
CSE 30321 – Computer Architecture I – Fall 2009
Lecture 17-18– In Class Examples

October 27 & 29, 2009

Question 1: Multi-cycle performance
You have determined that the critical path that sets the clock cycle length of the MIPS multi-cycle
datapath is memory accesses for loads and stores (not for fetching instructions). This has caused a
new implementation of this processor to run at a clock rate of 4.8 GHz instead of the target 5.6 GHz.

Youʼre contemplating a “solution” that involves taking all of the cycles that access memory and breaking
them down into 2 cycles. This way, the machine can run at its target clock rate.

Using the SPEC CPUint 2000 mix shown below, determine how much faster the machine with the two-
cycle memory access is compared with the 4.8 GHz machine with single-cycle memory accesses.

Instruction Type CCs Frequency
ALU 4 48%
Store 4 10%
Load 5 27%

Branch / Jump 3 15%

Fundamentally, how will you answer this question?
- Calculate 2 execution times and compare
- Use the CPU time equation where instruction count will be the same – only clock rate and CPI

will change

Quantitative Answer:

CPU time4.8 = IC * [(0.48)(4) + (0.1)(4) + (0.27)(5) + (0.15)(3)] * (4.8 x 109)-1 = (IC) * 8.58x10-10s

CPU time5.6 = IC * [(0.48)(4) + (0.1)(5) + (0.27)(6) + (0.15)(3)] * (5.6 x 109)-1 = (IC) * 8.02x10-10s

8.58 / 8.02 = 1.07. Therefore, the new version is about 7% faster than the old version.

Question: Qualitatively, why is making this change a good idea?

The instructions that now take more clock cycles to execute only account for 37% of the total instruction
mix. Therefore, weʼre now making “the common case” (67% of instructions) execute (5.6 / 4.8 = 17%
faster…)

Would you consider the further step of splitting instruction fetch into two cycles if it would
raise the clock rate up to 6.4 GHz?

CPU time6.4 = IC * [(0.48)(5) + (0.1)(6) + (0.27)(7) + (0.15)(4)] * (6.4 x 109)-1 = (IC) * 8.58x10-10s

No. This is not a good idea. The execution time is the same as that with the 4.8 GHz clock! Put
another way, weʼve now made every instruction one clock cycle slower. Look at just the ALU class.
With a 5.6 GHz clock rate, each instruction takes 4 CCs. This implies that every ALU instruction takes
714 ps to execute. With the faster clock rate, each instruction takes 781 ps to execute. The CC may
take less time, but there are more of them.

Question 2: Multi-cycle control
Referring to the extra handouts, modify the multi-cycle datapath shown below to support a new
instruction: load++ $x n($y).

The RTL for load ++ is as follows:
 $x Mem(n + RF($y))
 $y $y + 4

Show any necessary changes to the FSM as well.

Part A:
Describe – cycle-by-cycle (starting with Fetch) – what this instruction needs to do:

- Fetch:
o IR Mem(PC)
o PC PC +4

- Decode:
o A RF(IR[25:21])
o B RF(IR[20:16])
o ALUOut PC + (sign-extend (IR[1:0] << 2)

- Execute:
o ALUOut = A + sign-extend(IR[15:0])

- Memory:
o MDR Mem[ALUOut]
o Question: Can we update the $y register here?

 Yes!
 The ALU is idle for all intent and purposes
 Therefore, can also do: $y $y + 4

- Write Back:
o RF(IR[20:16]) MDR
o Can we also update $y here? Actually, thereʼs 2 answers…

 Answer 1: Yes… but we need to add more HW…
• (Namely another path to write data to the register file is needed…)

 Answer 2: No… we need to add another state…
• Look at mux … you can only select the MDR or ALUOut … not both!
• Begs another question… how do you modify the FSM?

o My answer … add State 12 coming off of State 4. This would
allows us to handle the load++ case. There would then be a path
back to fetch

Part B:
Given your answer to Part A, how would you modify the state machine?

If Answer A, we would need to modify both the state machine and the datapath. One solution would be:

- Change “Write Register” on the RF to Write Register 1 – and add Write Register 2
- Similarly, change “Write Data” on the RF to “Write Data 1” – and add “Write Data 2”
- Then, duplicate the multiplexors that feed the initial input
- This will require the addition on 3 control signals – MemToReg(2), RegDst(2), and RegWrite(2)
- A new state would still need to be added however… State 11 would branch off of State 3 to

ensure that 2 registers are written, not just 1.

If Answer B, we would need to add another state as specified above…however, no new control signals
would need to be added.

- Letʼs assume we would write data into the MDR first…
- Then in State 12, we would want to write data in ALUOut to the register file.
- Therefore, we would need to do the following:

o In State 3, we would need to add the following:
 ALU control = ADD
 ALUSrcB = 01 (select #4)
 ALUSrcA = 1 (select A register)

o For State 12 (added above) we would need to:
 Add another control signal. We need a path from IR[25:21] to the multiplexor that

selects which register is written. (note that every other state that asserts this
control signal would need to be modified)

 MemToReg = 0 (select ALUOut)
 RegWrite = 1 (enable register to be written)

Some general comments:

- These are the kind of tradeoffs that you might consider. Do you add more HW or do you pay an
extra CC?

- Note: for you final project, you may be asked to modify the Vahid Processor Datapath to support
the execution of several pseudocode benchmarks. Extra credit will be given for the fastest,
simplest, etc. design. Here, Answer 1 would give better performance while Answer 2 would be
simpler.

Question 3: Microprogramming

Looking at control signals, we can really break them down into different categories (i.e. signals are
associated with different parts of the datapath…)

Field Name Function of Field
ALU Control Specify the operation being done by the ALU during this clock; the

result is always written to ALU Out
SRC 1 Specify the source for the first ALU operand
SRC 2 Specify the source for the second ALU operand

Specity read or write for the register file, and the source of the
value for a write

Memory Specify read or write, and the source for the memory. For a read,
specify the destination register

PCWrite Control Specfy the writing of the PC
Sequencing (More Later) Specify how to chose the next instruction to be

executed.

Letʼs look at the slides for a bit more detail…

- See “Microinstruction Format (2), Microinstruction Format (3), Sample Microinstruction (1),
Sample Microinstruction (2)”

Now itʼs your turn:

Question A:

- Look at the state machine on the extra handout.
- If you are executing a branch instruction, after decode you would:

o Check to see if A= B
o Set PC to ALU out

 (Remember that an address is calculated by default in decode as just seen)

Fill in the table below for the BEQ microinstruction:

ALU Control SRC 1 SRC 2 Reg Control Memory PC Write Sequence
Sub A B ALUout-

cond
Fetch

Question B:

- Look at the state machine on the extra handout.
- Complete the tables for a load instruction.

ALU Control SRC 1 SRC 2 Reg Control Memory PC Write Sequence
Add A Extend ALUout-

cond
Dispatch2

Why Dispatch2? Because the above state is the same for both a LW and a SW. If itʼs a LW, we need
to go to a different microinstruction than if itʼs a SW.

ALU Control SRC 1 SRC 2 Reg Control Memory PC Write Sequence
LW2 Read ALU Seq

Why Seq? Look at the state machine… once we are in state 3, we always go to state 4.

ALU Control SRC 1 SRC 2 Reg Control Memory PC Write Sequence
 Write MDR Fetch

Why Fetch? Weʼre done with this instruction so we need to get ready to fetch the next one.

Now, letʼs talk about a bit more about how we implement a microprogram and how we select
the next microinstruction (this gets into the whole “Sequence” field). Iʼll conclude this
discussion on the board…

