
University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review 1

Lecture 15
Midterm Review

Digital Design

Copyright © 2006

Frank Vahid
4

Vahid: Basic Datapath Operations

• Load operation: Load data from data memory to RF

• ALU operation: Transforms data by passing one or two RF register values through

ALU, performing operation (ADD, SUB, AND, OR, etc.), and writing back into RF.

• Store operation: Stores RF register value back into data memory

• Each operation can be done in one clock cycle

Register file RF

Data memory D

ALU

n-bit
2x1

Register file RF

Data memory D

ALU

n-bit
2x1

Register file RF

Data memory D

ALU

n-bit
2x1

Load operation ALU operation Store operation

Digital Design

Copyright © 2006

Frank Vahid
6

Vahid: Basic Architecture – Control Unit

• D[9] = D[0] + D[1] – requires a
sequence of four datapath operations:

0: RF[0] = D[0]

1: RF[1] = D[1]

2: RF[2] = RF[0] + RF[1]

3: D[9] = RF[2]

• Each operation is an instruction

– Sequence of instructions – program

– Looks cumbersome, but that's the world
of programmable processors –
Decomposing desired computations into
processor-supported operations

– Store program in Instruction memory

– Control unit reads each instruction and
executes it on the datapath
• PC: Program counter – address of current

instruction

• IR: Instruction register – current instruction

Register file RF

Data memory D

ALU

n-bit

2x1

Datapath

0: RF[0]=D[0]

1: RF[1]=D[1]

2: RF[2]=RF[0]+RF[1]

3: D[9]=RF[2]

I

Control unit

Instruction memory

PC IR

Controller

Foreshadowing:

What if we want ALU to add, subtract?

How do we tell it what to do?
Digression:

HW vs. SW based

approaches

Digital Design

Copyright © 2006

Frank Vahid
7

Review: Three-Instruction Programmable Processor

• Instruction Set – List of allowable instructions and their

representation in memory, e.g.,

– Load instruction—0000 r3r2r1r0 d7d6d5d4d3d2d1d0

– Store instruction—0001 r3r2r1r0 d7d6d5d4d3d2d1d0

– Add instruction— 0010 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0

Instruction memory I

0: 0000 0000 00000000

1: 0000 0001 00000001

2: 0010 0010 0000 0001

3: 0001 0010 00001001

0: RF[0]=D[0]

1: RF[1]=D[1]

2: RF[2]=RF[0]+RF[1]

3: D[9]=RF[2}

Desired program

operands

Instructions in 0s and 1s

– machine code

opcode

“Instruction” is an idea that

helps abstract 1s, 0s, but

still provides info. about HW

What does this tell you

about data memory?

What does this tell us about

the register file?

Digital Design

Copyright © 2006

Frank Vahid
8

Review: Assembly Code

• Machine code (0s and 1s) hard to work with

• Assembly code – Uses mnemonics

– Load instruction—MOV Ra, d

• specifies the operation RF[a]=D[d]. a must be 0,1, ..., or 15—so R0 means

RF[0], R1 means RF[1], etc. d must be 0, 1, ..., 255

– • Store instruction—MOV d, Ra

• specifies the operation D[d]=RF[a]

– • Add instruction—ADD Ra, Rb, Rc

• specifies the operation RF[a]=RF[b]+RF[c]

0: RF[0]=D[0]

1: RF[1]=D[1]

2: RF[2]=RF[0]+RF[1]

3: D[9]=RF[2]

Desired program
0: 0000 0000 00000000

1: 0000 0001 00000001

2: 0010 0010 0000 0001

3: 0001 0010 00001001

machine code

0: MOV R0, 0

1: MOV R1, 1

2: ADD R2, R0, R1

3: MOV 9, R2

assembly code
Digital Design

Copyright © 2006

Frank Vahid
14

Exercise: Understanding the Processor Design (2)

Q1: D[8] = D[8] + RF[1] + RF[4]

 …
 I[15]: Add R2, R1, R4 RF[1] = 4

 I[16]: MOV R3, 8 RF[4] = 5

 I[17]: Add R2, R2, R3 D[8] = 7

 …

X.S. Hu

(n+1)
Fetch
PC=15
IR=xxxx

(n+2)
Decode
PC=16
IR=2214h

(n+3)
Execute
PC=16
IR=2214h
RF[2]=
 xxxxh

(n+4)
Fetch
PC=16
IR=2214h
RF[2]=
 0009h

(n+5)
Decode
PC=17
IR=0308h

(n+6)
Execute
PC=17
IR=0308h
RF[3]=
 xxxxh

CLK

(n+7)
Fetch
PC=17
IR=0308h
RF[3]=
 0007h

Digital Design

Copyright © 2006

Frank Vahid
16

A Six-Instruction Programmable Processor

• Let's add three more instructions:

