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CSE 30321 
MIPS Single Cycle Dataflow 

2 

Computer Sci. & Engr. University of Notre Dame 

2 Lectures 11-12 

“Big Picture” Discussion 
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The goals of this lecture are… 
•! …to show how ISAs map to real HW and affect the 

organization of processing logic… 

•! …and to set up a discussion of pipelining + other 
principles of modern processing… 

4 

Computer Sci. & Engr. University of Notre Dame 

4 Lectures 11-12 

The organization of a computer 

Control 

Datapath 

Memory 
Input 

Output 

Von Neumann Model:  
•! Stored-program machine instructions are represented as numbers 
•! Programs can be stored in memory to be read/written just like numbers. 

Processor 

Compiler 
Today 

we’ll talk 
about these 

things 



5 

Computer Sci. & Engr. University of Notre Dame 

5 Lectures 11-12 

Functions of Each Component 
•! Datapath: performs data manipulation operations 

–! arithmetic logic unit (ALU) 
–! floating point unit (FPU) 

•! Control: directs operation of other components 
–! finite state machines 
–! micro-programming 

•! Memory: stores instructions and data 
–! random access v.s. sequential access 
–! volatile v.s. non-volatile 

–! RAMs (SRAM, DRAM), ROMs (PROM, EEPROM), disk 

–! tradeoff between speed and cost/bit 

•! Input/Output and I/O devices: interface to environment 
–! mouse, keyboard, display, device drivers 
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The Performance Perspective 
•! Performance of a machine determined by 

–! Instruction count, clock cycles per instruction, clock 
cycle time 

•! Processor design (datapath and control) determines: 
–! Clock cycles per instruction 

–! Clock cycle time 

•! We will discuss a simplified MIPS implementation 
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Let’s talk about this generally on the 
board first… 

•! Let’s just look at our instruction formats and “derive” a 
simple datapath 
–! (we need to make all of these instruction formats “work”) 

–! (see handout summarizing board discussion from last time) 
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The MIPS Subset 
•! To simplify things a bit we’ll just look at a few instructions: 

–! memory-reference: lw, sw 

–! arithmetic-logical: add, sub, and, or, slt 

–! branching: beq, j 

•! Organizational overview: 
–! fetch an instruction based on the content of PC 

–! decode the instruction 

–! fetch operands 
•! (read one or two registers) 

–! execute  
•! (effective address calculation/arithmetic-logical operations/

comparison) 

–! store result  
•! (write to memory / write to register / update PC) 

With Von Neumann,  
RISC model do similar 

things for each 
instruction  

Most common 
instructions 
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What we’ll do… 
•! …look at instruction encodings… 

•! …look at datapath development… 

•! …discuss how we generate the control signals to make 
the datapath elements work… 
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Implementation Overview 

•! Abstract / Simplified View: 

•! 2 types of signals:  data and control 
•! Clocking strategy:  All storage elements clocked by same  
        clock edge. 

A L U 

PC Address 

Instruction 

Instruction 
Memory 

Ra 

Rb 

Rw 

Data 

Register 
File Data 

Memory 

Address 

Data 

Clk 

Clk Clk 

Clk 

simplest view of 
Von Neumann, RISC µP 

11 

Computer Sci. & Engr. University of Notre Dame 

11 Lectures 11-12 

•! How many cycles should the above take? 
•! You are the architect so you decide! 
•! Less cycles => more to be done in one cycle 

What to be Done for Each 
Instruction? 

<digress:  Single Cycle vs. Multi-Cycle with 6-instruction processor> 
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Single Cycle Implementation 

•! Each instruction takes one cycle to complete. 

•! We wait for everything to settle down, and the 

right thing to be done 

–! ALU might not produce “right answer” right away 

–! (why?) 

