A bit on device performance...

- One way to think about switching time:
 - Charge is carried by electrons
 - Carrier velocity is proportional to the lateral E-field between source and drain
 - i.e. v = mE
 - m = carrier mobility (and can be though of as a constant)
 - Electric field defined as: $E = V_{ds}/L$
 - Time for charge to cross channel = length/speed
 - (i.e. meters / (meters/s) = seconds)
 - = L/v
 - = L/(mE)
 - = $L/(m^*(V_{ds}/L))$

• = $L^2/(mV_{ds})$

Thus, to make a device faster, we want to either increase V_{ds} or decrease feature sizes (i.e. L)

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

A funny thing happened on the way to 45 nm

2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at 3+ GHz in production.

University of Notre Dame

Some more important relationships

- What about power (i.e. heat)?
 - First, need to quickly discuss equation for capacitance:
 - $C_L = (e_{ox}WL)/d$
 - e_{ox} = dielectric, WL = parallel plate area, d = distance between gate and substrate
 - Then, dynamic power becomes:
 - $P_{dyn} = C_L V_{dd}^2 f_{0-1}$
 - Dynamic power is a function of the frequency of 0 to 1 or 1 to 0 transitions (as this involves the movement of charge)
 - $\, \ast \,$ Note frequency in this context is NOT clock frequency
 - Note that as W and L scale, C_{L} decreases which in turn will cause a decrease in $\mathsf{P}_{\mathsf{dyn}}.$
 - Note that while an increase in V_{dd} will *decrease* switching time, it will also cause a quadratic *increase* in dynamic power.

University of Notre Dame