
1

Computer Sci. & Engr. University of Notre Dame

1 Lectures 11-12

CSE 30321
MIPS Single Cycle Dataflow

2

Computer Sci. & Engr. University of Notre Dame

2 Lectures 11-12

“Big Picture” Discussion

3

Computer Sci. & Engr. University of Notre Dame

3 Lectures 11-12

The goals of this lecture are…
•! …to show how ISAs map to real HW and affect the

organization of processing logic…

•! …and to set up a discussion of pipelining + other
principles of modern processing…

4

Computer Sci. & Engr. University of Notre Dame

4 Lectures 11-12

The organization of a computer

Control

Datapath

Memory
Input

Output

Von Neumann Model:
•! Stored-program machine instructions are represented as numbers
•! Programs can be stored in memory to be read/written just like numbers.

Processor

Compiler
Today

we’ll talk
about these

things

5

Computer Sci. & Engr. University of Notre Dame

5 Lectures 11-12

Functions of Each Component
•! Datapath: performs data manipulation operations

–! arithmetic logic unit (ALU)
–! floating point unit (FPU)

•! Control: directs operation of other components
–! finite state machines
–! micro-programming

•! Memory: stores instructions and data
–! random access v.s. sequential access
–! volatile v.s. non-volatile

–! RAMs (SRAM, DRAM), ROMs (PROM, EEPROM), disk

–! tradeoff between speed and cost/bit

•! Input/Output and I/O devices: interface to environment
–! mouse, keyboard, display, device drivers

6

Computer Sci. & Engr. University of Notre Dame

6 Lectures 11-12

The Performance Perspective
•! Performance of a machine determined by

–! Instruction count, clock cycles per instruction, clock
cycle time

•! Processor design (datapath and control) determines:
–! Clock cycles per instruction

–! Clock cycle time

•! We will discuss a simplified MIPS implementation

7

Computer Sci. & Engr. University of Notre Dame

7 Lectures 11-12

Let’s talk about this generally on the
board first…

•! Let’s just look at our instruction formats and “derive” a
simple datapath
–! (we need to make all of these instruction formats “work”)

–! (see handout summarizing board discussion from last time)

8

Computer Sci. & Engr. University of Notre Dame

8 Lectures 11-12

The MIPS Subset
•! To simplify things a bit we’ll just look at a few instructions:

–! memory-reference: lw, sw

–! arithmetic-logical: add, sub, and, or, slt

–! branching: beq, j

•! Organizational overview:
–! fetch an instruction based on the content of PC

–! decode the instruction

–! fetch operands
•! (read one or two registers)

–! execute
•! (effective address calculation/arithmetic-logical operations/

comparison)

–! store result
•! (write to memory / write to register / update PC)

With Von Neumann,
RISC model do similar

things for each
instruction

Most common
instructions

9

Computer Sci. & Engr. University of Notre Dame

9 Lectures 11-12

What we’ll do…
•! …look at instruction encodings…

•! …look at datapath development…

•! …discuss how we generate the control signals to make
the datapath elements work…

10

Computer Sci. & Engr. University of Notre Dame

10 Lectures 11-12

Implementation Overview

•! Abstract / Simplified View:

•! 2 types of signals: data and control
•! Clocking strategy: All storage elements clocked by same
 clock edge.

A L U

PC Address

Instruction

Instruction
Memory

Ra

Rb

Rw

Data

Register
File Data

Memory

Address

Data

Clk

Clk Clk

Clk

simplest view of
Von Neumann, RISC µP

11

Computer Sci. & Engr. University of Notre Dame

11 Lectures 11-12

•! How many cycles should the above take?
•! You are the architect so you decide!
•! Less cycles => more to be done in one cycle

What to be Done for Each
Instruction?

<digress: Single Cycle vs. Multi-Cycle with 6-instruction processor>

12

Computer Sci. & Engr. University of Notre Dame

12 Lectures 11-12

Single Cycle Implementation

•! Each instruction takes one cycle to complete.

