

Board Notes on Virtual Memory

Why Virtual Memory?

- Letʼs user program size exceed the size of the physical address space
- Supports protection

o Donʼt know which program might share memory at compile time.
- Usually, virtual address space is much greater than physical address space

o (Mapping allows code with virtual address to run on any machine.)

How do we translate a Virtual Address to a Physical Address
(or alternatively, “How do we know where to start looking in memory?”)

- Good analogy: Itʼs like finding what cache block a physical address maps to.

Example:

- What if 32-bit virtual address (232 virtual addresses), 4KB pages (like above), 64 MB of main
memory (226 physical addresses)

How is this mapping done?

VPN (Virtual Page Number) OFFSET

PFN (Physical Frame Number) OFFSET

How do we do VPN PFN mapping?

- Leverage structure called page table
- To make analogy to cache, “data” = PFN
- To make analogy to cache, also have valid, dirty bits
- If no valid mapping, get page fault:

o Try to avoid
o Involves lots of disk traffic
o Placement in memory done fully associative, LRU to minimize
o Placement = some extra overhead, but small percent – and worth it to avoid M CC

penalty

Offset still the same because we go down the same distance

More specifically:
The process works like this…

Even more specifically…

- The page table is stored in memory
- The beginning of the page table is stored in the page table register

How big is the page table?

- Page table can actually become pretty big…
- Example #1:

o 4 KB pages
 Therefore need 212 (or 12 bits of offset)
 (Offset does same thing that it does in cache block – not just picks page entry)

o 32-bit virtual address
 32 – 12 = 20 bits of VPN

o 4 Byte / page table entry
 Holds LRU status, valid, dirty, PFN (~32 bits)

- Therefore, 220 entries in page table, each ~ 4 bytes each 4 MBytes

Another Example…

- Assume
o Virtual address = 64 bits
o 4 KB pages
o 4 bytes/page

VPN (52 bits) Offset (12 bits)

- PT would be:

o 4.5 x 1015 x 4 ~ 1016 bytes 10 petabytes!
- Soluton(s):

o Multi-level, inverted page tables – youʼll learn about in OS

Is page table / virtual address translation slow?

- It can be have maybe 2 references / translation
- Solution: TLB = “Translation Lookaside Buffer”

o Fast cache for page table

What does the TLB look like?

- Itʼs a really small, fully associative cache

Virtual Page # Physical Frame # Dirty LRU Valid

1. All of the virtual page numbers would be searched for a match
2. The physical frame number is the data that is supplied
3. The physical frame number is concatenated with an offset to form a physical address

Where is the TLB on the critical path?

See flow chart below / in notes:

