galgel (fluid dynamics), ammp
(chemistry)

25

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

SPEC 2000
• Different programs in the suite stress different parts of

the architecture

– For example:

• One benchmark may be memory intensive...

• ...another may be compute intensive...

• ...another may be I/O intensive...

– Ideally, show wins on all aspects, but most often not the

case - or the point

26

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

A common architecture graph:

27

Often see graphs like this...

(and interestingly, now such a graph

without accompanying power analysis

is viewed as incomplete)

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

Benchmarking Pitfalls
• benchmark properties mismatch with features studied

– e.g., using SPEC for large cache studies

• careless scaling

– using only first few million instructions (init. phase)

– reducing program data size

• choosing performance from wrong application space

– e.g., in a realtime environment, choosing troff

• using old benchmarks

– “benchmark specials”: benchmark-specific optimizations

• Benchmarks must be continuously maintained and
updated

28

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 29

Amdahl!s Law
• Qualifies performance gain

• Amdahl!s Law defined…

– The performance improvement to be gained from using

some faster mode of execution is limited by the amount of

time the enhancement is actually used.

• Amdahl!s Law defines speedup:

Speedup =
Perf. For entire task without using enhancement

Perf. for entire task using enhancement when possible

Speedup =
Execution time for entire task using enhancement

when possible

Execution time for entire task without enhancement
Or

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 30

Amdahl!s Law and Speedup
• Speedup tells us how much faster the machine will run

with an enhancement

• 2 things to consider:

– 1st…

• Fraction of the computation time in the original machine that
can use the enhancement

• i.e. if a program executes in 30 seconds and 15 seconds of
exec. uses enhancement, fraction = " (always < 1)

– 2nd…

• Improvement gained by enhancement (i.e. how much faster
does the program run overall)

• i.e. if enhanced task takes 3.5 seconds and original task took 7,
we say the speedup is 2 (always > 1)

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 31

Deriving the previous formula

Speedupoverall =
Execution Timeold

Execution Timenew

=

(1 – Fractionenhanced) +
Fractionenhanced

Speedupenhanced

1

(1 – Fractionenhanced) +
Fractionenhanced

Speedupenhanced

1 normalized old execution time

1 - % enhanced
(i.e. part of the task
will take the same
amount of time as

before)

% of task that will run faster

how much faster it will run

(note: # should be > 1)
(otherwise, performance gets worse)

(represents new component of ex. time)

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking

See class handout for Amdahl!s Law

Examples

32