•! We wait for everything to settle down, and the

right thing to be done

–! ALU might not produce “right answer” right away

–! (why?)

–! we use write signals along with clock to determine

when to write

•! Cycle time determined by length of the longest path

PC instr. fetch &
execute

13

Computer Sci. & Engr. University of Notre Dame

13 Lectures 11-12

Instruction Word
32

Next Addr
Logic

Instruction Fetch Unit
•! Fetch the instruction: mem[PC] ,

•! Update the program counter:
–! sequential code: PC <- PC+4

–! branch and jump: PC <- “something else”

PC

Instruction
Memory

Address

Clk

14

Computer Sci. & Engr. University of Notre Dame

14 Lectures 11-12

During Decode…

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

•! Take bits from instruction encoding in IR and send to
different parts of datapath

e.g. R-type, Add encoding:

Control
Logic

32
32-bit

Registers
Clk

Ra

Rw

Rb

5
rs

rd

rt 5

5

RegWr

15

Computer Sci. & Engr. University of Notre Dame

15 Lectures 11-12

Let’s say we want to fetch…
…an R-type instruction (arithmetic)

•! Instruction format:

•! RTL:
–! Instruction fetch: mem[PC]

–! ALU operation: reg[rd] <- reg[rs] op reg[rt]

–! Go to next instruction: Pc <- PC+ 4

•! Ra, Rb and Rw are from instruction’s rs, rt, rd
fields.

•! Actual ALU operation and register write should occur
after decoding the instruction.

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

So IR ! Memory(PC)

16

Computer Sci. & Engr. University of Notre Dame

16 Lectures 11-12

BusA

32 ALU

Datapath for R-Type Instructions

•! Register timing:
–! Register can always be read.
–! Register write only happens when RegWr is set to high and at the falling

edge of the clock

32
32-bit

Registers
Clk

Ra

Rw

Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

BusW
32

ALUctr

17

Computer Sci. & Engr. University of Notre Dame

17 Lectures 11-12

I-Type Arithmetic/Logic Instructions
•! Instruction format:

•! RTL for arithmetic operations: e.g., ADDI
–! Instruction fetch: mem[PC]

–! Add operation: reg[rt] <- reg[rs] + SignExt(imm16)

–! Go to next instruction: Pc <- PC+ 4

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

(Just I-type Arithmetic Instructions)

18

Computer Sci. & Engr. University of Notre Dame

18 Lectures 11-12

BusA

32 ALU

Datapath for I-Type A/L
Instructions

32
32-bit

Registers
Clk

Ra

Rw

Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

BusW
32 MUX

M
U
X

32

Extender

16

imm16

rt

ALUSrc

RegDst

ALUctr

BusW

32

Destination registers are
in different places in

encoding so need a mux

(rd[15-11] vs. rt[20-16])

must “zero out” 1st 16 bits…

note that we reuse ALU…

19

Computer Sci. & Engr. University of Notre Dame

19 Lectures 11-12

I-Type Load/Store Instructions
•! Instruction format:

•! RTL for load/store operations: e.g., LW
–! Instruction fetch: mem[PC]

–! Compute memory address: Addr <- reg[rs] +
SignExt(imm16)

–! Load data into register: reg[rt] <- mem[Addr]

–! Go to next instruction: Pc <- PC+ 4

•! How about store?

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

same thing, just make 3rd step
mem[addr] ! reg[rs]

(Just I-type Arithmetic Instructions)

20

Computer Sci. & Engr. University of Notre Dame

20 Lectures 11-12

Datapath for Load/Store
Instructions

BusA

32 ALU 32
32-bit

Registers
Clk

Ra

Rw
Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

MUX

M
U
X

32

Extender

16

imm16

rt

ALUSrc RegDst

ALUctr

 Data
 Memory

Clk

DataIn
32

MemWr

WrEn Addr

need a control signal

For lw/sw send address
from ALU to data memory

DataOut 32

For sw, need to send
data to memory

For lw, need to send
data to register file

21

Computer Sci. & Engr. University of Notre Dame

21 Lectures 11-12

I-Type Branch Instructions
•! Instruction format:

•! RTL for branch operations: e.g., BEQ
–! Instruction fetch: mem[PC]

–! Compute conditon: Cond <- reg[rs] - reg[rt]

–! Calculate the next instruction’s address:

 if (Cond eq 0) then

 PC <- PC+ 4 + (SignExd(imm16) x 4)

 else ?

