

For the sequence of instructions shown below, show how they would progress through the pipeline.

For all of these problems:

- Stalls are indicated by placing the code of the stage where the hazard would be discovered in the succeeding
square

- We will assume a standard 5 stage pipeline
o (IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, M = Memory Access, WB = Write Back)

- Assume that each stage of the pipeline takes just 1 clock cycle to finish.

Example 1:

- Assume that forwarding HAS NOT been implemented
- Assume that you CANNOT read and write a register in the same clock cycle

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Add
$5, $3, $4 IF ID EX M WB

Add
$6, $5, $7 IF ID ID ID ID EX M W Add must wait until $5 written by previous add;

reads $5 in ID stage

LW
$7, 0($6) IF IF IF IF ID ID ID ID EX M WB

LW stalled by prior
add; needs $6 too –

reads in CC #10

SUB
$1, $2, $3 IF IF IF IF ID EX M WB Pipeline full so

SUB canʼt go

Add
$9, $7, $8 IF ID ID ID EX M WB

(Last add must wait for $7 from LW)
(CPI = 17 /5 = 3.4 – not very good)

Example 2:

- Letʼs do the same problem as before, but now assume that forwarding HAS been implemented
- Assume that you CANNOT read and write from the same register in the register file in the same clock cycle

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Add
$5, $3, $4 IF ID EX M WB

Data to be loaded into $5
available at end of CC 3 /

Beginning of CC 4

Add
$6, $5, $7 IF ID EX M WB Add gets data for $5 directly

from output of ALU

LW
$7, 0($6) IF ID EX M WB Lw gets $6 data directly

from output of ALU

SUB
$1, $2, $3 IF ID EX M WB No dependencies on any

other instructions

Add
$9, $7, $8 IF ID EX M WB

Add gets $7 data from latch
between memory and

writeback stage
(its an input to ALU)

(Ability to forward eliminates all stalls!)
(CPI = 9 / 5 = 1.8 – much better – and would drop toward 0 as more instructions were executed.)

Example 3:

- Like Example 2, assume that forwarding HAS been implemented
- Assume that you CAN read and write a register in the same clock cycle

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Add
$1, $6, $9 IF ID EX M WB

Add
$6, $2, $4 IF ID EX M WB

LW
$7, 0($6) IF ID EX M WB

SUB
$1, $7, $8 IF ID ID EX M WB

LW instruction producing result
that will be stored in $7; even with

forwarding must stall; data not
available until end of CC #6 and
needed at beginning of CC #6

Add
$9, $1, $8 IF IF ID EX M WB

