
Lecture 27 Memory Technology + Storage + I/O

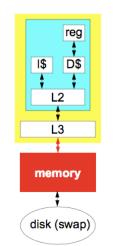
University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

SRAM (Static Random Access Memory)

- "logic" (CPU process, registers are SRAM)
- store bits in flip-flops (cross-coupled NORs)
- not very dense (six transistors per bit)
- + fast

@ 2004 by Lebeck, Sorin, Roth,


Hill, Wood, Sohi, Smith. Vijaykumar, Lipasti

+ doesn't need to be "refreshed" (data stays as long as power is on)

Storage Hierarchy I: Caches

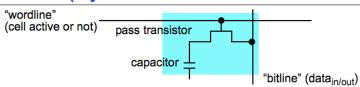
COMPSCI 220 / ECE 252 Lecture Notes

Storage Hierarchy II: Main Memory

main memory

- memory technology (DRAM)
- interleaving
- special DRAMs
- processor/memory integration

virtual memory and address translation


© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

DRAM (Dynamic Random Access Memory)

- bit stored as charge in capacitor
 - optimized for density (1 transistor for DRAM vs. 6 for SRAM)
- capacitor discharges on a read (destructive read)
 - read is automatically followed by a write (to restore bit)
- charge leaks away over time (not static)
 - refresh by reading/writing every bit once every 2ms (row at a time)
- access time = time to read
- cycle time = time between reads > access time

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

DRAM Chip Specs

Year	#bits	Access Time	Cycle Time
1980	64Kb	150ns	300ns
1990	1Mb	80ns	160ns
1993	4Mb	60ns	120ns
2000	64Mb	50ns	100ns
2004	1Gb	45ns	75ns

density: +60% annual

· Moore's law: density doubles every 18 months

• speed: %7 annual

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

7

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

7

Example: Simple Main Memory

- 32-bit wide DRAM (1 word of data at a time)
- pretty wide for an actual DRAM
 access time: 2 cycles (A)
- transfer time: 1 cycle (T)
 - time on the bus
- cycle time: 4 cycles (B = cycle time access time)
 - · B includes time to refresh after a read
- · what is the miss penalty for a 4-word block?

Comparison with SRAM

SRAM

- optimized for speed, then density
 - + 1/4-1/8 access time of DRAM
 - 1/4 density of DRAM
- bits stored as flip-flops (4-6 transistors per bit)
- static: bit not erased on a read
 - + no need to refresh
 - greater power dissipated than DRAM Think about in context of leakage!
 - + access time = cycle time

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

6

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

Simple Main Memory

cycle	addr	mem
1	12	Α
2 3 4		Α
3		T/B
4		В
5	13	Α
6		Α
7		T/B
8		В
9	14	Α
10		Α
11		T/B
12		В
13	15	Α
14		Α
15		T/B
16		В

4-word access = 15 cycles

4-word cycle = 16 cycles

can we speed this up?

- lower latency?
 - no
 - A,B & T are fixed
- higher bandwidth?

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohl, Smith, Viiavkumar, Lipasti © 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Bandwidth: Wider DRAMs

cycle	addr	mem
1	12	Α
2		Α
3		T/B
4		В
5	14	Α
6		Α
7		T/B
8		В

new parameter

- 64-bit DRAMs
- 4-word access = 7 cycles
- 4-word cycle = 8 cycles

- 64-bit bus
 - · wide buses (especially off-chip) are hard
 - electrical problems
- 64-bit DRAM is probably too wide

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory 10

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

11

Simple Interleaving

cycle	addr	bank0	bank1	bank2	bank3
1	12	Α	Α	Α	Α
2		Α	Α	Α	Α
3		T/B	В	В	В
4		В	T/B	В	В
5				Т	В
6					Т

4-word access = 6 cycles

4-word cycle = 4 cycles

© 2004 by Lebeck, Sorin, Roth,

Hill, Wood, Sohi, Smith,

Vijaykumar, Lipasti

- + can start a new access in cycle 5
- + overlap access with transfer
- + and still use a 32-bit bus!