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

need to align

22

Computer Sci. & Engr. University of Notre Dame

22 Lectures 11-12

Datapath for Branch Instructions

BusA

32 ALU 32
32-bit

Registers
Clk

Ra

Rw
Rb

5
rs

rd

rt 5

5

RegWr

BusB

32

MUX

M
U
X

32

Extender

16 rt

ALUSrc RegDst

ALUctr

Next Addr
Logic

PC Clk

Zero

imm16

To Instruction Mem

we’ll define this next;
(will need PC, zero test

condition from ALU)

23

Computer Sci. & Engr. University of Notre Dame

23 Lectures 11-12

Next Address Logic

ADD

M
U
X

SignExt

16

“0”

PC Clk

imm16
Branch Zero

Instruction
Memory

Where might “zero” come from?

May not want to
change PC if BEQ
condition not met

(implicitly says:
“this stuff happens
anyway so we have
to be sure we don’t
change things we

don’t want to change”)

if branch instruction
AND 0, can automatically
generate control signal

contains PC + 4

24

Computer Sci. & Engr. University of Notre Dame

24 Lectures 11-12

J-Type Jump Instructions
•! Instruction format:

•! RTL operations: e.g., BEQ
–! Instruction fetch: mem[PC]

–! Set up PC: PC <- ((PC+ 4)<31:28>
CONCAT(target<25:0>) x 4

Op (6) Target address (26)

31 26 25 0

25

Computer Sci. & Engr. University of Notre Dame

25 Lectures 11-12

Instruction Fetch Unit

ADD

M
U
X

SignExt

16

“0”

PC Clk

imm16
Branch Zero

CarryIn

“1”

Instruction
Memory

PC<31:28>

Instruction<25:0>

M
U
X

Jump

Use:
New address from
jump instruction

OR
use 4 MSB

of PC

Where does
output go?

26

Computer Sci. & Engr. University of Notre Dame

26 Lectures 11-12

A Single Cycle Datapath

i

i

P C

I n s t r u c t i o n
m e m o r y

R e a d
a d d r e s s

I n s t r u c t i o n

1 6 3 2

A d d A L U
r e s u l t

M
u
x

R e g i s t e r s

W r i t e
r e g i s t e r
W r i t e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1
R e a d
r e g i s t e r 2

S h i f t
l e f t 2

4

M
u
x

3

R e g W r i t e

M e m R e a d

M e m W r i t e

P C S r c

A L U S r c

M e m t o R e g

A L U
r e s u l t

Z e r o
A L U

D a t a
m e m o r y

A d d r e s s

W r i t e
d a t a

R e a d
d a t a M

u
x

S i g n
e x t e n d

A d d

Add Jump.

ALUctr

27

Computer Sci. & Engr. University of Notre Dame

27 Lectures 11-12

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

When we talk about control,
we talk about these blocks

A Single Cycle Datapath

28

Computer Sci. & Engr. University of Notre Dame

28 Lectures 11-12

Let’s trace a few instructions
•! For example…

–! Add $5, $6, $7

–! SW 0($9), $10

–! Sub $1, $2, $3

–! LW $11, 0($12)

29

Computer Sci. & Engr. University of Notre Dame

29 Lectures 11-12

Control Logic

(I.e. now, we need to make the HW do
what we want it to do - add, subtract,

etc. - when we want it to…)

30

Computer Sci. & Engr. University of Notre Dame

30 Lectures 11-12

The HW needed, plus control

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

When we talk about control,
we talk about these blocks

Single cycle
MIPS machine

31

Computer Sci. & Engr. University of Notre Dame

31 Lectures 11-12

Implementing Control
•! Implementation Steps:

–! Identify control inputs and control output (control words)

–! Make a control signal table for each cycle

–! Derive control logic from the control table

•! Do we need a FSM here?