–! we use write signals along with clock to determine 

when to write 

•! Cycle time determined by length of the longest path 

PC instr. fetch &  
execute 
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Instruction Word 
32 

Next Addr 
Logic 

Instruction Fetch Unit 
•! Fetch the instruction: mem[PC] ,   

•! Update the program counter: 
–! sequential code: PC <- PC+4 

–! branch and jump: PC <- “something else” 

PC 

Instruction 
Memory 

Address 

Clk 
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During Decode… 

op (6) rs (5) rt (5) rd (5) shamt (5) 

31        26 25        21 20      16 15      11 10             6  5              0 

funct (6) 

•! Take bits from instruction encoding in IR and send to 
different parts of datapath 

e.g. R-type, Add encoding: 

Control 
Logic 

32  
32-bit 

Registers 
Clk 

Ra 

Rw 

Rb 

5 
rs 

rd 

rt 5 

5 

RegWr 

15 

Computer Sci. & Engr. University of Notre Dame 

15 Lectures 11-12 

Let’s say we want to fetch… 
…an R-type instruction (arithmetic) 

•! Instruction format: 

•! RTL:   
–! Instruction fetch: mem[PC] 

–! ALU operation: reg[rd] <- reg[rs] op reg[rt] 

–! Go to next instruction: Pc <- PC+ 4 

•! Ra, Rb and Rw are from  instruction’s rs, rt, rd 
fields. 

•! Actual ALU operation and register write should occur 
after decoding the instruction. 

op (6) rs (5) rt (5) rd (5) shamt (5) 

31        26 25        21 20      16 15      11 10             6  5              0 

funct (6) 

So IR ! Memory(PC) 
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BusA 

32 ALU 

Datapath for R-Type Instructions 

•! Register timing: 
–! Register can always be read.  
–! Register write only happens when RegWr is set to high and at the falling 

edge of the clock 

32  
32-bit 

Registers 
Clk 

Ra 

Rw 

Rb 

5 
rs 

rd 

rt 5 

5 

RegWr 

BusB 

32 

BusW 
32 

ALUctr 
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I-Type Arithmetic/Logic Instructions 
•! Instruction format: 

•! RTL for arithmetic operations: e.g., ADDI 
–! Instruction fetch: mem[PC] 

–! Add operation: reg[rt] <-  reg[rs] + SignExt(imm16) 

–! Go to next instruction: Pc <- PC+ 4 

Op (6) rs (5) rt (5) Address/Immediate value (16) 

31        26 25        21 20      16 15                                                0 

(Just I-type Arithmetic Instructions) 
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BusA 

32 ALU 

Datapath for I-Type A/L 
Instructions 

32 
32-bit 

Registers 
Clk 

Ra 

Rw 

Rb 

5 
rs 

rd 

rt 5 

5 

RegWr 

BusB 

32 

BusW 
32 MUX 

M
U
X

 

32 

Extender 

16 

imm16 

rt 

ALUSrc 

RegDst 

ALUctr 

BusW 

32 

Destination registers are 
in different places in 

encoding so need a mux 

(rd[15-11] vs. rt[20-16]) 

must “zero out” 1st 16 bits… 

note that we reuse ALU… 
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I-Type Load/Store Instructions 
•! Instruction format: 

•! RTL for load/store operations: e.g., LW 
–! Instruction fetch: mem[PC] 

–! Compute memory address: Addr <- reg[rs] + 
SignExt(imm16) 

–! Load data into register: reg[rt] <- mem[Addr] 

–! Go to next instruction: Pc <- PC+ 4 

•! How about store? 

Op (6) rs (5) rt (5) Address/Immediate value (16) 

31        26 25        21 20      16 15                                                0 

same thing, just make 3rd step 
mem[addr] ! reg[rs] 

(Just I-type Arithmetic Instructions) 
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Datapath for Load/Store 
Instructions 

BusA 

32 ALU 32 
32-bit 

Registers 
Clk 

Ra 

Rw 
Rb 

5 
rs 

rd 

rt 5 

5 

RegWr 

BusB 

32 

MUX 

M
U
X

 

32 

Extender 

16 

imm16 

rt 

ALUSrc RegDst 

ALUctr 

   Data 
    Memory 

Clk 

DataIn 
32 

MemWr 

WrEn Addr 

need a control signal 

For lw/sw send address 
from ALU to data memory 

DataOut 32 

For sw, need to send 
data to memory 

For lw, need to send 
data to register file 
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I-Type Branch Instructions 
•! Instruction format: 

•! RTL for branch operations: e.g., BEQ 
–! Instruction fetch: mem[PC] 

–! Compute conditon: Cond <- reg[rs] - reg[rt] 

–! Calculate the next instruction’s address: 

   if (Cond eq 0)  then 

    PC <- PC+ 4 + (SignExd(imm16) x 4) 

   else ? 

