
University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 1

Lecture 19
Introduction to Pipelining

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 2

Example: We have to build x cars...

...Each car takes 6 steps to build...

Build the frame

(~1 hour)

Build the body

(~1.25 hours)

Install interior

(~1.25 hours)

Put on axles, wheels

(~1 hour)

Paint

(~1.5 hours)

Roll out

(~1 hours)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 3

Sequential Car Building... (a lot like multi-cycle)

Build the frame
(~ 1 hour)

Build the body

(~1.25 hours)

Install interior

(~1.25 hours)
Put on axles, wheels

(~1 hour)
Paint

(~1.5 hours)
Roll out (~1 hours)

Total time: 7 Hours.
(~1 hour/stage)Pipelined Car Building...

1 car done ~ every 1.5
hours

(like multi-cycle, limited by time

of the longest stage)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 4

Pipelining Lessons (laundry example)

• Multiple tasks operating
simultaneously

• Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Also, need time to “fill”
and “drain” the pipeline.

A

B

C

D

6 PM 7 8 9

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 5

Pipelining: Some terms
• If you’re doing laundry or implementing a µP, each

stage where something is done called a pipe stage

– In laundry example, washer, dryer, and folding table
are pipe stages; clothes enter at one end, exit other

– In a µP, instructions enter at one end and have been

executed when they leave

• Throughput is how often stuff comes out of a pipeline

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 6

On the board…
• The “math” behind pipelining…

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 7

More technical detail
• If times for all S stages are equal to T:

– Time for one initiation to complete still ST

– Time between 2 initiates = T not ST

– Initiations per second = 1/T

• Pipelining: Overlap multiple executions of same

sequence

– Improves THROUGHPUT, not the time to perform a
single operation

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 8

More technical detail
• Book’s approach to draw pipeline timing diagrams…

– Time runs left-to-right, in units of stage time

– Each “row” below corresponds to distinct initiation

– Boundary b/t 2 column entries: pipeline register

• (i.e. hamper)

– Look at columns to see what stage is doing what

0 1 2 3 4 5 6

Wash 1 Dry 1 Fold 1 Pack 1

Wash 2 Dry 2 Fold 2 Pack 2

Wash 3 Dry 3 Fold 3 Pack 3

Wash 4 Dry 4 Fold 4 Pack 4

Wash 5 Dry 5 Fold 5

Wash 6 Dry 6

Time for N initiations to complete: NT + (S-1)T
Throughput: Time per initiation = T + (S-1)T/N ! T!

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 9

How much (ideal) speedup?

Latch

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

Unpipelined

Latch
delay for 1 piece of data = 4! + latch setup (assume small)

approximate delay for 1000 pieces of data = 4000!

Latch

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

combinational

logic

delay = !

Pipelined

Latchdelay for 1 piece of data = 4(! + latch setup)
approximate delay for 1000 pieces of data = 3! + 1000!

Ideal speedup = # of pipeline stages

speedup for 1000 pieces of data = 4000
= ~ 41003

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 10

The “new look” dataflow

PC

Inst.
Memory

4
ADD

Register
File

Sign
Extend

16 32

M
u
x

M
u
x

Comp.

ALU

Branch
taken

M
u
x

Data
Mem.

IR6...10

IR11..15

MEM/

WB.IR

M
u
x

IF/ID ID/EX EX/MEM MEM/WB

Data must be
stored from one
stage to the next
in pipeline
registers/latches.
hold temporary
values between
clocks and needed
info. for
execution.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 11

Another way to look at it…

Inst. # 1 2 3 4 5 6 7 8

Inst. i IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 IF ID EX MEM WB

Clock Number

A
L

U

RegIM DM Reg

A
L

U

RegIM DM Reg

A
L

U

RegIM DM Reg

A
L

U

RegIM DM Reg

Pr
og

ra
m
 e

x
ec

ut
io
n

or
d
er

 (
in
 i
ns

tr
uc

ti
on

s)

Time

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 12

So, what about the details?
• In each cycle, new instruction fetched and begins 5

cycle execution

• In perfect world (pipeline) performance improved 5

times over!

• Now, let’s talk about overhead…

– (i.e. what else do we have to worry about?)

• Must know what’s going on in every cycle of machine

• What if 2 instructions need same resource at same time?

– (LOTS more on this later)

– Separate instruction/data memories, multiple register ports, etc.

help avoid this

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 13

Limits, limits, limits…
• So, now that the ideal stuff is out of the way, let’s

look at how a pipeline REALLY works…

• Pipelines are slowed b/c of:

– Pipeline latency

– Imbalance of pipeline stages

• (Think: A chain is only as strong as its weakest link)

• Well, a pipeline is only as fast as its slowest stage

– Pipeline overhead (from where?)

• Register delay from pipe stage latches

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 14

Let’s look at some examples:
• Specifically:

– (1 instruction sequence -- with a problem)

– (2 instruction sequence)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 15

Executing Instructions in Pipelined Datapath
• Following charts describe 3 scenarios:

– Processing of load word (lw) instruction

• Bug included in design (make SURE you understand the bug)

– Processing of lw

• Bug corrected (make SURE you understand the fix)

– Processing of lw followed in pipeline by sub

• (Sets the stage for discussion of HAZARDS and inter-
instruction dependencies)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 16

Load word: Cycle 1

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 17

Load Word: Cycle 2

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 18

Load Word: Cycle 3

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 19

Load Word: Cycle 4

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 20

Load Word: Cycle 5

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 21

Load Word: Fixed Bug

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 22

A 2 instruction sequence

• Examine multiple-cycle & single-cycle diagrams for a

sequence of 2 independent instructions

– (i.e. no common registers b/t them)

• lw $10, 9($1)

• sub $11, $2, $3

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 23

Single-cycle diagrams: cycle 1

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 24

Single-cycle diagrams: cycle 2

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 25

Single-cycle diagrams: cycle 3

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 26

Single-cycle diagrams: cycle 4

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 27

Single-cycle diagrams: cycle 5

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 28

Single-cycle diagrams: cycle 6

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 29

What about control signals?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 30

Questions about control signals
• Following discussion relevant to a single instruction

• Q: Are all control signals active at the same time?

• A: ?

• Q: Can we generate all these signals at the same

time?

• A: ?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 31

Passing control w/pipe registers
• Analogy: send instruction with car on assembly line

– “Install Corinthian leather interior on car 6 @ stage 3”

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 19 – Pipelining (Part 1) 32

Pipelined datapath w/control signals