!"#$%"&'

()$*'

+)$)'

()$*'

Control

input

Control

output

Control inputs:

 Opcode (5 bits)

 Func (6 bits)

Control outputs:

 RegDst

 MemtoReg

 RegWrite

 MemRead

 MemWrite

 ALUSrc

 ALUctr

 Branch

 Jump

This logic can take on many forms: combinational

logic, ROMs, microcode, or combinations…

32

Computer Sci. & Engr. University of Notre Dame

32 Lectures 11-12

Implementing Control
•! Implementation Steps:

1.! Identify control inputs and control outputs

2.! Make a control signal table for each cycle

3.! Derive control logic from the control table
–! This logic can take on many forms: combinational logic,

ROMs, microcode, or combinations…

33

Computer Sci. & Engr. University of Notre Dame

33 Lectures 11-12

Single Cycle Control Input/Output
•! Control Inputs:

–! Opcode (6 bits)
–! How about R-type instructions?

•! Control Outputs:
–! RegDst
–! ALUSrc
–! MemtoReg
–! RegWrite
–! MemRead
–! MemWrite
–! Branch
–! Jump
–! ALUctr

these are columns

these are rows

Step 2:
Make a control signal
table for each cycle

Step 1: Idenitfy
inputs & outputs

34

Computer Sci. & Engr. University of Notre Dame

34 Lectures 11-12

Control Signal Table

Add Sub LW SW BEQ

Func (input) 100000 100010 xxxxxx xxxxxx xxxxxx

Op (input) 000000 000000 100011 101011 000100

RegDst 1 1 0 X X

ALUSrc 0 0 1 1 0

Mem-to-Reg 0 0 1 X X

Reg. Write 1 1 1 0 0

Mem. Read 0 0 1 0 0

Mem. Write 0 0 0 1 0

Branch 0 0 0 0 1

ALUOp Add Sub 00 00 01

R-type

(outputs)

(inputs)

35

Computer Sci. & Engr. University of Notre Dame

35 Lectures 11-12

The HW needed, plus control

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

For MIPS, we have to
build a Main Control Block
and an ALU Control Block

Single cycle
MIPS machine

36

Computer Sci. & Engr. University of Notre Dame

36 Lectures 11-12

Main control, ALU control

•! Use OP field to generate ALUOp (encoding)
–!Control signal fed to ALU control block

•! Use Func field and ALUOp to generate ALUctr
(decoding)
–!Specifically sets 3 ALU control signals

•! B-Invert, Carry-in, operation

Main
Control

ALU
Control

ALU

ALUOp

Func

OP
ALUctr

6

6

2

3

(opcode)

Our 2 blocks
of control logic

Other cnt.
signals

37

Computer Sci. & Engr. University of Notre Dame

37 Lectures 11-12

Main control, ALU control

Main
Control

ALU
Control

ALU

ALUOp

Func

OP
ALUctr

6

6

2

3

Or in other words…
00 = ALU performs add
01 = ALU performs sub
10 = ALU does what function code says

R-type lw sw beq

ALU Operation “R-type” add add subtract

ALUOp<1:0> 10 00 00 01

Outputs of main control,
become inputs to ALU control

We have 8 bits
of input to our ALU control
block; we need 3 bits of

output…

38

Computer Sci. & Engr. University of Notre Dame

38 Lectures 11-12

Generating ALUctr
•! We want these outputs:

ALUctr<2> = B-negate (C-in & B-invert)
ALUctr<1> = Select ALU Output
ALUctr<0> = Select ALU Output