– Load-constant instruction—0011 r3r2r1r0 c7c6c5c4c3c2c1c0

• MOV Ra, #c—specifies the operation RF[a]=c

– Subtract instruction—0100 ra3ra2ra1ra0 rb3rb2rb1rb0 rc3rc2rc1rc0

• SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] – RF[c]

– Jump-if-zero instruction—0101 ra3ra2ra1ra0 o7o6o5o4o3o2o1o0

• JMPZ Ra, offset—specifies the operation PC = PC + offset if RF[a] is 0

8.4

Digital Design

Copyright © 2006

Frank Vahid
25

Controller FSM for the Six-Instruction Processor

Fetch

Decode

Init

PC_clr=1

Store

I_rd=1

PC_inc=1

IR_ld=1

Load Add

D_addr=d

D_wr=1

RF_s1 =X

RF_s0 =X

RF_Rp_addr=ra

RF_Rp_rd=1

RF_Rp_addr=rb

RF_Rp_rd=1

RF_s1 =0

RF_s0 =0

RF_Rq_add=rc

RF_Rq_rd=1

RF_W_addr_ra

RF_W_wr=1

alu_s1 =0

alu_s0 =1

D_addr=d

D_rd=1

RF_s1=0

RF_s0=1

RF_W_addr=ra

RF_W_wr=1

Subtract
Load-

constant
Jump-if-zero

RF_Rp_addr=rb

RF_Rp_rd=1

RF_s1=0

RF_s0=0

RF_Rq_addr=rc

RF_Rq_rd=1

RF_W_addr=ra

RF_W_wr=1

alu_s1=1

alu_s0=0

RF_Rp_addr=ra

RF_Rp_rd=1

RF_s1=1

RF_s0=0

RF_W_addr=ra

RF_W_wr=1

Jump-if-
zero-jmp

PC_ld=1

op=0100 op=0101op=0010 op=0011op=0001op=0000

R
F

_
R

p
_
z
e
ro

R
F

_
R

p
_
z
e
ro

'

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review 9

A quick look: more complex ISAs Datapath

Path of
Add from
start to
finish.

Add: 0010 0001 0010 0011

00
10

 0
01

1

Bits for Load C also “sent” 0010 0011

More types = more
multiplexor inputs, signal
routing

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review 10

A CPU : The Bigger Picture

• We can see CPU performance dependent on:

– Clock rate, CPI, and instruction count

• CPU time is directly proportional to all 3:

– Therefore an x % improvement in any one variable leads

to an x % improvement in CPU performance

• But, everything usually affects everything:

Hardware
Tech.

Organization ISAs
Compiler

Technology

Clock Cycle
Time

CPI

Instruction
Count

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

IC, CPI and IPC

| | | | | | | | | | | | | | | |
time

1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 7 8 9 10

Total Execution Time = 15 cycles

Instruction Count (IC) = Number of Instructions = 10

Average number of cycles per instruction (CPI) = 15/10 = 1.5

Instructions per Cycle (IPC) = 10/15 = 0.66

Can CPI < 1?

Consider the processor we have worked on.

What is its CPI? IPC?

11

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

Different Types of Instructions
• Multiplication takes more time than addition

• Floating point operations take longer than integer
operations

• Memory accesses take more time than register
accesses

• NOTE: changing the cycle time often affects the
number of cycles an instruction will take

CPU Clock Cycles

12

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

Question 2a - Measurement Comparison
• Given that two machines have the same ISA, which

measurement is always the same for both machines
running program P?

