CSE 30321 - Lecture 19 - Pipelining (Part 1) 1

Lecture 19
Introduction to Pipelining

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1)

Sequen‘l'ial Car Building. .. (a lot like multi-cycle)

Build the frame
(~ 1 hour)

Build the body Install interior
(~1.25 hours)

Put on axles, wheels Paint

(~1.25 hours) (~1 hour) (~15 hours) Roll out (~1 hours)

Total time: 7 Hours.
(~1 hour/stage)

Pipelined Car Building...
0 s

1 car done ~ every 1.5
hours
(like multi-cycle, limited by time
of the longest stage)

University of Notre Dame, Department of Computer Science & Engineering

Example: We have to build x cars...
...Each car takes 6 steps to build...

Install interior
(~1.25 hours)

o SN

Build the frame
(~1 hour)

Build the body

Put on axles, wheels Paint Roll out
(~1 hour) (~1.5 hours) (~1 hours)

University of Notre Dame, Department of Computer Science & Engineering

Pipelining Lessons (laundry example)

* Multiple tasks operating
simultaneously
* Pipelining doesn’t help
Time latency of single task, it
| | | | helps throughput of

|
40 40 40 20 entire workload
55 L.I- + Pipeline rate limited by

slowest pipeline stage

6\PM 7 8 9
{

xun o o

* Potential speedup =
Number pipe stages

* Unbalanced lengths of
pipe stages reduces
speedup

- Also, need time to “fill”
and “drain” the pipeline.

University of Notre Dame, Department of Computer Science & Engineering

S o0 a3 0

Pipelining: Some terms

- If you're doing laundry or implementing a uP, each
stage where something is done called a

- In laundry example, washer, dryer, and folding table
are pipe stages: clothes enter at one end, exit other

is how often stuff comes out of a pipeline

University of Notre Dame, Department of Computer Science & Engineering

More technical detail

+ If times for all S stages are equal to T:
- Time for one initiation to complete still ST
- Time between 2 initiates = T not ST
- Initiations per second = 1/T

- Pipelining: Overlap multiple executions of same
sequence

- Improves THROUGHPUT, not the time to perform a
single operation

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 6

On the board...

+ The "math” behind pipelining...

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 8

More technical detail

* Book's approach to draw pipeline timing diagrams...
Time runs left-to-right, in units of stage time
Each “row" below corresponds to distinct initiation

Boundary b/t 2 column entries: pipeline register
* (i.e. hamper)

Look at columns to see what stage is doing what

(o] 1 2 3 4 5 6
Wash 1 Dry 1 Fold 1 Pack 1
Wash 2 Dry 2 Fold 2 Pack 2
Wash 3 Dry 3 Fold 3 Pack 3
Wash 4 Dry 4 Fold 4 Pack 4
Wash 5 Dry 5 Fold 5
Wash 6 Dry 6

Time for N initiations to complete: NT + (5-1)T
Throughput: Time per initiation = T + (S-1)T/N > T!

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1)

How much (ideal) speedup?

Unpipelined
combinational combinational combinational combinational
logic — logic logic — logic —>
delay =t delay = t delay = delay = t
Latch delay for 1 piece of data = 4t + I.a'l'ch setup (assume small) Latch
approximate delay for 1000 pieces of data = 4000t
Pipelined

combinational combinational combinational combinational

logic logic logic —>| logic
delay = t delay = delay = t© delay =
Latch delay for 1 piece of data = 4(t + latch setup) Latch
approximate delay for 1000 pieces of data = 3t + 1000t
speedup for 1000 pieces of data =% =~4
Ideal speedup = # of pipeline stages
University of Notre Dame, Department of Computer Science & Engineering
CSE 30321 - Lecture 19 - Pipelining (Part 1) 11
Another way to look at it...
Clock Number
Inst. # 1 2 4 5 6 7 8
Inst. i IF ID MEM WB
Inst. i+l IF EX MEM WB
Inst. i+2 ID EX MEM wB
Inst. i+3 IF ID EX MEM ws

Time

ﬂr s
@7

g |

o
BEC| 5k

Program execution order (in instructions)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1)

The “new look” dataflow

]
EX/MIJ

ID/EX MEM/WB

Branch
taken

Inst.
Memory

ALU

Data must be
stored from one
stage to the next >

in pipeline
Sign
Extend
16 32

registers/latches.
hold temporary
values between
clocks and needed
info. for

execution.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1)

So, what about the details?