Op (6) rs (5) rt (5) Address/Immediate value (16) 

31        26 25        21 20      16 15                                                0 

need to align 
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Datapath for Branch Instructions 

BusA 

32 ALU 32 
32-bit 

Registers 
Clk 

Ra 

Rw 
Rb 

5 
rs 

rd 

rt 5 

5 

RegWr 

BusB 

32 

MUX 

M
U
X

 

32 

Extender 

16 rt 

ALUSrc RegDst 

ALUctr 

Next Addr 
Logic 

PC Clk 

Zero 

imm16 

To Instruction Mem 

we’ll define this next; 
(will need PC, zero test 

condition from ALU) 
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Next Address Logic 

ADD 

M
U
X

 

SignExt 

16 

“0” 

PC Clk 

imm16 
Branch Zero 

Instruction 
Memory 

Where might “zero” come from? 

May not want to 
change PC if BEQ 
condition not met 

(implicitly says: 
“this stuff happens 
anyway so we have 
to be sure we don’t 
change things we 

don’t want to change”) 

if branch instruction 
AND 0, can automatically 
generate control signal 

contains PC + 4 
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J-Type Jump Instructions 
•! Instruction format: 

•! RTL  operations: e.g., BEQ 
–! Instruction fetch: mem[PC] 

–! Set up PC:  PC <- ((PC+ 4)<31:28> 
CONCAT(target<25:0>) x 4 

Op (6) Target address (26) 

31        26 25                                                                                0 
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Instruction Fetch Unit 

ADD 

M
U
X

 

SignExt 

16 

“0” 

PC Clk 

imm16 
Branch Zero 

CarryIn 

“1” 

Instruction 
Memory 

PC<31:28> 

Instruction<25:0> 

M
U
X

 

Jump 

Use: 
New address from 
jump instruction 

OR 
use 4 MSB 

of PC 

Where does 
output go? 
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A Single Cycle Datapath 

i 

i 

P C 

I n s t r u c t i o n 
m e m o r y 

R e a d 
a d d r e s s 

I n s t r u c t i o n 

1 6 3 2 

A d d A L U 
r e s u l t 

M 
u 
x 

R e g i s t e r s 

W r i t e 
r e g i s t e r 
W r i t e 
d a t a 

R e a d 
d a t a 1 

R e a d 
d a t a 2 

R e a d 
r e g i s t e r 1 
R e a d 
r e g i s t e r 2 

S h i f t 
l e f t 2 

4 

M 
u 
x 

3 

R e g W r i t e 

M e m R e a d 

M e m W r i t e 

P C S r c 

A L U S r c 

M e m t o R e g 

A L U 
r e s u l t 

Z e r o 
A L U 

D a t a 
m e m o r y 

A d d r e s s 

W r i t e 
d a t a 

R e a d 
d a t a M 

u 
x 

S i g n 
e x t e n d 

A d d 

Add Jump. 

ALUctr 
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PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31  26]

4

16 32
Instruction [15  0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15  11]

ALU
control

Shift
left 2

ALU

Address

When we talk about control, 
we talk about these blocks 

A Single Cycle Datapath 
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Let’s trace a few instructions 
•! For example… 

–! Add  $5, $6, $7 

–! SW  0($9), $10 

–! Sub  $1, $2, $3 

–! LW  $11, 0($12) 
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Control Logic 

(I.e. now, we need to make the HW do 
what we want it to do - add, subtract, 

etc. - when we want it to…) 
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The HW needed, plus control 

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31  26]

4

16 32
Instruction [15  0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15  11]

ALU
control

Shift
left 2

ALU

Address

When we talk about control, 
we talk about these blocks 

Single cycle  
MIPS machine 
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Implementing Control 
•! Implementation Steps: 

–! Identify control inputs and control output (control words) 

–! Make a control signal table for each cycle 

–! Derive control logic from the control table 

•! Do we need a FSM here? 

