Pipelining
Fundamentals of Pipeline Math

e Time for a single stage =T
e Time for S stages = ST (simple enough...)

e Time between initiations = T (not ST as in the multi-cycle approach that we’ve discussed so far —
i.e. where we do 1 instruction right after the next.)

e |dea: Improve throughput ... or how often something comes out of the datapath. For example:

— Assume we have a non-pipelined, multi-cycle datapath where each instruction takes 4 CCs
on average. Assume our clock rate is x. How many seconds does it take to finish N instruc-
tions?

; 4cc
* N Instructions x —==%— X Z& = 4N
— Now, with a pipelined version, we would have:

: 1CCs s _
* N Instructions X Frstruation X 060 = N

How long will it take or N initiations to finish?

o N(T)+(S—1)(T)
— The N(T) part refers to the fact that something finishes every 'T’ time units. If there are 'N’
items in the pipeline, N(T) is one component of the execution time.

— The (8-1) (T) part refers to the fact that we need to fill up the pipeline. l.e. if there are S
stages, than (S-1) time units will be spent filling up those stages. No “useful work” will be
output during this time. (see simple trace with stages in row and time in column)

e Example:

— 4 loads, 4 stages, 40 minutes/stage (i.e. laundry!)
— Pipelined: (4)(40) + (4-1)(40) = 160 + 120 = 280
— Nonpipelined: (4)(4)(40) = 640!

Throughput

e Candivide N(T')+ (S —1)(T) by N: — N(T)JFS*?_I)(T) — As N gets large, equation goes to T.
Thus, time per initiation is T.

e As N gets large, the component on the right trends toward 0 and the NT component dominates.
Ideally, you see a result produced every (shorted) clock cycle.

e Thus, despite the slight increase in overhead, the pipelined version produces results faster.
Speedup

o |deally, the speedup one sees is equal to the number of pipe stages...

Assume/recall that with the multi-cycle approach, we tried to balance the amount of work
per cycle. We try to do the same thing here by balancing the amount of work per stage.

Assume that each cycle takes 7 time units. If there are 4 steps, then the total time spent is
4t.

The time for 1000 pieces of data/instruction is thus 47 x 1000.

Now, what about the time for a pipelined version?

We can actually use the forumla: N7+ (S —1)T. Thus, we get: (1000)7+ (4—1)7 = 10037.

Therefore, the speedup is essentially equal to the number of stages: 13907 is essentially 4

(the number of stages).

e (more in the slides)