* In each cycle, new instruction fetched and begins 5
cycle execution

+ In perfect world (pipeline) performance improved 5
times over!

* Must know what's going on in every cycle of machine
* What if 2 instructions need same resource at same time?
- (LOTS more on this later)

- Separate instruction/data memories, multiple register ports, etc.
help avoid this

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 13 CSE 30321 - Lecture 19 - Pipelining (Part 1) 14

Limits, limits, limits... Let's look at some examples:
+ So, now that the ideal stuff is out of the way, let's - Specifically:
look at how a pipeline REALLY works... - (1 instruction sequence -- with a problem)
+ Pipelines are slowed b/c of: - (2 instruction sequence)

- Pipeline latency

- Imbalance of pipeline stages
* (Think: A chain is only as strong as its weakest link)
+ Well, a pipeline is only as fast as its slowest stage

- Pipeline overhead (from where?)
* Register delay from pipe stage latches

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering
CSE 30321 - Lecture 19 - Pipelining (Part 1) 15 CSE 30321 - Lecture 19 - Pipelining (Part 1) 16

Executing Instructions in Pipelined Datapath Load word: Cycle 1
- Following charts describe 3 scenarios: . 1w
™ Instruction fetch ™!
Note: purple in a latch indicates
- Processing of load word (Iw) instruction | data from that instruction stored there
* Bug included in design (make SURE you understand the bug) . *B D 0% EXEJ wewws
- Processing of Iw _ e

Read
data1 | —»] Read

Read
reg 2

 Bug corrected (make SURE you understand the fix) >

Write Read
reg data2 | —»] M ALU

Write

- Processing of |w followed in pipeline by sub
| data Registers

* (Sets the stage for discussion of HAZARDS and inter- =
instruction dependencies)

University of Notre Dame, Department of Computer Science & Engineering University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 17 CSE 30321 - Lecture 19 - Pipelining (Part 1) 18

Load Word: Cycle 2 Load Word: Cycle 3

1w K 1w
i Execution

¢
" Instruction decode
EX/MEM MEWWB IF/ID IDEX EX/MEM MEWWB

Add
Read
> addr
Read ™ Write Read

|)
Wite data Instruction reg data2 [|
addr Memory
Write
data Registers
Sign
extend

IF/ID

Shift Shift
left2

left2

Read

Read reg 1

dd

address Read Read
data 1 [—» Read

> addr

Read
address

reg 2

Write
addr

Instruction
Memory

University of Notre Dame, Department of Computer Science & Engineering

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 19 CSE 30321 - Lecture 19 - Pipelining (Part 1) 20

Load Word: Cycle 4 Load Word: Cycle 5

1w {‘i
Memor ? Write
v Where’s the bug? back
1F/ID DEX IF/ID 1DEX EX/lEM MEWWB
- Shift Add
Shift left2
left2
Read
Read reg 1
— dd
address Road Read
reg 2 data1 |—»| Zero
i
>
) Write Read Instruction M ALU
Instruction reg data2 [—»f h Memory
Memory u ¥
Write x *
| data Registers
Sign —
extend —

University of Notre Dame, Department of Computer Science & Engineering

University of Notre Dame, Department of Computer Science & Engineering

L 1w $10,9(51)

CSE 30321 - Lecture 19 - Pipelining (Part 1)
Load Word: Fixed Bug

Bug: source for Write Reg is invalid

Solution: Need to preserve register number for write-back
additional pipeline bits for write register address

EX/MEM MEWWB

Read

Zero M add
T Read
- I
ALy Write data
> addr

IF/ID

Add

Instruction
Memory

xc

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1)