– Clock Rate: No

– CPI: No

– Execution Time: No

– Number of Instructions: Yes

– MIPS: No

13

University of Notre Dame

CSE 30321 - Lecture 05 - Performance Metrics and Benchmarking 14

Deriving the previous formula

Speedupoverall =
Execution Timeold

Execution Timenew

=

(1 – Fractionenhanced) +
Fractionenhanced

Speedupenhanced

1

(1 – Fractionenhanced) +
Fractionenhanced

Speedupenhanced

1 normalized old execution time

1 - % enhanced
(i.e. part of the task
will take the same
amount of time as

before)

% of task that will run faster

how much faster it will run

(note: # should be < 1)
(otherwise, performance gets worse)

(represents new component of ex. time)

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

MIPS Datapath

15

MIPS Instructions
are 32 bits ... plus 6 bit function codes = more functionality

6 bit opcodes...

More ways to
address memory

Longer
instructions =
more bits to

address
registers

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

MIPS Registers

16

Name R# Usage Preserved on Call

$zero 0 The constant value 0 n.a.

$v0-$v1 2-3 Values for results & expr. eval. no

$a0-$a3 4-7 Arguments no

$t0-$t7 8-15 Temporaries no

$s0-$s7 16-23 Saved yes

$t8-$t9 24-25 More temporaries no

$gp 28 Global pointer yes

$sp 29 Stack pointer yes

$fp 30 Frame pointer yes

$ra 31 Return address yes

$at 1 Reserved for assembler n.a.

$k0-$k1 26-27 Reserved for use by OS n.a.

(and the “conventions” associated with them)

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

! R-type: All operands are in registers

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! (add: op+func)

Machine:

B: 000000 00111 01000 01001 xxxxx 100000
D: 0 7 8 9 x 32

17

R-Type: Assembly and Machine Format

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

! All instructions have 3 operands

! All operands must be registers

! Operand order is fixed (destination first)

! Example:

! C code: ! A = B - C;

! ! (Assume that A, B, C are stored in registers s0, s1, s2.)

! MIPS code:! sub $s0, $s1, $s2

! Machine code: 000000 10001 10010 10000 xxxxx 100010

! Other R-type instructions

" addu, mult, and, or, sll, srl, …

18

R-type Instructions

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

• I-type: One operand is an immediate value and others
 are in registers

 Example: lw !"#$%#&'!()*%%%%%+%RF[19] = DM[RF[8]+32]

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions: Another Example

B: 100011 01000 10011 0000000000100000
D: 35 8 19 32

How about load the next word in memory?

19

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

! The big picture:
 Caller Callee

! Need “jump” and “return”:

" jal ProcAddr # issued in the caller

• jumps to ProcAddr

• save the return instruction address in $31

• PC = JumpAddr, RF[31]=PC+4;

" jr $31 ($ra) # last instruction in the callee

• jump back to the caller procedure

• PC = RF[31]

PC

PC+4

r0

r1

r31 b0bn-1 ...

...

0

PC

HI

LO

!#,%-%!./%'.0(1.2%/33.0""*jal

jr

20

MIPS Procedure Handling

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

! Register contents across procedure calls are designated as either
caller or callee saved

! MIPS register conventions:

"$t*, $v*, $a*: not preserved across call

• caller saves them if required

"$s*, $ra, $fp: preserved across call

• callee saves them if required

"See P&H FIGURE 2.18 (p.88) for a detailed register usage
convention

"Save to where??

! More complex procedure calls

"What if your have more than 4 arguments?

"What if your procedure requires more registers than available?

"What about nested procedure calls?

"What happens to $ra if proc1 calls proc 2 which calls proc3,…

21

More complex cases

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review 22

Procedure call essentials:
Caller/Callee Mechanics

• Four places

foo() bar(int a)

{ {

 int temp = 3;

 bar(42); ...

 ... return(temp + a);

} }

1. caller at call time

4. caller after return

2. callee at entry

3. callee at exit

Who does what when?

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

! Stack

"A dedicated area of memory

"First-In-Last-Out (FILO)

"Used to

#Hold values passed to a procedure as arguments

#Save register contents when needed

#Provide space for variables local to a procedure

! Stack operations

"push: place data on stack (sw in MIPS)

"pop: remove data from stack (lw in MIPS)

! Stack pointer

"Stores the address of the top of the stack

"$29 ($sp) in MIPS

23

The stack comes to the rescue

University of Notre Dame

CSE 30321 - Lecture 15 - Midterm Review

Memory
Structure

Data
segment

Instruction
segment

Reserved

PC

SP
Higher
Mem
Addr

Stack
segment

Lower
Mem
Addr

.

.

.

Addr

i-2
i-1
i

i+1
i+2 $sp = i

Top of stack

24

Where is the stack located?