ALU Operation and or add sub slt

ALUctr<2:0> 000 001 010 110 111 mux

 and - 00

 or - 01

adder - 10

less - 11

Invert B and C-in
must be a 1 for

subtract

36 (and) = 1 0 0 1 0 0
37 (or) = 1 0 0 1 0 1
32 (add) = 1 0 0 0 0 0
34 (sub) = 1 0 0 0 1 0
42 (slt) = 1 0 1 0 1 0

can ignore these
(they’re the same for all…)

func<5:0>

•! We have these inputs…

ALUOp Funct field ALUctr
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X
0 1 X X X X X X
1 X X X 0 0 0 0
1 X X X 0 0 1 0
1 X X X 0 1 0 0
1 X X X 0 1 0 1
1 X X X 1 0 1 0

Inputs

lw/sw
beq

R-type

010 (add)
110 (sub)

010 (add)

110 (sub)

000 (and)
001 (or)

111 (slt)

Outputs

39

Computer Sci. & Engr. University of Notre Dame

39 Lectures 11-12

The Logic

Ex: ALUctr<2>

(SUB/BEQ)

or
and

or

and
or

(func<5:0>)

F0

F1

F2

F3

(ALUOp)
ALUOp0

ALUctr<2>

ALUctr<1>

ALUctr<0>

ALUctr

ALUOp1

Could generate
gates by hand,

often done w/SW.

ALUOp Funct field ALUctr
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X
0 1 X X X X X X
1 X X X 0 0 0 0
1 X X X 0 0 1 0
1 X X X 0 1 0 0
1 X X X 0 1 0 1
1 X X X 1 0 1 0

Inputs

lw/sw
beq

R-type

010 (add)
110 (sub)

010 (add)

110 (sub)

000 (and)
001 (or)

111 (slt)

Outputs
This table is used to
generate the actual
Boolean logic gates

that produce ALUctr.

1/0
X/1

0/X

0/X

1/X

0/X 0/X 0/0

1/0 1/1

1/1

0/0

110/110

40

Computer Sci. & Engr. University of Notre Dame

40 Lectures 11-12

Recall…

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

Recall, for MIPS, we have to
build a Main Control Block
and an ALU Control Block

Single cycle
MIPS machine

41

Computer Sci. & Engr. University of Notre Dame

41 Lectures 11-12

Well, here’s what we did…

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M
u
x

0

1

Control

Add
ALU

result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU

Address

Single cycle
MIPS machine

or
and

or

and
or

(func<5:0>)

F0

F1

F2

F3

(ALUOp)
ALUOp0

ALUctr<2>

ALUctr<1>

ALUctr<0>

ALUctr

ALUOp1

We came up with
the information to
generate this logic

which would fit here
in the datapath.

42

Computer Sci. & Engr. University of Notre Dame

42 Lectures 11-12

(and again, remember, realistically logic,
ISAs, insturction types, etc. would be

much more complex)

(we’d also have to route all signals too…
which may affect how we’d like to

organzie processing logic)

43

Computer Sci. & Engr. University of Notre Dame

43 Lectures 11-12

Single cycle versus multi-cycle

44

Computer Sci. & Engr. University of Notre Dame

44 Lectures 11-12

Single-Cycle Implementation
•! Single-cycle, fixed-length clock:

–! CPI = 1

–! Clock cycle = propagation delay of the longest datapath
operations among all instruction types

–! Easy to implement

•! Single-cycle, variable-length clock:
–! CPI = 1

–! Clock cycle = ! (%(type-i instructions) * propagation
delay of the type “i” instruction datapath operations)

–! Better than the previous, but impractical to implement

•! Disadvantages:
–! What if we have floating-point operations?

–! How about component usage?

45

Computer Sci. & Engr. University of Notre Dame

45 Lectures 11-12

Multiple Cycle Alternative
•! Break an instruction into smaller steps

•! Execute each step in one cycle.

•! Execution sequence:
–! Balance amount of work to be done

–! Restrict each cycle to use only one major functional
unit

–! At the end of a cycle
•! Store values for use in later cycles, why?

•! Introduce additional “internal” registers

•! The advantages:
–! Cycle time much shorter

–! Diff. inst. take different # of cycles to complete

–! Functional unit used more than once per instruction

