
A short introduction to
multi-core, threads

(Adapted from Jernej Barbic)

What we’ve discussed so far.

In lab, you’ll see that we can do things in parallel,

but you must pay cost of interconnection overhead.

Threads vs. Processes

•! Process:
–!Full blown virtual machine

–!Has:
•! PC, register state,

•! In Memory:
–! stack, code, data, page table, etc.

–!Process context switch = lots of work
•! (1000s of ns)

•! Thread:
–!Multiplexed CPU only

What’s a thread?

•! Basic unit of CPU utilization

•! Can think of a light weight process

•! Consists of:

–!Program counter, register set, stack space

–!But…

•! Shares code, data, OS resources (open files,
etc.) with peer threads

Interest in threads…

•! Interest in threads originally stems from
evolution of Symmetric Multiprocessors

–! (SMP = fancy name for > 1 CPU)

•! SMP:

–! Idea became popular 6-7 years ago

•! Dual processor SMP more cost effective than 2
uniprocessor boxes

–!Dell Workstation 2.4 GHz Intel Xeon = $2584

–! 2nd processor = just an additional $434

–!Multiple CPUs in a single box sharing
memory, I/O resources

CMP a lot like SMP

•! CMP = “chip multiprocessor”

–!Another fancy name for multi-core

–!Now, technically possible, economical, and
physically necessary to put multiple cores
on 1 chip

Why are CMPs “physically necessary”?

•! Idea:

–!2 cores, 2 GHz lead to heat of X

–!1 core, 4 GHz leads to heat of 4X

•! From performance perspective

–! If you can parallelize code, execution time
on machine 1 is the same as machine 2

•! From heat perspective

–!Heat of machine 1 is less than machine 2

See Lecture 01 slides…

Context switches

•! Threads more easily context switched

–!Just registers + PC, not memory
management

–!Could run on different processors
concurrently in SMP

•! Share CPU in uniprocessor

•! Note: Brings up synchronization issues
–! (Not covered until CSE 30322)

Example
•! Two single threaded applications on 1 machine

Kernel code and data

K
e

rn
e
l

P1: Multi-threaded P2: Single threaded

Code Code Code Code

t1 t2 t3 t1
Have

computational
state (PCs,

registers, etc.)
for each
thread

Another view
Single threaded program Multi-threaded program

Static

Heap

Stack

Code

Static

Heap

Code

Stack

1

Stack

2

Stack

3
…

MT program has per thread stack:
Heap, static, and code are common to all threads

Threads and the OS

•! Programs in traditional OS are single
threaded

–!1 PC per program (process), 1 stack, 1 set
of CPU registers

–! If process blocks (i.e. disk I/O, NW
communication, etc.) then no progress for
program as a whole

•! E.g. from a lw instruction…

Multi-threaded OS

•! Examples:

–!Digital unix, Free BSD, Sun Solaris, etc.

•! State:

–! In ST state contained in a process

–! In MT, state contained in multiple threads

•! Idea:

–!w/MT, if one thread of execution blocks,
can switch to another one without a context
switch

