Board Notes on Memory Hierarchies, I/O, and Storage

Announcements:

- Please fill out CIF!
- Updated grades posted yesterday
- HW 7 + Lab 6 will be returned at the end of class.
- Lab feedback
 - o Perhaps at the end of class today depending on time
 - If not, next lecture (where it fits in better).
- Next lecture is...
 - o Introduction to parallel processing / multi-core
- Last lecture is...
 - Final exam review (like the midterm review)
 - Today is...
 - A review of VM
 - o A discussion of the rest of the memory / storage hierarchy

Began by explaining where this fits into course goals.

VM Review:

VM Example(s):

- True or False A miss in the \$ implies a TLB miss.
 - o False.
 - A cache block realistically holds much less than a page. Therefore, the block might have just been kicked out of the cache
- True or False If we there is a Page Table miss, this means that the "page" of data we're looking for has not been loaded from disk.
 - o True.
 - No entry exists for perform a physical address translation.
- Explain how the TLB helps to speed up a virtual address translation.
 - The TLB is the first place that we look when translating a virtual address to a physical address
 - It is a fast cache for the page table
 - It is indexed by the VPN from the VA
 - If the VPN from the VA matches the VPN associated with any one of the entries in the TLB (and the valid bit is set) we have a hit
 - The data supplied by the TLB is the physical frame number.
 - o **I.e**.

Index	Data
VPN	PFN

- If pages have 2¹³ addressable locations, how much coverage does a 128 entry TLB provide?
 - Each VPN is associated with 2¹³ addressable entries
 - Thus, if each TLB entry holds 1 VPN, then $2^7 \times 2^{13} = 2^{20}$ which implies that ~1M addressable entries are covered by the entries in the TLB.
- What if...
 - Your CPU supplies the 32-bit virtual address: A C 3 0 1 0 9 7 16
 - Pages have 214 addressable entries
 - The contents of the current Page Table Register are: 0 0 0 0 0 0 0 C 16
 - Where in physical memory do we look for the PFN?
 - Virtual address is: 1010 1100 0011 0000 00**01 0000 1001 0111**
 - (Portion in **bold** is the offset)
 - Our VPN is: 1010 1100 0011 0000 00
 - We need to add the VPN to the PTR
 - i.e. 1010 1100 0011 0000 00 +0C
 - Thus, the physical address of the *page table entry* that we want is:
 - ... 1010 1100 0011 0011 00
- If a 32-bit virtual address is translated to a 28-bit physical address, 4 bits are used to keep track
 of LRU status, and each page table entry has a valid and a dirty bit, how many bits does each
 PT entry hold?
 - \circ PFN = 28 bits 14 bits = 14 bits
 - Thus, PTE = 14 bits + 4 bits + 1 bit + 1 bit = 20 bits

Next, complete discussion of memory hierarchy:

- Talk a little bit about the impact of technology on memory
 - This should help to explain why we see the register, L1 \$, L2 \$, main memory latencies that we have assumed thus far.
- A few words on how DRAM works:
 - For <u>write</u>:
 - Information is placed on the Bit Line (BL), the word line (WL) is turned on. (This "closes" the transistor switch)

- Depending on the data value capacitance (the data) is either charged or discharged
 - The presence of charge is equal to a 1; the absence of charge implies a logic 0.
- o For read:
 - Prior to reading, the bit line is charged up
 - Then, the WL is turned on, and a "charge redistribution" takes place between the BL and the storage capacitor
 - Voltage change determines the value of the stored data
- A read is destructive
 - Must rewrite data post-read.
 - In fact, need to refresh every 2 ms or so b/c charge leaks off
 - Data is not available during that time
- o Challenges for DRAM
 - Fitting acceptably large capacitances (to have a sufficiently strong 1 and 0) into a smaller area – want strong 1/0 but also a physically small 1/0
 - Can make denser by making taller
 - Note: This is why it's hard to put DRAM and logic on the same chip. How the transistors are made is quite different

Memory can be organized in very different ways...

Seen handout that looks at memory organization

Discuss memory organization more formally...

Bandwidth between processor and memory can impact how your banks should be organized.

- Example:
 - \circ $\,$ Assume DRAM takes 120 ns to access, have 64-bit banks $\,$
 - $_{\odot}$ $\,$ Assume a 4 ns clock with no cache, and 1 64-bit reference / CC $\,$
 - o If you need 64 bits each 4 ns CC, how many banks of memory do you need?
 - Answer:
 - Need: 64 bits / 4 ns = 16 bits / ns
 - Deliver: (64 bits / 120 ns) * # of banks
 - Therefore: (16 bits / ns) = (64 bits / 120 ns) x (# of banks)
 - # of banks = 30

See slide on processor-memory integration.

.

Discuss Disk – I / 0.

- Finished slides 1st
- Then did written examples