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

12

Bandwidth: Simple Interleaving/Banking

use multiple DRAMs, exploit their aggregate bandwidth

- each DRAM called a bank
 - not true: sometimes collection of DRAMs together called a bank
- · M 32-bit banks
- simple interleaving: banks share address lines
- word A in bank (A % M) at (A div M)
 - e.g., M=4, A=9: bank 1, location 2

0	1	2	3	
4	5	6	7	
8	9	10	11	
bank 0	bank 1	bank 2	bank 3	

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory 11

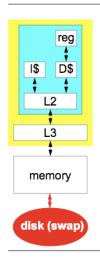
University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

1

Processor/Memory Integration

the next logical step: processor and memory on same chip


- move on-chip: FP, L2 caches, graphics. why not memory?
- problem: processor/memory technologies incompatible
 - · different number/kinds of metal layers
 - DRAM: capacitance is a good thing, logic: capacitance a bad thing

what needs to be done?

- use some DRAM area for simple processor (10% enough)
- eliminate external memory bus, milk performance from that
- integrate interconnect interfaces (processor/memory unit)
- re-examine tradeoffs: technology, cost, performance
- research projects: PIM, IRAM

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Storage Hierarchy III: I/O System

- often boring, but still quite important
 - · ostensibly about general I/O, mainly about disks
- performance: latency & throughput
- disks
 - parameters
 - extensions
- buses

@ 2004 by Lebeck, Sorin, Roth Hill, Wood, Sohi, Smith,

COMPSCI 220 / ECE 252 Lecture Notes

Storage Hierarchy III: Disks, Buses and I/O

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

I/O Device Characteristics

type

input: read only

- · output: write only
- storage: both
- partner
 - human
 - machine
- data rate
 - peak transfer rate

Output to display device partner data rate KB/s type 0.01 I human mouse CRT 0 60,000 human I/O 2-8 modem machine I/O 500-6000 LAN machine machine 2000 tape storage disk 2000-10,000 storage nachine **Both input & output**

Input to system

Of interest to this discussion

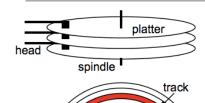
© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

I/O (Disk) Performance

- who cares? you do
 - remember Amdahl's Law
 - want fast disk access (fast swap, fast file reads)
- I/O performance metrics

 - · raw data bandwidth: bytes per second
 - latency: response time
- is I/O (disk) latency important? why not just context-switch?


© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith. Vijavkumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

Disk Parameters

- 1–20 platters (data on both sides)
 - · magnetic iron-oxide coating
 - 1 read/write head per side
- 500–2500 tracks per platter
- 32–128 sectors per track
 - sometimes fewer on inside tracks
- 512–2048 bytes per sector
 - · usually fixed number of bytes/sector
 - data + ECC (parity) + gap
- 4–24GB total
- 3000–10000 RPM

@ 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith Vijavkumar, Lipasti

sector

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

University of Notre Dame

University of Notre Dame

What metrics are

important for what

applications?

Disk Performance Example

parameters

- 3600 RPM ⇒ 60 RPS (may help to think in units of tracks/sec)
- · avg seek time: 9ms
- 100 sectors per track, 512 bytes per sector
- · controller + queuing delays: 1ms
- Q: average time to read 1 sector (512 bytes)?
 - rate_{transfer} = 100 sectors/track * 512 B/sector * 60 RPS = 2.4 MB/s
 - t_{transfer} = 512 B / 2.4 MB/s = 0.2ms
 - $t_{rotation} = .5 / 60 RPS = 8.3 ms$
 - t_{disk} = 9ms (seek) + 8.3ms (rotation) + 0.2ms (xfer) + 1ms = 18.5ms
 - t_{transfer} is only a small component! counter-intuitive?
 - end of story? no! t_{queuing} not fixed (gets longer with more requests)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O 7