Single-cycle diagrams: cycle 1

Shift Add
left2
—p| Read
Read reg 1
address
Read Read
> reg 2 data1 [»> Read
Zero P addr
Write Read H::: !
{— i reg data2 [> M ALU Write
u addr
Write x
—p| 9@ Registers

Instruction fetch

2

Sign
=@—' I

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 22

A 2 instruction sequence

+ Examine multiple-cycle & single-cycle diagrams for a
sequence of 2 independent instructions
- (i.e. no common registers b/t them)
- lw $10, 9($1)
-sub $11, $2, $3

Program Time (clock cycles) >
execution
order CcC1 cc2 cc3 cc4 CC5 CCé

(instructions)

1w $10, 9($1)

sub $11, $2, $3
\4

newest instruction at bottom

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 24
Single-cycle diagrams: cycle 2

,sub $11,$2,83 |, lw $10,9(81) ,
Instructionfetch | Instruction decode "l

TOEX EX/MEM MEM/WB
—— ——

Read
address

@-’

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 25 CSE 30321 - Lecture 19 - Pipelining (Part 1) 26

Single-cycle diagrams: cycle 3 Single-cycle diagrams: cycle 4

sub $11,$2,$3 | 1w $10,9($1) sub $11,$2,$3 1w $10,9(51)
ke =IJ‘ ke N

|

I

|

I

|

I

Memory

I Execution

[" Instruction decode Execution

[.

——— Y
_——-— -

X

7D TOEX

X

|
|
|
|
|
|
EX/MEM MEWWB TFIID TOEX
—— ——

—p[Read
Read Read reg 1
_ address _ address Read Read
1 req 2 data1 [—pf
™ Write Read
Instruction Instruction |yl reg data2 [
Memory Memory
Write
N data Registers
_(sign
extend

don’t need sign
extend, but don’t
know this yet

University of Notre Dame, Department of Computer Science & Engineering

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 27 CSE 30321 - Lecture 19 - Pipelining (Part 1) 28

Single-cycle diagrams: cycle 5 Single-cycle diagrams: cycle 6

sub.

sub $11,... lw.
fe e . - . fwrite
|
|
|
|
|
|

Memory "I” Write

I back
|

!

|

!

|

!

|
IFID
-

i
§44444

Shift Shift
left2

left2

Read
— address

Instruction
Memory

Instruction
Memory

y
y

University of Notre Dame, Department of Computer Science & Engineering

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 29

What about control signals?

University of Notre Dame, Department of Computer Science & Engineering

Passing control w/pipe registers

+ Analogy: send instruction with car on assembly line

- “Install Corinthian leather interior on car 6 @ stage 3"

strip off signals for
execution phase

strip off signals for
WB memory phase
c strip off signals for
-f_,—’ Control M wB write-back phase
17} Genera-
g tion | N |
7] —3 EX M wB
NS e i
RegDst Branch MemtoReg
ALUOp MemRead RegWrite
ALUSrc MemWrite
IF/ID ID/EX EX/MEM MEM/WB

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 30

Questions about control signals

Following discussion relevant to a single instruction

Q: Are all control signals active at the same time?
A ?

Q: Can we generate all these signals at the same
time?
A: ?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 - Lecture 19 - Pipelining (Part 1) 32

Pipelined datapath w/control signals

I PCSIc

DEX
WE| EX/I
W] [wal MEWWB
] ALUOp I] | I
E N WB

— ALUSrc

- Add
38 Shift
left2 [

=
m
=

o

IF/ID

MemRead
MemWrite
MemtoReg

Branch

p| Read .
reg 1 o
4
Read Read &
> reg 2 data1 [—p| > Read
Zero I P addr
i = Write Read - R: a,: >
Instruction | pfreg data2 —p » M ALU Write a
Memory u M addr
Write
data Registers | Write
M H—>a | Data
—1 Memory
Inst[15-0] _/"Sign /AL
P extend » control
Inst[20-16]

M
u
Inst[15-11] x

University of Notre Dame, Department of Computer Science & Engineering

