Example 4:

- Assume that forwarding HAS been implemented
- We will stall if we encounter a branch instruction
- Branches or Jumps are resolved after the EX stage.

- Assume that register $2 has the value of 0 and $3 has the value of 0

Instruction 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15 | 16 | 17
LW
IF ID EX M w
$1, 4(%9)
Add Add gets data from lw
$4, $1, $9 IFo D Ib P EX MW forwarding
Sub Sub gets data from
$7, $4, $9 P P IDpEX M WE add forwarding
BEQ BEQ must still wait to
$2, $3, X IF D | EX enter the pipeline
Add
$9, $8, $7
And
$4, 85, $5
. Can’t start Add until
4)1(' Add IF ID EX M | WB after BEQ finishes
$4, 85, 39 executing (comparing)

Example 5:
- Assume that forwarding HAS been implemented

- We will predict that any branch instruction is NOT TAKEN
- Branches or Jumps are resolved after the EX stage.
- Assume that register $2 has the value of 0 and $3 has the value of 0

Instruction 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15 | 16 | 17
LW
IF | ID |[EX | M | W
$1, 4($9)
Add
$4. $1, $9 IF ID ID EX M w
Sub
$7. $4, $9 IF IF ID EX M wB
BEQ
$2. $3, X IF ID EX
Add Add and And start down pipeline;
$9, $8. $7 IF | ID however, they would not change
7 state until CC 10 and 11. They
never get this far so there is no
And IF harm done. We can kill them and
$4, $5, $5 restart the next add instruction.
X: Add
$4.$5 $9 IF | ID|EX| M| W

Example 6:

- Assume that forwarding HAS been implemented
- We will predict that any branch instruction is TAKEN
- Branches or jumps are resolved after the EX stage.

- Assume that register $2 has the value of 0 and $3 has the value of 0

Instruction

10

11

12

13

14

15

16

17

LW
$1, 4(%9)

EX

Add
$4, $1, $9

EX

Sub
$7, $4, $9

EX

wB

BEQ
$2, $3, X

EX

Add
$9, $8, $7

And
$4, $5, $5

X: Add
$4, $5, $9

EX

This is the best situation — the last add instruction finishes 2 CC’s earlier.