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

19

Disk Alternatives

- · solid state disk (SSD)
 - DRAM + battery backup with standard disk interface
 - + fast: no seek time, no rotation time, fast transfer rate
 - expensive
- FLASH memory
 - + fast: no seek time, no rotation time, fast transfer rate
 - + non-volatile
 - slow
 - "wears" out over time

Actually, reads are proportional to normal DRAM, but writes take longer

- · optical disks (CDs, DVDs)
 - cheap if write-once, expensive if write-multiple
 - slow

@ 2004 by Lebeck, Sorin, Roth

Hill, Wood, Sohi, Smith.

Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

10

Disk Usage Models

· data mining + supercomputing

· large files, sequential reads

• raw data transfer rate (rate_{transfer}) is most important

· transaction processing

- large files, but random access, many small requests
- IOPS is most important
- time sharing filesystems
 - small files, sequential accesses, potential for file caching
 - IOPS is most important

must design disk (I/O) system based on target workload

· use disk benchmarks (they exist)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

9

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

2

Extensions to Conventional Disks

- · increasing density: more sensitive heads, finer control
 - increases cost
- · fixed head: head per track
 - + seek time eliminated
 - low track density
- parallel transfer: simultaneous read from multiple platters
 - difficulty in looking onto different tracks on multiple surfaces
 - lower cost alternatives possible (disk arrays)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

More Extensions to Conventional Disks

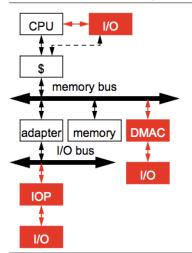
- disk caches: disk-controller RAM buffers data
 - + fast writes: RAM acts as a write buffer
 - + better utilization of host-to-device path
 - high miss rate increases request latency
- disk scheduling: schedule requests to reduce latency
 - · e.g., schedule request with shortest seek time
 - e.g., "elevator" algorithm for seeks (head sweeps back and forth)
 - works best for unlikely cases (long queues)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O 12

University of Notre Dame

Lecture 27 - Memory Technology + Storage + I/O

2


Bus Issues (Memory & I/O Buses)

- · clocking: is bus clocked?
 - synchronous: clocked, short bus ⇒ fast
 - asynchronous: no clock, use "handshaking" instead ⇒ slow
- switching: when is control of bus acquired and released?
 - atomic: bus held until request complete ⇒ slow
 - split-transaction (pipelined): bus free btwn request & reply ⇒ fast
- arbitration: how do we decide who gets the bus next?
 - overlap arbitration for next master with current transfer
 - daisy chain: closer devices have priority \Rightarrow slow
 - distributed: wired-OR, low-priority back-off \Rightarrow medium
- some other issues
 - split data/address lines, width, burst transfer

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

17

I/O System Architecture

© 2004 by Lebeck, Sorin, Roth.

Hill, Wood, Sohi, Smith.

Vijaykumar, Lipasti

- buses
 - · memory bus
 - I/O bus
- I/O processing
 - program controlled
 - DMA
 - I/O processors (IOPs)

University of Notre Dame

COMPSCI 220 / ECE 252 Lecture Notes

Storage Hierarchy III: Disks, Buses and I/O

Lecture 27 - Memory Technology + Storage + I/O

2.4

16

I/O and Memory Buses

		bits	MHz	peak MB/s	special features
memory	Summit	128	60	960	
buses	Challenge	256	48	1200	
	XDBus	144	66	1056	
I/O	ISA	16	8	16	original PC bus
buses	IDE	16	8	16	tape, CD-ROM
	PCI	32(64)	33(66)	133(266)	"plug+play"
	SCSI/2	8/16	5/10	10/20	high-level interface
	PCMCIA	8/16	8	16	modem, "hot-swap"
	USB	serial	isoch.	1.5	power line, packetized
	FireWire	serial	isoch.	100	fast USB

- memory buses: speed (usually custom design)
- I/O buses: compatibility (usually industry standard) + cost

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O