
CSE 30321 – Computer Architecture I – Fall 2009
Lecture 09– In Class Examples

September 22, 2009

Question 1:

for(i=1; i<5; i++) { int function(int, int) { Assume:
 A(i) = B*d(i); A(i) = A(i-1); Addr. of A = $18
 if(d(i) >= e) { e = A(i); Addr. of d = $19
 e = function(A,i); return e; B = $20
 } } e = $21
}

 (We pass in starting “address of A” and “i”)

Question/Comment My Solution Comment
1st, want to initialize
loop variables. What
registers should we
use, how should we
do it?

addi $16, $0, 1
addi $17, $0, 5

Initialize i to 1
Initialize $17 to 5

(in both cases, saved registers are used – we
want this data available post function call)

2nd, calculate address
of d(i) and load. What
kind of registers
should we use?

Loop: sll $8, $16, 2
 add $8, $19, $8
 lw $9, 0($8)

store i*4 in $8 (temp register OK)
add start of d to i*4 to get address of d(i)
load d(i)  needs to be in register to do math

Calculate B*d(i)

mult $10, $9, $20 # store result in temp to write back to memory

Calculate address of
A(i)

sll $11, $18, 2
add $11, $11, $18

CANNOT do:
add $11, $8, $18

Same as above

We overwrote
But, would have been better to save i*4
 Why? Lower CPI

Store result into A(i)

sw 0($11), $10 # Store result into a(i)

Now, need to check
whether or not d(i) >=
e. How? Assume no
ble.

slt $1, $9, $22

bne $0, $1, start again

Check if $9 < $22 (i.e. d(i) < e)
Still OK to use $9  not overwritten
(temp does not mean goes away immediately)

if d(i) < e, $1 = 1
if d(i) >= e, $1 = 0 (and we want to call function)
(if $1 != 0, do not want to call function)

Given the above
setup, what comes
next? (Falls through to
the next function call).
Assume argument
registers, what setup
code is needed?

 add $4, $18, $0
 add $5, $16, $0
x: jal function

load address of (A) into an argument register
load i into an argument register
call function; $31  x + 4 (if x = PC of jal)

Finish rest of code:
What to do? Copy
return value to $21.
Update counter, check
counter. Where is
“start again” at?

 add $21, $0, $2
sa: addi $16, $16, 1
 bne $16, $17, loop

returned value reassigned to $21
update i by 1 (array index)
if i < 5, loop

A better way:
Could make array index multiple of 4

Function Code
Assume you will
reference A(i-1) with lw
… 0($x). What 4
instruction sequence
is required?

func: subi $5, $5, 1
 sll $8, $5, $2
 add $9, $4, $8
 lw $10, 0($9)

subtract 1 from i
multiply i by 4  note
add start of address to (i-1)
load A(i-1)

Finish up function.

sw 4($9), $10
add $2, $10, $0

store A(i-1) in A(i)
put A(i-1) into return register ($2)

Return

jr $31 # PC = contents of $31

Question 2:

int main(void) { foo1() { foo2() {
 i = 5; # i = $16 a = 17; # a = $16 x = 25; # x = $16
 j = 6; # j = $17 b = 24; # b = $17 y = 12; # y = $17
 k = foo1(); … }
 j = j + 1; foo2();
} }

Letʼs consider how we might use the stack to support these nested calls.

Q: How do we make sure that data for i, j ($16, $17) is preserved here?
A: Use a stack.

By convention, the stack grows up:

Letʼs look at main():

- Assume we want to save $17 and $16
o (weʼll use the stack pointer)

- Also, anything else we want to save?
o $31 – if nested calls.

- How?
o subi $sp, $sp, 12 # make space for 3 data words

o Example: assume $sp = 100, therefore $sp = 100 – 12 = 88

- Then, store results:

o sw 8($sp), $16 # address: 8 + $sp = 8 + 88 = 96
o sw 4($sp), $17 # address: 4 + $sp = 4 + 88 = 92
o sw 0($sp), $31 # address: 0 + $sp = 0 + 88 = 88

Now, in Foo1() … assume A and B are needed past Foo2() … how do we save them?

- We can do the same as before
o Update $sp by 12 and save

Similarly, can do the same for Foo2()

Now, assume that we are returning from Foo1() to main(). What do we do?

- The stack pointer should equal the value before the Foo1() call (i.e. 88)

lw $31, 0($sp) # $31  memory(0 + 88) (LIFO)
lw $17, 4($sp) # $17  memory(4 + 88)
lw $16, 8($sp) # $16  memory(8 + 88)

Finally, update $sp: addi $sp, $sp, 12 ($sp now = 100 again)

Letʼs talk about the Frame Pointer too:

$fp (frame pointer) points to the “beginning of the stack” (ish) – or the first word in frame of a procedure

Why use a $fp?

- Stack used to store variables local to procedure that may not fit into registers
- $sp can change during procedure (e.g. as just seen)

o Results in different offsets that may make procedure harder to understand
- $fp is stable base register for local memory references

For example:

Question 3:

int fact(int n) {
 if (n<1)
 return(1);
 else
 return(n*fact(n-1));
}

Letʼs consider how we might use the stack to support these nested calls. Weʼll also make use of the
frame pointer ($fp).

1: Fact: subi $sp, $sp, 12 # make room for 3 pieces of data on the stack –
 # $fp, $sp, 1 local argument
 # Therefore, if $sp = 100, its now 88
 sw 8($sp), $ra # M(88 + 8)  $ra (store return address)
 sw 4($sp), $fp # M(88 + 4)  $fp (store frame pointer)
 subi $fp, $fp, 12 # update the frame pointer
 # - could assume its 1 above old $sp
 # - book uses convention here (i.e. $sp = $fp)
 # - therefore return to data at 0($fp)
 # - in the other case, it would be 4($fp)

2: bgtz $a0, L2 # if N > 0 (i.e. not < 1) weʼre not done
 # we assume N is in $a0

4: addi $v0, $0, 1 # we eventually finish and want to return 1
 # put 1 in return register
 j L1 # jump to return code

3: L2: sw $a0, 0($fp) *** # save argument N to stack (weʼll need it when we return)
 subi $a0, $a0, 1 # decrement N (N = N – 1), put result in $a0
 jal Fact # call Factorial() again

6: @ lw $t0, 0($f0) # load N (saved at *** to stack)
 mult $v0, $v0, $t0 # store result in $v0

5: L1 lw $ra, 8($sp) # restore return address
 lw $fp, 4($sp) # restore frame pointer
 addi $sp, $sp, 12 # pop stack
 jr $ra # return (to @)