!"#$%"&'

()$*'

+)$)'

()$*'

Control 

input 

Control 

output 

Control inputs: 

  Opcode (5 bits) 

  Func (6 bits) 

Control outputs: 

   RegDst 

   MemtoReg 

   RegWrite 

   MemRead 

   MemWrite 

   ALUSrc 

   ALUctr 

   Branch 

   Jump 

This logic can take on many forms:  combinational 

logic, ROMs, microcode, or combinations… 
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Implementing Control 
•! Implementation Steps: 

1.! Identify control inputs and control outputs  

2.! Make a control signal table for each cycle 

3.! Derive control logic from the control table 
–! This logic can take on many forms:  combinational logic, 

ROMs, microcode, or combinations… 
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Single Cycle Control Input/Output 
•! Control Inputs: 

–! Opcode (6 bits) 
–! How about R-type instructions? 

•! Control Outputs: 
–! RegDst 
–! ALUSrc 
–! MemtoReg 
–! RegWrite 
–! MemRead 
–! MemWrite 
–! Branch 
–! Jump 
–! ALUctr 

these are columns 

these are rows 

Step 2: 
Make a control signal 
table for each cycle 

Step 1:  Idenitfy 
inputs & outputs 
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Control Signal Table 

Add Sub LW SW BEQ 

Func (input) 100000 100010 xxxxxx xxxxxx xxxxxx 

Op (input) 000000 000000 100011 101011 000100 

RegDst 1 1 0 X X 

ALUSrc 0 0 1 1 0 

Mem-to-Reg 0 0 1 X X 

Reg. Write 1 1 1 0 0 

Mem. Read 0 0 1 0 0 

Mem. Write 0 0 0 1 0 

Branch 0 0 0 0 1 

ALUOp Add Sub 00 00 01 

R-type 

(outputs) 

(inputs) 
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The HW needed, plus control 

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31  26]

4

16 32
Instruction [15  0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15  11]

ALU
control

Shift
left 2

ALU

Address

For MIPS, we have to 
build a Main Control Block 
and an ALU Control Block 

Single cycle  
MIPS machine 
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Main control, ALU control 

•! Use OP field to generate ALUOp (encoding) 
–!Control signal fed to ALU control block 

•! Use Func field and ALUOp to generate ALUctr 
(decoding) 
–!Specifically sets 3 ALU control signals 

•! B-Invert, Carry-in, operation 

Main 
Control 

ALU 
Control 

ALU 

ALUOp 

Func 

OP 
ALUctr 

6 

6 

2 

3 

(opcode) 

Our 2 blocks 
of control logic 

Other cnt. 
signals 



37 

Computer Sci. & Engr. University of Notre Dame 

37 Lectures 11-12 

Main control, ALU control 

Main 
Control 

ALU 
Control 

ALU 

ALUOp 

Func 

OP 
ALUctr 

6 

6 

2 

3 

Or in other words… 
00 = ALU performs add 
01 = ALU performs sub 
10 = ALU does what function code says 

R-type lw sw beq 

ALU Operation “R-type” add add subtract 

ALUOp<1:0> 10 00 00 01 

Outputs of main control, 
become inputs to ALU control 

We have 8 bits 
of input to our ALU control 
block; we need 3 bits of 

output… 
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Generating ALUctr 
•! We want these outputs: 

ALUctr<2> = B-negate (C-in & B-invert) 
ALUctr<1> = Select ALU Output 
ALUctr<0> = Select ALU Output 

ALU Operation and or add sub slt 

ALUctr<2:0> 000 001 010 110 111 mux 

 and - 00 

 or - 01 

adder - 10 

less - 11 

Invert B and C-in  
must be a 1 for  

subtract 

36 (and) = 1 0 0 1 0 0 
37 (or)  = 1 0 0 1 0 1 
32 (add) = 1 0 0 0 0 0 
34 (sub) = 1 0 0 0 1 0 
42 (slt)  = 1 0 1 0 1 0 

can ignore these 
(they’re the same for all…) 

func<5:0> 

•! We have these inputs… 

ALUOp Funct field ALUctr 
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 

0 0 X X X X X X 
0 1 X X X X X X 
1 X X X 0 0 0 0 
1 X X X 0 0 1 0 
1 X X X 0 1 0 0 
1 X X X 0 1 0 1 
1 X X X 1 0 1 0 

Inputs 

lw/sw 
beq 

R-type 

010 (add) 
110 (sub) 

010 (add) 

110 (sub) 

000 (and) 
001 (or) 

111 (slt) 

Outputs 
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The Logic 

Ex:  ALUctr<2> 

(SUB/BEQ) 

or 
and 

or 

and 
or 

(func<5:0>) 

F0 

F1 

F2 

F3 

(ALUOp) 
ALUOp0 

ALUctr<2> 

ALUctr<1> 

ALUctr<0> 

ALUctr 

ALUOp1 

Could generate 
gates by hand, 

often done w/SW. 

ALUOp Funct field ALUctr 
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 

0 0 X X X X X X 
0 1 X X X X X X 
1 X X X 0 0 0 0 
1 X X X 0 0 1 0 
1 X X X 0 1 0 0 
1 X X X 0 1 0 1 
1 X X X 1 0 1 0 

Inputs 

lw/sw 
beq 

R-type 

010 (add) 
110 (sub) 

010 (add) 

110 (sub) 

000 (and) 
001 (or) 

111 (slt) 

Outputs 
This table is used to 
generate the actual 
Boolean logic gates 

that produce ALUctr. 

1/0 
X/1 

0/X 

0/X 

1/X 

0/X 0/X 0/0 

1/0 1/1 

1/1 

0/0 

110/110 
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Recall… 

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31  26]

4

16 32
Instruction [15  0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15  11]

ALU
control

Shift
left 2

ALU

Address

Recall, for MIPS, we have to 
build a Main Control Block 
and an ALU Control Block 

Single cycle  
MIPS machine 
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Well, here’s what we did… 

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31  26]

4

16 32
Instruction [15  0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15  11]

ALU
control

Shift
left 2

ALU

Address

Single cycle  
MIPS machine 

or 
and 

or 

and 
or 

(func<5:0>) 

F0 

F1 

F2 

F3 

(ALUOp) 
ALUOp0 

ALUctr<2> 

ALUctr<1> 

ALUctr<0> 

ALUctr 

ALUOp1 

We came up with 
the information to 
generate this logic 

which would fit here 
in the datapath. 
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(and again, remember, realistically logic, 
ISAs, insturction types, etc. would be 

much more complex) 

(we’d also have to route all signals too…
which may affect how we’d like to 

organzie processing logic) 
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Single cycle versus multi-cycle 
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Single-Cycle Implementation 
•! Single-cycle, fixed-length clock: 

–! CPI = 1 

–! Clock cycle = propagation delay of the longest datapath 
operations among all instruction types 

–! Easy to implement 

•! Single-cycle, variable-length clock: 
–! CPI = 1 

–! Clock cycle = ! (%(type-i instructions) * propagation 
delay of the type “i” instruction datapath operations) 

–! Better than the previous, but impractical to implement 

•! Disadvantages: 
–! What if we have floating-point operations? 

–! How about component usage? 
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Multiple Cycle Alternative 
•! Break an instruction into smaller steps  

•! Execute each step in one cycle. 

•! Execution sequence: 
–! Balance amount of work to be done 

–! Restrict each cycle to use only one major functional 
unit 

–! At the end of a cycle 
•! Store values for use in later cycles, why? 

•! Introduce additional “internal” registers 

•! The advantages: 
–! Cycle time much shorter 

–! Diff. inst. take different # of cycles to complete 

–! Functional unit used more than once per instruction 


